
011 011

GPU Microarchitecture Note Set 1—Basic Concepts

Parallel Computation

Performance Measures

Big Cores v. Little Cores

Latency v. Throughput

011 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 011



012 012Parallel Computation

The Idea:

One computer takes t seconds to run a program, which is not fast enough . . .

. . . so try to use n computers to get the program to run in t/n seconds . . .

. . . choose n to fit your performance goal and budget.

Easier said than done.

012 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 012



013 013

Parallel Computation:

The use of multiple processor cores to speed the execution of a program.

A parallel program consists of multiple threads that will execute on a parallel system

consisting multiple cores.

The goal is to lower execution time by using multiple cores.

Realizing this goal is often frustrated by the difficulty of parallel programming.

013 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 013



014 014

Parallel Computation and GPUs

Modern multi-core CPUs and GPUs are both parallel computers.

GPUs are much more parallel than CPUs.

For reasons to be described. . .

. . . this makes GPUs more efficient for an important class of problems.

But it also makes them more difficult to programn.

014 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 014



015 015

Coverage of Topics In Parallel Computation

These notes will only consider single-chip parallel systems:

Multi-core CPUs.

Many-core CPUs.

GPUs.

The following types of parallel systems are beyond the scope of this course:

Multi-chip multiprocessors.

Multi-node computing clusters.

Including LSU’s Tezpur and SuperMike II clusters. . .

. . . and LONI’s Queen Bee cluster in downtown Baton Rouge.

015 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 015



016 016

Definitions

Thread:

A path through the program defined by the programmer, compiler, or some piece of support
software.

The first program you wrote probably consisted of a single thread.

Programs start execution with a single thread, then create additional threads to share the
work.

A program with multiple threads is a parallel program.

016 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 016



017 017

Core:

A processor, what was once called a computer CPU. A core consists of registers, caches,
hardware for fetching and decoding instructions, functional units for executing instructions,
etc. Certain resources, such as fetch and decode logic might be shared with other cores.

A multi-core chip, of course, contains multiple cores.

A core occupies a certain area, A, on a chip . . .

. . . the area is an important factor when considering efficiency.

A core dissipates a certain power, P . . .

. . . power consumption is also important.

A chip has a certain area and power limit. . .

. . . these limit the number of cores on a chip.

017 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 017



018 018

Heavy Weight Core:

A core designed to execute a single thread quickly.

Heavy weight cores have large area and high power consumption.

Energy per instruction is high.

General-purpose CPUs, such as those found in home computers, consist of heavy weight
cores.

Light Weight Core:

A core designed for efficiency.

Light weight cores have small area.

Energy per instruction is low.

018 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 018



019 019

Execution of Multithreaded Programs

Consider a system with c cores and a program with r threads.

Typically the OS will distribute the r threads evenly over the c cores.

If c < r then c − r cores will sit idle.

If c > r then a core may have more than on thread assigned.

019 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 019



0110 0110

Performance Characterization

Consider

A parallel program that can spawn any number of threads, as needed.

A computer consisting of c cores.

Let t(1) denote the execution time on 1 core.

The value is determined by the single-thread performance of the core.

Let t(c) denote the execution time on c cores.

The value is determined by the parallel program and by t(1).

0110 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0110



0111 0111

Speedup:

[of a parallel program on parallel system]. The ratio of execution time on one core to the time
on the entire system.

Using the notation above:

S =
t(1)

t(c)
.

For example:

A program runs in 10 s on one core and 3 s on 5 cores.

The speedup is then S = 10 s

3 s
= 3.33.

0111 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0111



0112 0112

Speedup Special Cases

Speedup Case: Linear Speedup— S = c.

This occurs when t(c) = t(1)/c.

This indicates no duplication of effort by threads, no time lost to communication.

There are some programs with linear speedup. . .

. . . but for many others the speedup is lower.

Example:

A program runs in 10 s on one core and is to be run on 5 cores.

To achieve linear speedup it would need to run in 10 s/5 = 2 s.

0112 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0112



0113 0113

Speedup Case: No Speedup— S = 1.

This occurs when t(c) = t(1) (for c > 1).

This might be the programmer’s fault, or an inherent property of the problem.

Speedup Case: Serial Limiter— S = c/(cf + 1 − f)

This is sometimes referred to as Amdahl’s Law.

This applies to a program that can be split into two parts. . .

. . . a part with linear speedup. . .

. . . and a part with no speedup (the serial portion).

Symbol f is the fraction of the program with linear speedup.

When f = 1, all of the program enjoys linear speedup;. . .

. . . when f = 0, none.

0113 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0113



0114 0114Heavy Cores v. Light Cores

Single-Thread Performance

Why not avoid parallel programming by having a really fast core?

Short answer: diminishing returns.

First, consider the budget:

A chip has a certain area.

Limited by dollar cost and technology.

A chip has a power limit.

Determined by ability to cool chip.

Label either one as “cost.”

0114 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0114



0115 0115

Performance of Core v. Cost

Curve drops from linear early.

For linear portion of curve, bigger core is an easy choice.

The distance between the linear reference and performance curve. . .

. . . is the penalty for avoiding parallel programming.

Implications

Parallel programming can’t be avoided.

0115 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0115



0116 0116Program Needs and System Capabilities

Our Goal:

Determine whether we should be satisfied. . .

. . . with the performance of our parallel program. . .

. . . on our system.

We are not satisfied when the program runs more slowly then we expect.

Knowing when to be satisfied is a key skill.

0116 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0116



0117 0117

The Idea:

Estimate the computation needs of our problem, algorithm, or program.

For example, 1020 floating-point operations.

Determine the computation capabilities of our system.

For example, 1017 FLOPS.

Use these to estimate execution time.

For example, 1020/1017 = 1000 s.

If the estimate does not match the measured value, find the cause.

0117 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0117



0118 0118

Computation Needs

These refer to a program, algorithm, or problem.

Determined by analyzing a problem, algorithm, or program.

Common Computation Needs:

Floating-Point Operations

Data Transfer (bytes read from and written to memory).

Instruction Count (Number of executed instructions)

0118 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0118



0119 0119

Computation Capabilities

These refer to the capabilities of a system (CPU, GPU, etc.)

Common Computation Capabilities

Floating Point Execution Rate - FLOPS

Number of floating-point operations divided by amount of time.

Instruction Execution Rate - IPC

Number of executed instructions divided by amount of time.

Data Transfer Bandwidth - B/s

Number of bytes crossing some line, divided by amount of time.

0119 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0119



0120 0120

Floating Point Operation Need and Capability

Commonly used for scientific programs. . .

. . . because such operations are considered essential (can’t be avoided) and. . .

. . . because of the historic high cost of FP hardware.

Consider:

double *x, *a, *b, *c;

for ( i=0; i<1e9; i++ ) x[i] = a[i] + b[i] * c[i];

Uses 109
× 2 = 2 × 109 FP operations.

Consider a system capable of 100 GFLOPS (1011 FLOPS).

Execution time bound is 20 ms.

If measured execution time was 100 ms we would not be satisfied.

0120 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0120



0121 0121

Data Transfer Need and Capability

Used for all kinds of programs.

Easy to measure when each data item read exactly once.

Otherwise, need to account for cache and scratchpad performance.

0121 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0121



0122 0122

Consider:

double *x, *a, *b;

for ( i=1; i<1e9-1; i++ ) x[i] = a[i-1] * l + a[i] + a[i+1] * r;

The size of a double is 8 bytes.

In an iteration, three elements of a are accessed. . .

. . . two were accessed in a prior iteration. . .

. . . and so shouldn’t need to be read from memory. . .

. . . leaving one new element of a accessed per iteration.

Total data transfer needs: 109
× 8 × 2 = 16 GB.

Suppose system can transfer 30 GB/s.

Performance bound: 16/30 = 533 ms.

0122 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0122



0123 0123

Data Transfer Example, Continued.

Suppose measured execution time were just 1.07 s. We are not satisfied.

Maybe we were wrong about each element of a being read once.

Maybe we should look at number of FP operations.

Maybe we should look at number of instructions.

0123 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0123



0124 0124

Instruction Count and Execution Rate

Considered a less fundamental bound than FLOPS and data transfer.

Number of instructions determined by many factors:

How program is written.

Quality of compiler.

Instruction set of processor.

0124 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0124



0125 0125

Performance Estimation

With above needs and capabilities can compute three performance bounds.

Actual performance will be no greater than the smallest of these.

0125 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0125



0126 0126Latency and Throughput

Latency and Throughput

Commonly used types of performance measure. . .

. . . for describing components or whole systems.

Latency:

The time needed to do something from start to finish.

In discussion of GPUs, latency often refers. . .

. . . to the execution time of a single instruction or of a single thread.

A processor is called latency oriented . . .

. . . if it has low latency (runs a single thread quickly).

0126 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0126



0127 0127

Throughput:

The number of things completed per unit time.

Throughput can refer to many possible things, including:

Instructions per cycle (or second).

FLOPS.

Vertices per second. (For graphics.)

A processor is called throughput oriented if it has high throughput.

0127 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0127



0128 0128Latency v. Throughput

Can’t Have Both

0128 EE 7700-2 Lecture Transparency. Formatted 9:12, 18 January 2013 from lsli01. 0128


