
LSU EE 7700­2 Homework 5 Solution Due: 13 March 2013

For details on how the GPU works see the CUDA C Programming Guide, linked to
http://www.ece.lsu.edu/gp/gp/ref.html. For hardware details in particular see Chapter 1
(brief history and overview), Chapter 4 (organization overview), and Sections 5.2.3 (warp/instruction
scheduling), 5.3.2 (memory), 5.4 (instruction scheduling and functional units), and Appendix F
(some more details on resources and instruction handling).

Problem 1: The Volkov paper describes algorithms for dense linear algebra on GPUs, it is linked
to http://www.ece.lsu.edu/gp/gp/ref.html under the heading “Matrix Multiplication.” The
paper is important as much for the algorithms themselves, as for the methodical approach used in
characterizing the GPUs and developing the algorithms. The paper was written for the NVIDIA
CC 1.x generation of GPUs, which are now obsolete. Nevertheless, the paper is valuable in showing
how to measure the capabilities of a device and tune code for it.

Read the following sections of the Volkov paper: Abstract, Introduction, Section 2, 2.1, 2.3,
and Section 3.

(a) Add a column to Table 1 for the following devices: A GTX 580 and a Kepler K20.
Transposed column appears below. Notes: What the paper calls a core, NVIDIA calls a multiprocessor. The peak

computation rate counts a multiply/add instruction as two floating-point operations. So, for example, the GTX single-
precision rate is 16× 32× 1544× 2 = 1581056.

SOLUTION:

Device Num Core Reg/ smem/ Bus Bus Bus Mem

Name cores clock core core GHz pins GB/s MiB

MHz

GTX 580 16 1544 128 kiB 48 kiB 2004 384 192.4 1536

Kepler K20 13 710 256 kiB 48 kiB 2600 320 208.0 5000

Device SP Peak SP Peak SP FLOPS DP Peak DP FLOPS

Name per GPU per core per per GPU per

GFLOPS GFLOPS word word

GTX 580 1581 98.8 32.9 790* 32.9

Kepler K20 3544 272.6 68.1 1181 45.4

* Actually ‘‘lower’’ according to C Programming Guide

As mentioned in class, NVIDIA GPUs have high instruction latency, but are designed so that the
latency can be hidden by using lots of threads.

(b) Find the part of the paper in which Volkov describes the experiments used to find instruction
latency. What latencies does he report?

Section 3.4. For the GTX 280 they report 24 cycles for ordinary single-precision instructions that operate solely on
registers, slightly longer when one operand is from shared memory. Special (such as reciprocal square root) take 28 cycles,
DP add/mult take 48 cycles, DP fma take 52 cycles.

(c) This section also gives the number of warps (warps aren’t called warps elsewhere in the paper)
needed to hide this latency. Show how that number is computed.

They find that 6 warps are sufficient to cover the 24-cycle latency. The paper doesn’t explicitly explain how the
number 6 is computed.

1

http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp/gp/ref.html
http://www.ece.lsu.edu/gp/gp/ref.html


(d) Find the place in the NVIDIA documentation which describes the number of warps needed to
hide latency. Show the number of warps for each generation of CUDA architecture (1.x, 2.0, 2.1,
3.x) needed to hide latency assuming code consisted of just add and multiply instructions (which is
sort of the default case). Also show the warps needed under the assumption that the code consists
of reciprocal instructions. (Note that this part does not require the Volkov paper.)

This is discussed in section 5.2.3 of the CUDA C Programming Guide (v5.0). The number of warps needed to hide
a latency of L clock cycles is given as L/4 for CC 1.x, L for CC 2.0, 2L for CC 2.1, and 8L for CC 3.X. To hide the
latency of a single-precision multiply or add instruction, 24 cycles on CC 1.X and CC 2.X and 12 cycles on CC 3.X, one
would need 6 warps for CC 1.X, 24 warps for CC 2.0. Because of dual (superscalar) issue it is probably impossible to
completely hide the latency of two dependent instructions when one immediately follows the other since the scheduler will
need two independent instructions to make use of all 48 CUDA cores. Ignoring this fact it would take 48 warps for CC
2.1, and an unachievable 96 warps for CC 3.0.

Note that the numbers for CC 2.1 and 3.X don’t agree with the analyses presented in class. For CC 2.1, if instructions
were initiated for 2L warps then that would require 64 CUDA cores per cycle, but the device has only 48.

If code consists of reciprocal instructions, then it would take longer to issue each warp. The number of cycles is
32/2 = 16 for CC 1.X, 32/4 = 8 for CC 2.0, 32/8 = 4 for CC 2.1, and 32/32 = 1 for CC 3.x. The number of
warps needed to hide a latency of L cycles when the code consists of reciprocal instructions is then L/16 for CC 1.x,
L/8 for CC 2.0, L/4 for CC 2.1, and L for CC 3.x.

(e) The impact of instruction latency is not as bad if the instruction reading a register does not
immediately follow the instruction writing the register. Find the part of the paper that verifies
that this is indeed true. What is the minimum number of warps necessary to avoid stalls on code
with suitably distant dependencies, according to the paper?

This is discussed in Section 3.6. They get close to peak throughput with just two warps on code with distant
dependencies (made possible by unrolling the loop).

2



Problem 2: We know that the synchthreads() call should be avoided because it adds overhead.
Shown below is an excerpt of the machine code that performs a tree reduction of values within a
warp, each group of three instructions adds on a value at a different distance. Notice that each
instruction is dependent on the instruction before it.

@!P4 LDS R3, [R2+0x40];

@!P4 FADD R0, R0, R3;

@!P4 STS [R2], R0;

@!P0 LDS R3, [R2+0x20];

@!P0 FADD R0, R0, R3;

@!P0 STS [R2], R0;

@!P1 LDS R3, [R2+0x10];

@!P1 FADD R0, R0, R3;

@!P1 STS [R2], R0;

@!P2 LDS R3, [R2+0x8];

@!P2 FADD R0, R0, R3;

@!P2 STS [R2], R0;

@!P3 LDS R3, [R2+0x4];

@!P3 FADD R0, R0, R3;

@!P3 STS [R2], R0;

(a) Compute the execution time of this code, measured in cycles, on a CC 2.0 device, for the
launch of a single block with 1024 threads. Assume that all instruction latencies are 24 cycles.

Measure time from the execution of the first instruction (shown as something like I0 in class) to
the execution of the last instruction.

In a CC 2.0 device, in which there are 32 cuda cores, 24 warps are needed to hide the 24 cycles of latency in the
worst case, so all latency is hidden. There are at total of 15× 1024 = 15360 instructions. Assuming shared load and
stores can use the 32 cuda cores, the execution time will be 15360

32
= 480 cycles.

(b) The code above did not have synchthreads between each group. In this part consider code in
which there is:
@!P4 LDS R3, [R2+0x40];

@!P4 FADD R0, R0, R3;

@!P4 STS [R2], R0;

BAR.RED.POPC RZ, RZ;

@!P0 LDS R3, [R2+0x20];

@!P0 FADD R0, R0, R3;

@!P0 STS [R2], R0;

BAR.RED.POPC RZ, RZ;

@!P1 LDS R3, [R2+0x10];

@!P1 FADD R0, R0, R3;

@!P1 STS [R2], R0;

BAR.RED.POPC RZ, RZ;

@!P2 LDS R3, [R2+0x8];

@!P2 FADD R0, R0, R3;

@!P2 STS [R2], R0;

BAR.RED.POPC RZ, RZ;

@!P3 LDS R3, [R2+0x4];

@!P3 FADD R0, R0, R3;

@!P3 STS [R2], R0;

BAR.RED.POPC RZ, RZ;

Assume that the barrier instruction, BAR, uses cuda cores for execution (as does the FADD), and
that its latency is 24 cycles. An instruction following a barrier cannot execute until 24 cycles after
the last thread executes its barrier instruction. (In contrast, the FADD for a thread cannot execute
until at least 24 cycles after the LDS in the same thread executes.)

Compute the time for the code above for this assumed behavior.

3



The BAR instruction breaks execution into five sections. The first section has four instructions (including the BAR),

its execution time is 4×1024

32
= 128 cycles. Taken alone, each of the other sections has the same execution time. Because

of the barrier, the second section cannot start execution until 24 cycles after the end of the first, therefore the total time
is 5× (128+24) = 760 cycles. This is longer than the 5×4×1024

32
= 640 cycles that would be achieved if the barrier

did not force instructions to wait.

4


