LSUEE 7700-2 Homework 6 soltion Due: 27 March 2013

Follow the instructions on the class procedures page, http://www.ece.lsu.edu/gp/proc.html
for account setup and homework, substituting hwé for hwl where appropriate. Also, the file to edit
is hwd.cu, not hwé.cc. The assignment code is the same as the vertex transformation code used in
class.

Problem 0: Read the background provided in this problem, and compile and run the Homework
6 assignment code; report any problems as soon as possible. The answer to this problem is “It ran
fine.” | the next problem actually asks questions.

The program runs four GPU versions of our vertex transformation code, kernel_many_threads,|j
kernel _few_threads_d2, kernel_few_threads_d4, and kernel_few_threads_d8, set to operate
on 2-element vertices.

The code for his assignment is similar to that used in Homework 4. One important change
is the forcing of kernels to use a single load instruction to load a vector, rather than one load for
each element. (Using four loads to load a 4-element vector can result in re-fetching a line to the L1
cache due to conflict misses.)

Kernel kernel_many_threads is similar to the kernel is Homework 4. The other kernels are
hand-unrolled versions of kernel_many_thread. For example, kernel_few_threads_d4 contains
four copies of the loop body. The unrolling was performed in such a way that all loads in an iteration
would be performed before any calculation. The template kernel_few_threads_d contains the
actual code, kernel_few_threads_d4 instantiates the template for a degree of 4, etc.

There are two command line arguments, the first is the number of blocks to launch, the second
is the size of the array to use, in MiB, (fractional amounts are fine).

The program will launch each kernel in up to 32 configurations, from a 1 warp-block to the
maximum block size possible for the kernel. For each launch the kernel execution time and data
transfer rate are shown. The data transfer rate is shown in GB/s, as a percentage of the maximum
GPU to device memory bandwidth, and as a bar graph.

Note that the number of blocks must be appropriately chosen for some of the problems below.

Problem 1: The inspiration for this assignment is the choice between many-thread systems (like
GPUs) and fewer-thread systems (like the so-called manycores). Kernel kernel_many_threads is
written to rely on a large number of threads to hide latency. The other kernels rely on loop unrolling
to hide at least some latency, and so fewer threads will be required, however those threads will use
more registers because the compiler is putting greater distance between the instruction that writes
a register and the first instruction that uses the register.

(a) Perform a set of runs (or just one run if that’s all it takes) to determine which is the more
efficient approach in terms of the amount of hardware needed. For each kernel indicate the number
of threads needed to realize something close to the best performance and also indicate the total
number of registers needed. (That is, the number of registers the multiprocessor needs in order
to run that number of threads for that kernel.) Provide relevant information such as the type of
GPU, and number of blocks chosen for each experiment, etc.

Do this for two goals: one to achieve the fastest computation (which should saturate off-chip
data bandwidth) and one to achieve fastest performance on at least one multiprocessor. Note that
for the first goal memory latency will not be the performance limiter and so it is not necessary to
cover all memory latency to realize maximum performance.

Thig solution is for & Quadro 5000, & CC 2.0 device with Qomputmon To communication ratio of 12 S'\ng\e—pree'\s'\on
ﬂOM\ﬂg—POiM instructions per smg\e—preeis'\on ﬂO‘AUT\g pomt element, sing]e, of bandwidth. The vertex transform code
for this QSS'\gﬂQO prTOYmS four mump\y/adds per Vartex, each vertex consumes two s‘mg\es of bandwidth to 1oad and

1


http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp/proc.html

TWo 1o store. 1T every instruction waere & MADD the ratio would be 1, but we need to consider loads, stores, and 100p
index arithmetic. Lets assume an ideal version of the code in which there is no 10op index arithmatic, just a vector load
and store. Then the number of instructions per vertex is 6, and so the ratio is 1.5. In real code there will typically be
one set of l0op index arithmetic instructions per iteration, and this will make the ratio higher (making it less likely to be
bandwidth bound). If we assume 5 100p index instructions per iteration and an unrolling of degree d then the number of
instructions per vertexis 4 + 2 + 5/d.

since onae goal of the experiments is to determine which is the most eficient mathod of hiding lateney, it's important
0 Tun conmigurations which are not bandwidth bound. The easiest way 1o do that is to reduce the number of blocks.
On 2 Quadro 5000 there are 11 MP, it only one MP 1S used then the FP capability will be reduced by -, but the data
bandwidth will not be effected. That changes the computation to communication Tatio to the Quadro 5000 to 12 which
is lower than 1.5 and 8o even the most aggrassive code, d — oo, Will be compute bound.

TWo sets of experiments were run. For the Tirst, the number of blocks s set 1o one, Tor the second the number of
blocks Was chosen 1o mateh the number of multiprocessors, elaven.

Tha original code shows the performance versus the number of warps. For each kernel in each run the minimum
number of warps yielding something close to maximum performance will be found. For example, in the d8 kernel 11 warps
ylelded close to maximum performance (see the table below), 20.7% of maximum bandwidth. (Ten warps yielded 19.9%,
a little less, and 12 yielded 20.9%, only & tiny bit more, but small enough 1o ignore.)

Inereasing the number of warps bayond this minimum does not significantly increase performance because some
resource i saturated. Since our goal is to hide all latency we would like the saturated resource to be CUDA cores. That
I8, We want there to bae at least two warps ready to execute at any time.

I our connguration is bandwidth limited (for example, running with 11 blocks) then load lateney will inerease beyond
its nominal value (on the order of 400 cyeles), the latency Will include waiting time as well as the time needed 1o actually
access the memory and for the trip to memory and back. No matter how many warps are present the system will eventually
reach a point at which there are no warps ready for execution (because they are all waiting for memory).

The table below shows the minimum number of warps needed to saturate the system for one-block (execute-limited)
and eleven-block (bandwidtn-limited) runs of the unmodified assignment code.

---Single-Block-—-—-—---—------- ---Eleven-Blocks--
Kernel Regs Min Pct Tot Min  Pct
Warps  BW Regs Warps BW
Many Thd 11 32 18.5 11264 22 81.6 7744
Degree 2 14 24 20.5 10752 17 82.1 7616
Degree 4 21 12 20.9 8064 16 80.3 10752
Degree 8 27 11 20.7 9504 13 79.6 11232

For the single block axperiments it was seemingly not possible 1o Tully cover latency with 32 WArps using the many
threads kernel. Successively Tewer warps were needed with greater unrolling. Notice, however, thatl going from degree 4
10 8 only reduces the numbar of Warps Dy 1. Looking at the number of registars needed, the degree 4 unroling is best,
using less than 72% of the registers needed by the many-threads code.

(b) Comment on whether these experiments allow one to conclude that the many-threads or fewer-
threads approach is better. An answer might start “These experiments don’t show the full benefit
of the fewer-threads approach because the code in kernel_few_threads_d ...”

Problem 2: Perform the following hand analysis of kernels kernel_many_threads and ker-
nel_few_threads_d4. Locate the assembler code (in the file ending with sass) and identify the
loop body for each routine (for routine kernel_few_threads_d4 do the unrolled loop, not the loop
at the end).

Estimate the latency of the loop body under the assumption that memory instructions have a
400-cycle latency and all others have a 24-cycle latency.

2



Here are some miscellaneous facts: Instructions with a .X completer depend on the most recent
instruction with a .CC completer. Sixty-four bit load instructions load a pair of registers, the named
destination is only the first of two. For example, this load LD.E.64 R2, [R8]; instruction loads
both register R2 and R3. The 128-bit load instructions load four registers.

To find the latency of the loop body (a single iteration) determine the latest time that an
instruction will start. For convenience assume a device of CC 2.0, so that instruction ¢ + 1 starts
two cycles after instruction ¢ when it is not dependent on prior instructions. A dependent instruction
starts when its operands have been computed based on the start time and the latencies given above.

In the example below, instruction O starts at time 0 and its result is ready at time 24. Instruc-
tion 1 starts at 2 since it’s not dependent on 0. However, 2 depends on 0 because of R10 and so it
must wait until 24 to start. Instruction 3 depends on instruction 2 through the carry bit (the .CC
to .X dependence). Instruction 4 can start at cycle 50 since by then its operands will be available.

0: MOV32I R10, 0x8; // Start at 0, result ready at 24

1: IMUL.HI R4, RO, 0xS8; // Start at 2, result ready at 26

2: IMAD R8.CC, RO, R10, c [0x2] [0x30]; // Start at 24 (dep on 1st insn via R10) rdy at 48
3: IADD.X R9, R4, c [0x2] [0x34]; // Start at 48 (dep on prev via CC) rdy at 72

4: IMAD R6.CC, RO, R10, c [0x2] [0x40]; // Start at 50, result ready at 74

Use the following method to help find dependencies. In Emacs put the cursor over the start of
a destination register, perhaps the first R10 in the example above. Then press C-s C-w (control-s
followed by a control w). This should highlight all occurrences of R10. (The C-s starts a search,
and C-w tells Emacs to search for other occurrences of the word under the cursor. A second C-s
would move to the next occurrence.) Press C-g to exit the search.

(a) Show the latency of the loop body of each kernel, as described above.

The \MQ“Q\j 0f many_threads 15 484 Q\/Q\QS and the \QtQﬂQy of d4 is 578 QyQ\QS. The starting QyQ\Q for each
instruction is shown below. 1T an instruction had to wait Tor a source Omeﬂd the GQPQT\G@T\I instruction address appears
after the start QyQ\Q.

many_threads:

/*0038+/ IMUL.HI R4, RO, 0x8; // 0

/*0040%/ IMAD R8.CC, RO, R10, c [0x2] [0x30]; /2

/*0048%/ TIADD.X R9, R4, c [0x2] [0x34]; // 26 dep 0x40
/*0050%/ IMAD R6.CC, RO, R10, c [0x2] [0x40]; // 28

/*0058%/ TIADD RO, RO, c [0x2] [0x0]; // 30

/*0060%/ LD.E.64 R2, [R8]; // 32

/*0068%/ TIADD.X R7, R4, c [0x2] [0x44]; // 34

/%0070%/ ISETP.LT.AND PO, pt, RO, c [0x2] [0x14], pt; // 54 dep 0x58
/*0078%/ FFMA R4, R2, c [0x2] [0x4], RZ; // 432 dep 0x60
/*0080%/ FFMA R2, R2, c [0x2] [0xc], RZ; // 434

/*0088%/ FFMA R4, R3, c [0x2] [0x8], R4; // 456 dep 0x78
/*0090%/ FFMA R5, R3, c [0x2] [0x10], R2; // 458

/*0098%/ ST.E.64 [R6], R4; // 482 dep 0x90 via R5
/*00a0%/ @PO BRA 0x38; // 484

Function : kernel_few_threads_d4

/*0088+/ IMAD R10, R16, R15, R14; // 0
/*0090%/ IADD RO, RO, R16; /]2
/*0098*/ IADD R15, R15, Ox1; // 4
/*00a0*/ IMUL.HI R11, R10, 0x8; // 8



/*00a8*/ IMAD R12.CC, R10, R18, c¢ [0x2] [0x30]; // 24 dep 0x88

/*00bO*/ ISETP.LT.AND PO, pt, RO, R17, pt; // 26 dep 0x90
/*00b8%/ TIADD.X R13, R11, c [0x2] [0x34]; // 48 dep 0xa8
/*00c0*/ IMAD R10.CC, R10, R18, c [0x2] [0x40]; // 50

/*00c8*/ LD.E.64 R8, [R12]; // T2 dep 0xb8 via R13
/*00d0*/ LD.E.64 R4, [R12+0x100]; // T4

/*00d8%/ LD.E.64 R2, [R12+0x200]; // 76

/*00e0*/ LD.E.64 R6, [R12+0x300]; // T8

/*00e8*/ TIADD.X R11, R11, c [0x2] [0x44]; // 80

/*00f0%/ FFMA R12, R8, c [0x2] [0x4], RZ; // 472 dep 0xc8
/*00f8%/ FFMA R13, R8, c [0x2] [0xc], RZ; // 474

/*0100%/ FFMA R19, R4, c [0x2] [0x4], RZ; // 476

/*0108+/ FFMA R8, R9, c [0x2] [0x8], R12; // 496 dep 0xfO
/*0110%/ FFMA R9, R9, c [0x2] [0x10], R13; // 498

/*0118%/ FFMA R20, R4, c [0x2] [0xc], RZ; // 500

/*0120%/ FFMA R12, R2, c [0x2] [0x4], RZ; // 502

/*0128%/ FFMA R4, R5, c [0x2] [0x8], R19; // 504

/*0130%/ ST.E.64 [R10], R8; // 522 dep 0x110
/*0138%/ FFMA R13, R2, c [0x2] [0xc], RZ; // 524

/*0140%/ FFMA R19, R6, c [0x2] [0x4], RZ; // 526

/*0148*/ FFMA R6, R6, c [0x2] [0xc], RZ; // 528

/*0150%/ FFMA R5, R5, c [0x2] [0x10], R20; // 530

/*0158%/ FFMA R2, R3, c [0x2] [0x8], R12; // 532

/*0160%/ FFMA R3, R3, c [0x2] [0x10], R13; // 548 dep 0x138
/*0168*/ FFMA R8, R7, c [0x2] [0x8], R19; // 550

/*0170%/ FFMA R9, R7, c [0x2] [0x10], R6; // 552

/*0178%/ ST.E.64 [R10+0x100], R4; // 554

/*0180%/ ST.E.64 [R10+0x200], R2; // 572 dep 0x160
/*0188%/ ST.E.64 [R10+0x300], R8; // 576 dep 0x170
/*0190%/ @PO BRA 0x88; // 578

(b) Count the number of instructions in the loop bodies.
There are 14 and 34 instructions.

(c) Based on the answer to the last two parts, determine the minimum number of warps per
multiprocessor needed to make full use of the CUDA cores on a device of compute capability 2.0.
Assume unlimited data bandwidth (but global load latency is still 400 cycles). Note that this is a
lower bound on the number of warps needed to completely hide latency.

The mm\y—thr@ads kernel has a \QtQﬂQy of 484 QyQ\QS and consists of 14 instructions. A CC 2.0 SM has 32 CUDA
C0res, S0 Over 484 cyelas 484 x 32 = 15488 instructions or 484 warps could be executed (issued or started would be
the more precise Word). Since a l00p body has 14 instructions It would take at least [484/14] = 35 warps to have
QﬂOUgh instructions to KQQp all the CUDA cores busy. Note that this is a lower bound, mQQmﬂg due 1o seh@du\mg issues
Mmore warps would be needed. Also note that o CC 2.0 device can have up 10 48 Warps per MP, but the limit for a block
18 32, m@an'mg That to realize the 35-WMP minimum one would need to have, 52y, ) 18-\N&Yp Dlocks per mu\t‘\proeessor.

For the d4 kernel 578/34 = 17 warps would be needed. Fewer warps are needed because more 10ads are allowed
10 overlap.

(d) Using data from the device used in the previous problem, determine the minimum number of
warps per multiprocessor needed to make full use of the memory bandwidth.
The many—tmeads kernel reads two s'mg\es (8 byIQS) and writes two s'mg\%s in an iteration, for a total of 16 bthS.
The device used for these QXPQY'\mQMS i Q QUE}GYO 5000 with a clock TYQqUQ\'\Qy of 1.03 GHz and bandwidth of

4



120 GB/s. A single thread of the many-threads will use 16 BLUEHz — 0 034 GB/s of bandwidth. To saturate the
bandwidth would require 120/0.034 = 3524 threads or 110 Warps, or 10 Warps per MP.
For the d4 kernel & single iteration operates on four vertices, and so moves 64 bytes. The bandwidth consumed is

64 BL03GH2 — 114 GB/s. To saturate bandwidth one would need 1052 threads or 33 Warps of Just 3 warps per MP.

(e) Compare these answers to the experiments performed in the previous problem. Comment on
how closely they agree.

The hand M\&\yS\S determined that it would take af 1east 35 Warps for m&my—thr@&ds 10 hide all \QYQT\Q\/, and that is
consistent with QXPQNmQMQ\ Tesults.

The hand M\&\yS\S of d4 PYQG'\QIQG that 17 Warps would be needed, but QXPQNmQﬂIS showed that PQTTOYmQﬂQQ IOPPQG
out at 12 WArps. One pOSS'\b\Q reason for the G'\SQYQanQy is the QSSU[T\PUOY\ that all instructions use the 32 CUDA cores.
In fact, the integer mump\y and madd instructions, and the 10oads and stores omy have 16 functional units available. There
are 12 sueh instructions in d4. Another reason for the G\SQY@pM\Qy 1 That some other resource is saturated, me‘APS due
10 the order of accessed aelaments

Raw data used for Problem 1

GPU 0: Tesla K20c @ 0.71 GHz WITH 4799 MiB GLOBAL MEM

GPU 0: CC: 3.5 MP: 13 CC/MP: 192 TH/BL: 1024

GPU O: SHARED: 49152 B CONST: 65536 B # REGS: 65536

GPU 0: L2: 1280 kiB MEM to L2: 208.0 GB/s SP 1760.9 GFLOPS OP/ELT 33.86
GPU 1: Quadro 5000 @ 1.03 GHz WITH 2559 MiB GLOBAL MEM

GPU 1: CC: 2.0 MP: 11 CC/MP: 32 TH/BL: 1024

GPU 1: SHARED: 49152 B CONST: 65536 B # REGS: 32768

GPU 1: L2: 640 kiB MEM to L2: 120.0 GB/s SP 361.2 GFLOPS OP/ELT 12.04

Using GPU 1

CUDA Routine Resource Usage:
For kernel_many_threads:

0 shared, 72 const, 0 loc, 11 regs; 1024 max threads per block.
For kernel_few_threads_d2:

0 shared, 72 const, 0 loc, 14 regs; 1024 max threads per block.
For kernel_few_threads_d4:

0 shared, 72 const, 0 loc, 21 regs; 1024 max threads per block.
For kernel_few_threads_d8:

0 shared, 72 const, 0 loc, 27 regs; 1024 max threads per block.

Preparing for 1 blocks operating on 1048576 vectors of 2 elements.
Running kernel kernel_many_threads which uses 11 regs.

Num Time Data
Wps s GB/s Pct
1 21227.200 0.79 0.7%
2 10782.112 1.56 1.3%
3 7108.608 2.36 2.0%
4 5282.432 3.18 2.6% x*
5  4267.552 3.93 3.3 *x%
6 3650.496 4.60 3.8% xx*
7 3115.680 5.38 4.5} xxx
8 2750.016 6.10 5.1% k%
9 2454.112 6.84 5.7% **x
10 2222.112 7.55 6.3% kkxk
11 2011.360 8.34 T.0% xkkx



12 1854.432 9.05
13 1711.712 9.80
14 1601.280 10.48 LTh o xkkokok
15 1497.248 11.21 L3% wkkokok
16 1397.088  12.01 10.0% **x*x
17  1330.080 12.61 10.5% ***kxkx
18 1244.352  13.48 11.2}, skxkxk
19 1200.896  13.97 11.6% ***xk*x
20 1141.920  14.69 12.2) ***k*x
21 1088.928  15.41 12.8), kkkkxkxk
22 1051.840  15.95 13.3%, kkxkkkk
23 1003.136  16.72 13.97, *xkkkkk
24 963.168 17.42 14.5% *kxkkkokokx
25 928.128  18.08 15.17, skxkkkkxk
26 906.432 18.51 15.4% kxkkkokokk
27 874.656  19.18 16.0% *kxkkkkx
28 825.120 20.33 16.9% kxkkkkckkk
29 820.416  20.45 17.0% *kxkkkkkk
30 787.008 21.32 17.8% kxkkkxckkk
31 T74.304  21.67 18.17 *kxkkkkkk
32 764 .640 21.94 18.3% kxkkkxckkk
Running kernel kernel_few_threads_d2 which uses 14 regs.
Num Time Data

LBY kkokx
2% kskkoksk

© 0 00 N

Wps s GB/s Pct

1 11891.712 1.41 1.2% =

2 5725.792 2.93 2.4% k*

3 3856.128 4.35 3.6% *xx*

4 2995.104 5.60 4.7% *x*x

5  2448.256 6.85 5.7% k*x

6 2022.112 8.30  6.9% kkkk

7  1749.920 9.59  8.0% k¥xx

8 1507.680 11.13  9.3% kkkkk

9 1353.792 12.39 10.3% kkkkkk

10 1235.872  13.58 11.3%, kkxxkk

11 1144 .224 14.66 12.2), **x*x*x*xx

12 1056.416  15.88 13.2), s¥xxkkxk

13 984.960 17.03  14.2), kkxkkkkk

14 890.752  18.83 15.7% *xxkkkkkx

15 844.896  19.86 16.5% kxxkkkkkk

16 820.544  20.45 17.0% sxxkkokkkk

17 774.464 21.66 18.1% kkkkkokkokok

18 746.304  22.48 18.7% kxxkkokkkkx
19 684.896  24.50 20.4% kkkkkkkkkkk
20 665.312 25.22  21.0% kkkkkskskokokkk
21 661.856  25.35 21.1% skxkkokkkkkkk
22 642.304 26.12 21.8% kkkkkkkokokkk
23 638.304  26.28 21.9% kxkkokkkkkkk
24 619.520 27.08 22.6% kkkxkkkokokkkk
25 619.936  27.06 22.6% Hxkkokkkkkkkk
26 625.376  26.83 22.4% kkkkkkkkkkk
27 620.992  27.02 22.5% kxkkokkkkkkkk



28 624.832  26.85 22.4Y, skxkkkkkkkk

29 623.456  26.91 22.47, xkkxkkkxokkk

30 619.104  27.10 22.6% *kxkkkkrkkskok

31 619.872  27.07 22.6% *kxkkkkrkkskk

32 620.320  27.05 22.5Y, kxkkkckkkkkok
Running kernel kernel_few_threads_d4 which uses 21 regs.
Num Time Data

Wps s GB/s Pct

1 6800.608 2.47 2.1%  *x*

2 3439.584 4.88 4.1% *xx

3 2324 .416 7.22 6.0% *k**

4 1759.552 9.53 T7.9% kkkx

5 1436.416 11.68  9.7% kkkkk

6 1203.040 13.95 11.6% **x*xxxx

7 1047.872 16.01 13.3% kkkkkkk

8 927.232 18.09 15.1% skxkskskskk

9 831.552  20.18 16.8% kkkkkkkkk
10 761.504 22.03 18.4Y% kkkkkkkkk
11 715.200  23.46 19.5% kxxkkkkkkx
12 668.576 25.09 20.9% kkkkkkkkkokk
13 657.568  25.51 21.3% kkkkkkkkkkk
14 647.840 25.90 21.6% kkkkkkkkkkk
15 649.184 25.84 21.5% kkkkkkkkokkk
16 643.904 26.06 21.7% kkkkkkkkkkk
17 646.400 25.95  21.6% kkkkkkkkkkk
18 644.480 26.03 21.7% kkkkkkkkkkk
19 646.016 25.97  21.6% kkkkkkkkkkk
20 649.280 25.84 21.5% kkkkkkkkkkk
21 650.368  25.80 21.5% kxkkokkkkkkk
22 653.312 25.68 21.4% kkkkkkkokokkk
23 649 .664 25.82 21.5% kkkkkkkkkkk
24 652.608  25.71 21.4% kkkkkkkkkkk
25 655.616 25.59 21.37% kkkkkkkokokkk
26 652.192 25.72 21.4% kkkkkkkkkkk
27 662.464  25.33 21.1% kkkkkkkkkkk
28 658.304 25.49 21.2% kkkkkkkkkokk
29 651.072  25.77 21.5% *xkkkokokkkkk
30 655.200 25.61 21.3% kkkkkkkkkokk
31 654.976  25.62 21.3% kkkkkkkkkkk

32 650.528  25.79 21.5% kkxkkkxkkk
Running kernel kernel_few_threads_d8 which uses 27 regs.
Num Time Data

Wps s GB/s Pct

1 5651.040 2.97  2.5% k%

2851.872 5.88  4.9% kxx
1922.464 8.73 7.3} kxkx
1457.280 11.51 9.6% kkkkx
1196.672  14.02 11.7% #*xxx*
1065.312 15.75 13.1% xxkkkkx
917.120 18.29 15.27 xkkkkkkx
827.648  20.27 16.9% kxxkkokkkk

0 N O O W N



9 743.616 22.56 18.8% kkkkkokkokokk
10 697.696 24.05 20.0% kxskkkskkokkok
11 675.680 24.83 20.7% kkkkkokkokkkk
12 793.856 21.13 17.6% kkkkkskkokok
13 680.672 24.65 20.5% kkkkkskkokkkk
14 688.576 24.37 20.3% kkkkkskkokokk
15 704.288 23.82 19.9% kkkkkskkokkk
16 T727.872  23.05 19.2), skkxkkkkokk
17 713.856 23.50 19.6% kkkkkskkokkk
18 710.144 23.63 19.7% kkkkkskkokokk
19 716.992 23.40 19.5% kxkkkskkokkok
20 721.312 23.26 19.4% kkkkkskkokokk
21 727 .968 23.05 19.2% kxkkkskkokkok
22 735.104 22.82 19.0% kkkkskokkokokk
23 734.464 22.84 19.0% kxkkkskkokkok
24 735.328 22.82 19.0% kkkkskskkokkk
25 T43.776 22.56 18.8% kkkkkskkokokk
26 750.464 22.36 18.6% kkkxkskkokkk
27 746.400 22.48 18.7% kkkkkskkokokk
28 737.536 22.75 19.0% skkkxskskkokkk
29 737.440 22.75 19.0% skkkkskskskokokk
30 T46.144  22.49 18.7% i xkkkokkkkk
31 742.816 22.59 18.8% kkkkkokkokokk
32 T46.144  22.49 18.7% i xkkkkkkkk

GPU 0: Tesla K20c @ 0.71 GHz WITH 4799 MiB GLOBAL MEM

GPU 0: CC: 3.5 MP: 13 CC/MP: 192 TH/BL: 1024

GPU O: SHARED: 49152 B CONST: 65536 B # REGS: 65536

GPU 0: L2: 1280 kiB MEM to L2: 208.0 GB/s SP 1760.9 GFLOPS OP/ELT 33.86
GPU 1: Quadro 5000 @ 1.03 GHz WITH 2559 MiB GLOBAL MEM

GPU 1: CC: 2.0 MP: 11 CC/MP: 32 TH/BL: 1024

GPU 1: SHARED: 49152 B CONST: 65536 B # REGS: 32768

GPU 1: L2: 640 kiB  MEM to L2: 120.0 GB/s SP 361.2 GFLOPS OP/ELT 12.04

Using GPU 1

CUDA Routine Resource Usage:
For kernel_many_threads:

0 shared, 72 const, O loc, 11 regs; 1024 max threads per block.
For kernel_few_threads_d2:

0 shared, 72 const, 0 loc, 14 regs; 1024 max threads per block.
For kernel_few_threads_d4:

0 shared, 72 const, 0 loc, 21 regs; 1024 max threads per block.
For kernel_few_threads_d8:

0 shared, 72 const, 0 loc, 27 regs; 1024 max threads per block.

Preparing for 11 blocks operating on 1048576 vectors of 2 elements.
Running kernel kernel_many_threads which uses 11 regs.
Num Time Data
Wps s GB/s Pct
1 1957.728 8.57  T.1} wkxx



2 1004.448
3 679.776
4 510.528
5 442.048
6 381.024
7 332.736
8 282.272
9 271.648
10 274.272
11 242.208
12 241.792
13 216.640
14 222.912
15 201.088
16 196.032
17 190.816
18 192.192
19 177.280
20 174.304
21 171.680
22 170.048
23 171.040
24 170.432
25 170.944
26 171.328
27 171.136
28 171.456
29 172.320
30 172.352
31 172.800
32 173.056
Running kernel
Num Time
Wps s

1 1089.856
2 5569.136
3 413.568
4 302.848
5 317.152
6 259.072
7 244 .352
8 218.848
9 217.888
10 185.728
11 181.856
12 186.208
13 190.784
14 196.992
15 199.616
16 205.920
17 170.528

16.
24.
32.
37.
44 .
50.
59.
61
61.
69.
69.
TT.
75.
83.
85.
87.
87.
94.
96.
97.
98.
98.
98.
98.
97.
98.
97.
97
97.
97.
96.

70
68
86
95
03
42
44

.76

17
27
39
44
26
43
58
92
29
64
25
72
66
09
44
14
92
03
85

.36

34
09
95

13.9%  skkokkskok

20.6%  kkkkkokkkkkk

DT A%  kskokskkokkokkokkkkk

31.6Y%  skkskskkskokkskokkokokkokk

36.7%  kxskokokskokokskskokskskokok ok ok

42 .0%  wkkskokskokokokok sk ok sk ok k ok ok k kK

49 . BY,  kkokskokskokkokok ok ok ok 3k ok 3k kK Kok koK

51.5Y%  skskskokskokskokskok ok sk ok sk ok sk ok sk ok 3 ok ok ok koK

51.0Y%  skskskokskokskokskokkok ok sk ok ok %ok % ok k kK k

BT .T%  kskskokskokskokok sk sk sk ok sk ok sk ok 3 ok 5k sk ok sk ok ok ok o ok

BT .8 skskskokskok sk sk sk sk ok ok 3k ok sk k ok 3k ok 3k 3 ok 3k ok ok 3k ok 3k oK

B4 . 5%  kskokokkok ook ok 3k ok 3k ok ok 3k ok 3 ok 3 ok 3k ok ok 3k ok 3 ok 3 ok 3k ok

B2. T kkskokskok sk sk ok sk ok ok 3k ok sk 3k ok 3k ok 3k 3 ok 3k ok ok 3 ok 3k 3k ok 5k

B9 . 5% skskokokskokkok ok 3k ok 3k ok ok 3k ok 3k ok 3 ok 3 ok 3k ok K 3k ok 3 ok 3 ok 3 ok

TA.3%  skokskorokskokskokook sk ok sk ok ok sk ok ok 3k ok sk ok ok 3k ok 3k 3 ok 3k ok ok 3k ok 3k oK

T3.3Y  kskokskokskokskskok sk ok 3k ok 3k ok 3k ok ok 3k ok 3 ok 3 ok 3k ok K 3k ok ok ok 3 K
T2.T%  wskokskokokokok sk ok sk ok sk ok 3 ok 3k sk ok sk ok 3k ok 3 ok ok ok ok 3k ok sk ok ok ok >k

T8 .9V, kskokskokskokk sk ok sk ok 3k ok 3k ok 3k ok 3 3k oK 3k ok 3 ok 3 ok 3k ok K 3k ok 3 ok 3 ok 3 ok K
80.2%  kskokskokskok ok sk ok sk ok sk ok 3k ok 3k ok 3k sk ok sk ok 3k ok 3 ok 3k ok k sk ok 3k ok 3k ok ok ok
81 .4Y,  kkokskokskokskokok sk ok 3k ok 3k ok 3k ok 3 ok K 3k ok 3 ok 3 ok 3 ok 3k ok K ok 3k ok ok kK
82.2%  wskokskokskok ok sk ok sk ok sk ok 3k ok 3k ok 3k sk ok sk ok 3k ok 3 ok k ok k ok ok sk ok sk ok 3k ok ok k
S1.TY  skokskokokskoksk ok ok sk ok sk 3k ok 3k ok ok 3k ok 3k ok ok 3 ok 3k 3 ok 3 ok 3k 3 ok 3k ok ok 3 ok 3k ok
82.0Y  kskokskokskok sk ok k sk ok 3k ok 3k ok 3 ok 3k 3k K 3k ok 3k ok 3 ok 3 ok 3k ok ok 3k ok 3k ok 3 ok 3 ok
81.8Y  skokskokokskoksk ok ok sk ok sk 3k ok 3k ok 3k 3k ok 3k ok ok 3 ok 3k 3k ok 3 ok 3k K ok 3k ok ok 3 ok 3k ok
81 .6  kkokskokskoksk ok ok sk ok 3k ok 3k ok 3k ok 3k 3k ok 3k ok 3 ok 3 ok 3 ok 3k 3k K 3 ok 3k ok 3 ok 3k K
S1.TY  skokskokokskok sk ok ok sk ok sk 3k ok sk ok ok 3k ok 3k ok ok 3 ok 3k 3 ok 3 ok 3k K ok 3k ok ok 3k ok 3k ok
81 .5  skskokskokskok sk ok sk sk ok 3k ok 3k ok 3k ok 3k 3k ok 3k ok 3 ok 3 ok 3 ok 3k 3k K 3k ok 3k ok 3 ok 3k >k
81.1Y  wskokskokskokok sk ok sk ok sk ok sk ok 3k ok 3k sk ok sk ok 3k ok 3 ok k ok k sk ok sk ok 3k ok 3k ok ok
81 . 1Y, kskokskokskoksk ok ok sk ok 3k ok 3k ok 3k ok 3k ok K 3k oK 3 ok 3 ok 3 ok 3 5k K 3k ok 3k ok 3 ok 3k K
80.9Y  kskokskokskokok sk ok sk ok sk ok 3k ok 3k ok 3k sk ok 3k ok 3k ok 3k ok 3k ok k sk ok sk ok 3k ok ok %k >k
80.8Y,  kkokskokskoksk ok ok sk ok 3k ok 3k ok 3k ok 3k ok K 3k ok 3 ok 3 ok 3 ok 3 5k K ok 3k ok ok kK

kernel_few_threads_d2 which uses 14 regs.
Data

GB/s
15.
30.
40.
55.
52.
64 .
68.
76.
7.
90.
92.
90.
87.
85.
84.
81
98.

39
01
57
40
90
76
66
66
00
33
26
10
94
17
05

.47

38

Pct

12.8%  skkkskokkk

25.0%  kskkkkokkokkokkokk

33.8Y%  sokskokkskokkkokkokkkok koK

A6 . 2Y,  kkokskokskoksk sk ok ok ok 3k ok 3k kK ok koK

A4 1Y, wskokskokokskokskok kok ok k ok ok sk ok k ok k

B4 0%  skskskskokokskok ok 3k ok 3k ok ok 3k ok ok 3 ok 3 ok 3k kK K

BT .2%  skskskokskokskoksk sk ok sk ok sk ok 3k ok 3k ok 5k 3k ok sk ok ok ok o ok

B63.9%  skskkokskok ok ok 3k ok 3k ok ok 3k ok 3 ok 3 ok 3k ok K K ok ok ok kK

B4 . 2% kokskokskokskok ok ok k sk k sk ok sk ok 3k ok 3k ok k ok ok sk ok 3k ok ok %k >k

TE . 3% skokskokoskskok sk ok ok sk ok ok 3k ok sk ok ok 3k ok sk 3k ok 3 ok 3k 3k ok 3k ok ok 3k ok 3k 3k ok 5k
T .9V kskokskokskoksk sk ok sk ok 3k ok 3 ok 3k ok 3k 3k ok 3k ok 3 ok 3 ok 3k ok K 3k ok 3k ok 3 ok 3k >k
TE . 1Y skokskoroskskok sk ok ok sk ok ok 3k ok sk ok ok 3k ok 3k 3k ok 3 ok 3k 3k ok 3k ok ok 3k ok 3k 3k ok 5k
T3.3Y%  kskokskokskoksk skok sk ok 3k ok 3k ok 3k ok ok 3k ok 3k ok 3 ok 3k ok K 3k ok 3k ok 3k ok 3k K
T1.0%  skokskoroskskoksk ok ok sk ok sk 3k ok sk ok ok 3k ok 3k ok ok 3 ok 3k 3 ok 3k ok ok 3 ok 3k oK
TO.0Y  kskokskokskoksk sk ok sk ok 3 ok 3k ok 3k 5k ok 3k ok 3 ok 3 ok 3k 5k ok 3 ok 3k ok 3 ok
BT . 9%  skokskokskokskok sk ok 3k ok 3k sk ok sk ok 3k ok 3 ok k ok k 3k ok sk ok 3k ok ok % >k
82.0Y,  kkokskokskoksk ok k sk ok 3k ok 3k ok 3k ok 3k ok 3k 3k ok 3 ok 3 ok 3 ok 3k ok K 3k ok K ok ok ok K



18 171.488
19 171.616
20 171.520
21 171.328
22 174.976
23 173.088
24 174.304
25 174.592
26 177.024
27 174.144
28 174.016
29 175.136
30 174.112
31 175.680
32 176.544
Running kernel
Num Time
Wps s

1 660.128
2 359.584
3 275.648
4 227.456
5 197.184
6 186.240
7 185.696
8 191.264
9 194.656
10 198.912
11 202.368
12 213.472
13 216.064
14 216.992
15 213.760
16 173.920
17 173.632
18 173.728
19 176.512
20 175.008
21 175.328
22 175.296
23 176.384
24 175.040
25 177.440
26 175.904
27 177.056
28 175.744
29 176.032
30 176.256
31 176.768
32 176.864

97.
97.
97.
97.
95.
96.
96.
96.
94.
96.
96.
95.
96.
95.
95.

83
76
81
92
88
93
25
09
77
34
41
80
36
50
03

81 .5Y  skskokskokskok sk ok sk sk ok 3k ok 3k ok 3k ok 3 ok ok 3k ok 3k ok 3 ok 3 ok 3k 3k oK 3k ok 3k ok 3 ok 3k ok
81.5Y  skokskokokskok sk ok ok sk ok ok 3k ok sk ok ok 3k ok sk 3k ok 3k ok ok 3 ok 3k ok ok 3 ok 3k 3 ok 3k ok ok K
81 .5  skskokskokskoksk ok ok sk ok 3k ok 3k ok 3k ok 3 3k ok 3k ok 3k ok 3 ok 3 ok 3k 3k oK 3k ok 3k ok 3 ok 3k ok
81.6Y,  skokskokokskoksk ok ok sk ok ok 3k ok 3k ok ok 3k ok 3k 3 ok 3k ok 3k 3 ok 3k ok ok 3 ok 3k 3 ok 3k ok ok K
TO.9Y,  kskokskokskokk ok sk sk ok 3k ok 3k ok 3k ok 3 ok K 3k oK 3 ok 3 ok 3 ok 3 3k K 3 ok 3k ok 3 ok 3k K
80.8Y,  kokokskokskokok sk ok sk ok sk ok 3k ok 3k ok 3k sk ok sk ok 3k ok 3 ok k ok k 3k ok 3k ok 3k ok ok >k
80. 2%  kkokskokskokk ok sk sk ok 3k ok 3k ok 3k ok 3k ok K 3k ok 3 ok 3 ok 3 ok 3 oK K 3 ok 3 ok 3 ok 3k K
80. 1%  kskokskokskokok sk ok sk ok sk ok sk ok 3k ok 3k sk ok sk ok sk ok 3 ok 3k ok k sk ok sk ok sk ok 3k ok %k 5k
TO .0 kskokskokskoksk sk ok sk ok 3k ok 3k ok 3k ok 3k 5k ok 3k ok 3 ok 3 ok 3k ok 3 3k ok 3ok 3 ok 3 ok
80.3%  kskokskokskokok sk ok sk ok sk ok 3k ok 3 ok 3k sk ok sk ok 3k ok 3 ok k ok k sk ok sk ok sk ok ok %k ok
80. 3% skokskokokskok sk ok ok sk ok ok 3k ok sk ok ok 3k ok 3k 3k ok 3 ok 3k 3 ok 3k ok ok 3 ok 3k 3 ok 3k ok ok K
TO.8Y  kskokskokskoksk ok sk sk ok 3k ok 3k ok 3k ok 3k 3k ok 3k ok 3k ok 3 ok 3 ok 3k 3k oK 3k ok 3k ok 3 ok 3k >k
80. 3% skokskokokskok sk ok ok sk ok ok 3k ok sk ok ok 3 ok 3k 3k ok 3k ok 3k 3 ok 3k ok ok 3 ok 3k 3 ok 3k ok ok K
TO.BY,  kskokskokskoksk sk sk sk ok 3k ok 3 ok 3k ok 3k 3k ok 3k ok 3 ok 3 ok 3k ok K 3k ok 3k ok 3 ok 3 ok
TO. 2%  skokskokokskok sk sk ok sk ok ok 3k ok sk K ok 3 ok ok 3k ok sk ok ok 3 ok 3k K ok 3k ok 3k 3 ok 3k 5k oK

kernel_few_threads_d4 which uses 21 regs.
Data

GB/s
25.
46.
60.
73.
85.
90.
90.
87.
86.
84.
82.
78.
7.
7
78.
96.
96.
96.
95.
95.
95.
95.
95.
95.
94.
95.
94 .
95.
95.
95.
94 .
94.

42
66
86
76
08
08
35
72
19
34
90
59
65

.32

49
47
63
57
05
87
69
71
12
85
55
38
76
46
31
19
91
86

Pct

21.2%  kkkkkokkokkkk

38.9%  skkskokokskokokskskokskkokok ok kokkk

BO.TY%  kskskorskokskoksk ok ok sk ok sk ok sk ok 3k ok 3 ok 5k 5k ok 5k

B1.5%  skskskokskokskskok sk ok ok sk ok sk 3k ok 3k ok 3k 3k ok 3k ok ok 3k ok 3k 3k ok 5k

TO.9Y,  skskokskokskooksk sk ok sk ok 3k ok 3k ok 3k 3k ok 3k ok 3 ok 3 ok 3 3k ok 3 ok 3k ok 3 ok
TE . 1Y% skokskoroskskok sk ok ok sk ok ok 3k ok sk ok ok 3k ok sk 3k ok 3k ok 3k 3k ok 3k ok ok 3k ok 3k 3k ok 5k
T5.3%  kskokskokskoksk sk ok sk ok 3k ok 3 ok 3k ok ok 3k ok 3k ok 3 ok 3 ok 3k 3k ok 3 ok 3k ok 3 ok

T3 1%  skokskokokskok sk ok ok sk ok ok 3k ok sk 3k ok 3k ok ok 3 ok sk ok ok 3 ok 3k 3 ok 3k ok ok 3k oK
T1.8Y  kskokskokskoksk sk ok sk ok 3k ok 3k ok 3k ok ok 3k ok 3 ok 3 ok 3k ok K 3k ok 3k ok 3 ok 3k >k
TO.3Y%  kskokskokokoskokskok sk ok s ok 3k ok 3k sk ok sk ok 3k ok 3k ok 5k sk ok sk ok ok ok ok

B . 1%  skskokokskokskok sk ok 3k ok 3k ok 5k 3k ok 3 ok 3 ok 3 ok 3k ok K ok ok ok 3 K

B5.5%  skokskokskokskok sk ok k sk k sk ok sk ok 3k ok 3 ok ok ok ok sk ok sk ok ok ok ok

B4 . TY  kskskokskokkokk ok 3k ok 3k 3k ok 3k ok 3 ok 3 ok 3k ok K 3k ok 3 ok 3 ok 3k K

B4 . AY,  kokskokskokkok ok ok k sk k sk ok sk ok 3k ok 3 ok ok ok ok sk ok sk ok ok %k ok

B5 . 4%, kkskokskokok sk ok sk sk ok 3k ok sk 3k ok 3k ok ok 3k ok 3k 3k ok 3k ok ok 3k ok 3k ok ok

80.4Y,  kskokskokskoksk ok sk sk ok 3k ok 3k ok 3k ok 3k 3k ok 3k ok 3 ok 3 ok 3 ok 3k 3k ok 3k ok 3k ok 3 ok 3k K
80. 5% skokskokskskok sk sk ok sk ok ok 3k ok sk ok ok 3k ok 3k 3k ok sk ok 3k 3 ok 3k ok ok 3 ok 3k 3 ok 3k ok ok K
80 .5  skskokskokskok sk ok k sk ok 3k ok 3k ok 3k ok 3k ok ok 3k ok 3 ok 3 ok 3 ok 3k 3k ok 3k ok 3k ok 3 ok 3k ok
TO. 2%  skokskokokskook sk 3k ok sk ok ok 3k ok sk K ok 3k ok ok 3 ok sk ok ok 3 ok 3k 3k ok 3k ok 3k 3k ok 3k 5k ok
TO .9V, kskokskokskok sk ok k sk ok 3k ok 3k ok 3 ok 3 3k ok 3k ok 3 ok 3 ok 3 ok 3k 3k K 3k ok 3k ok 3 ok 3k >k
TO.TY  wskokskokskokok sk ok sk ok sk ok sk ok 3k ok 3k sk ok sk ok 3k ok 3 ok k ok 5k 3k ok sk ok 3k ok ok 5 5k
TO.8Y,  kskokskokskoksk ok ok sk ok 3k ok 3k ok 3k ok 3k ok K 3k ok 3 ok 3 ok 3 ok 3k 5k K 3 ok 3k ok 3 ok 3k K
TO.3Y%  kskokskokokokok sk ok sk ok sk ok ok ok 3k ok 3k sk ok sk ok 3k ok 3k ok k ok ok sk ok sk ok ok ok ok
TO.9Y,  kskokskokskokk ok ok sk ok 3k ok 3k ok 3k ok 3 ok K 3k oK 3 ok 3 ok 3 ok 3 5k K 3k ok 3k ok 3 ok 3k K
T8 .8Y  kskokskokskkok sk ok sk ok sk ok 3k ok 3k ok 3k sk ok sk ok 3k ok 3k ok ok >k ok 3k ok sk ok ok >k
TO. 5% skokskokokskok sk sk ok sk ok ok 3k ok sk 3k ok 3k ok ok 3 ok 3k ok ok 3 ok 3k 3k ok 3k ok 3k 3k ok 3k ok
TO. 0%  kskokskokskoksk sk ok sk ok sk ok 3k ok 3k ok 3k 5k ok 3k ok 3 ok 3 ok 3 ok K 3k ok 3 ok 3 ok 3 ok
TO.BY  skokskokokskok sk sk ok sk ok ok 3k ok sk 3k ok 3k ok ok 3k ok 3k ok ok 3 ok 3k 3k ok 3k ok 3k 3k ok 3k 5k oK
TO . AY,  kskokskokskok sk sk ok sk ok sk ok 3 ok 3k ok 3k ok ok 3k ok 3 ok 3 ok 3 ok 3k 3k ok 3k ok 3 ok 3 ok
TO. 3%  skokskokokskok sk sk ok sk ok ok 3k ok sk 3k ok 3k ok ok 3 ok 3k ok ok 3 ok 3k 3k ok 3k ok ok 3k ok 3k 5k ok
TO. 1Y skskokskokskoksk sk ok skook sk ok 3k ok 3k ok 3k ok ok 3k ok 3 ok 3 ok 3 ok K 3k ok 3k ok 3 ok 3 ok
TO. 0%  kskokskokskokok sk ok sk ok sk ok ok ok 3k ok 5k sk ok sk ok 3k ok 3 ok k ok ok sk ok sk ok ok ok ok

Running kernel kernel_few_threads_d8 which uses 27 regs.

10



Num

=
e
17}

© 0 N O O W N

W W WNNNNDMNDNNDMNDNDNDNRERRRRRBRBRPB B B
N, O O© 0 N O D WNE O OO NO” OGP WND = O

541

318.
245.
207.
188.
189.

201

208.

211

224.
223.
224.
177.
177.
177.
178.
178.
177.
178.
178.
179.
178.
177.
179.
176.
177.
178.

180

179.
179.
177.
180.

Time
s
.408
048
248
296
512
664
.824
640
.232
448
232
128
792
088
248
496
496
664
496
016
168
752
664
872
928
888
208
.384
520
584
920
544

Data

GB/s
30.
52.
68.
80.
89.
88.
83.
80.
79.
T4.
75.
T4.
94.
94.
94.
93.
93.
94.
93.
94.
93.
93.
94 .
93.
94 .
94.
94.
93.
93.
93.
94.
92.

99
75
41
93
00
46
13
41
43
75
16
86
36
74
65
99
99
43
99
25
64
86
43
27
83
31
14
01
46
42
30
93

Pct
25
44 .
57.
67.
74.
73.
69
67.
66
62
62
62
78.
78
78.
78.
78.
78.
78
78.
78.
78.
78.
7.
79
78.
78.
7
7.
7.
78.
7

.8%

0%
0%
4%
2%
%

.3%

0%

2%
.3%
.6%
4%

6%

9%

9%
3%
3%
7h

.3%

5%
0%
2%
h
h

.0%

6%
5%

.5%

9%
9%
6%

.47

%k 3k ok %k %k %k % 3k 5k %k %k % Xk

K 3K 3k 3k 5k %K 5K 5k 5k 5k %k K 5K 5k %k >k X >k 5k %k >k %

K 3K 5k 3k 5k %k 5k 3k 3k 5k %k % 3k 3k 3k %k %k K 5k 5k %k %k Xk >k >k %k %k %

>k >k >k >k >k 3k 3k 5k 3k 3k 3k 3k >k >k %k >k >k >k >k %k %k >k 3k 3k 5k 3k >k >k %k %k %k >k >k k

K 3K 3k 3k 5k K 3K 3k 3k 5k %k K 3K 5k 3k 5k % 3K 5k 5k 5k %k >k 3k 3k %k %k %k 5k 5k %k %k Xk %k >k %k %

>k >k >k >k >k 3k 3k 5k 3k 3k 3k 3k >k >k %k >k >k >k >k >k 5k >k 3k >k >k 3k >k >k % %k %k >k >k >k >k >k k
k3K 3k 3k 5k %k K 3k 3k 5k 5k %K 3K 3k 3k 5k %k % 5K 5k %k %k %k >k 5k 5k %k %k Xk >k %k %k %k %

>k >k >k >k >k 3k 3k 5k 3k 3k 5k 3k >k >k %k >k %k >k >k >k 5k >k 3k >k >k 3k >k >k %k %k Xk %k k

K 3K 3k 3k >k kK 5K 3k 3k 5k 5k %k 5K 3k 5k 5k 5k K 5K 5k 5k 5k % >k 5k 5k 5k >k X >k >k %k %k

K 3k ok 5k %k >k >k 3k 5k 3k %k %k >k 5k 3k %k %k >k 5k 5k %k >k %k >k >k >k >k >k Xk >k >k

K 3K 3k 3k >k K 5k 3k 5k 5k 5k % 5K 3k 3k 5k 5k K 5K 5k 5k 5k X 5k 3k 5k >k >k Kk k

K 3k 5k 5k 5k >k >k 3k 5k 3k %k %k >k 5k %k >k %k %k 5k 5k %k >k %k 3k >k %k %k >k Xk >k >k

K 3K 3k 3k 3k K 5K 5k 3k 5k 5k K 5K 5k 5k 5k % 5K 5k 3k 5k %k 5k 3k 5k 5k %k % 5K 3k %k >k Xk K >k >k >k k X
K 3K 3k 3k 5k >k 3k 3k 3k 5k %k K 3K 5k 5k 5k % 3K 5k 5k 5k %k >k 3k 3k %k %k % 5k 3k %k %k %k K >k >k >k k X
>k >k >k 3k >k 3k 3k 5k 3k 3k 3k 3k 3k >k >k >k >k >k >k 5k 5k 3k 5k >k 3k 3k 3k 3k >k >k %k %k %k >k >k >k >k >k >k
K 3K 3k 3k 5k >k 3k 3k 3k 5k %k K 3K 5k 5k 5k % 3K 5k 5k 5k %k >k 3k 3k %k %k % 5k 3k %k %k %k K >k >k >k k X
>k >k >k >k >k 3k 3k 5k 3k 3k 3k 3k >k >k >k >k >k >k >k 5k 5k 3k 3k >k 3k 3k 3k >k >k >k %k %k %k >k >k >k %k %k %k
K 3K 3k 3k 5k >k 3k 3k 3k 5k %k K 3K 5k 5k 5k % 3K 5k 5k 5k %k >k 3k 3k %k %k % 5k 3k %k %k %k K >k >k >k k X
>k >k >k >k >k 3k 3k 5k 3k 3k 3k 3k >k >k >k >k >k >k >k 5k 5k 3k 3k >k 3k 3k 3k >k >k >k %k %k %k >k >k >k %k %k %k
K 3K 3k 3k 3k K 5K 5k 3k 5k 5k K 5K 5k 5k 5k X 5K 5k 3k 5k %k 5k 5k 3k 5k %k %K 5K 3k %k >k Xk K >k >k >k k X
K 3k 5k 3k k >k 5k 3k 3k 5k %k K 5k 5k 5k %k %k 3k ok 5k >k %k >k 3k 5k %k %k %k >k 5k %k >k %k %k >k >k >k k X
K 3K 3k 3k 3k kK 5K 5k 3k 5k 5k K 5K 5k 5k 5k % 5K 5k 3k 5k %k 5k 5k 3k 5k %k %k 5K 3k %k >k Xk K >k >k >k k X
K 3k 5k 3k k >k 5k 3k 3k 5k %k K 5k 5k 5k %k %k 3k ok 5k >k %k >k 3k 5k %k %k %k >k 5k %k >k %k %k >k >k >k k X
K 3K 3k 3k 3k kK 5K 3k 3k 5k 5k K 5K 5k 5k 5k % 5K 5k 3k 5k %k >k 3k 5k 5k %k %k 5K 3k %k >k Xk K >k >k >k k X
K 3k 5k 3k k >k 5k 3k 3k 5k %k K 5k 5k 5k %k %k 3k ok 5k >k %k >k 3k 5k %k %k %k >k 5k %k >k %k %k >k >k >k k X
>k >k >k >k >k 3k 3k 3k 3k 3k 3k 3k >k >k >k >k >k >k >k 5k 5k 3k 3k >k 3k 3k 5k >k >k >k %k %k %k >k >k >k >k %k >k
K 3K 3k 3k 5k %k 5k 3k 3k 5k %k K 3K 5k 5k 5k % 3K 5k 5k 5k %k >k 3k 3k %k %k % 5K 5k %k %k %k K >k >k >k k X
>k >k >k >k >k 3k 3k 3k 3k 3k 3k 3k 3k >k >k >k %k >k >k >k 5k >k 5k >k 3k >k >k 3k 5k >k >k >k %k %k %k >k >k k
K 3K 3k 3k 5k %k 5k 3k 3k 5k %k K 3K 5k 5k 5k % 3K 5k 5k 5k %k >k 3k 3k %k %k % 5K 5k %k %k %k K >k >k >k k X
>k >k >k >k 3k 3k 3k 5k 3k 3k 3k 3k 3k >k >k >k >k >k >k >k 5k 3k 3k >k 5k 3k 3k >k >k >k %k %k %k >k >k >k >k %k >k
K 3K 3k 3k 3k kK 5k 3k 3k 5k 5k K 5K 5k 5k 5k % 5K 5k 5k 5k %k >k 3k 3k 5k %k %k 5K 3k %k >k Xk K >k >k k kX
K 3k ok 3k 5k >k 5k 5k 3k 5k %k >k 5k 5k %k %k %k 3k ok 3k >k %k >k 3k 5k %k %k %k >k 5k %k >k %k %k >k %k k %

11



