
LSU EE 7700­2 Homework 2 Due: 6 February 2013

Problem 1: Consider the vertex transformation program presented in class:

#define N 5

typedef Elt_Type double;

struct Vertex { Elt_Type a[4]; };

struct App {

int num_threads;

Elt_Type matrix[4][4];

int array_size;

Vertex *v_in, *v_out;

} app;

void thread_start(void *arg) {

const int tid = (ptrdiff_t) arg;

const int elt_per_thread = app.array_size / app.num_threads;

const int start = elt_per_thread * tid;

const int stop = start + elt_per_thread;

for (int h=start; h<stop; h++)

{

Vertex p = app.v_in[h]; Vertex q;

for (int i=0; i<4; i++)

{

q.a[i] = 0;

for (int j=0; j<4; j++) q.a[i] += app.matrix[i][j] * p.a[j];

}

app.v_out[h] = q;

}

}

(a) The code above is written for 4-element vertices. Generalize the code for n−element vertices.
Use the macro N defined on the first line (which is set to 5, but could be set to other values). Hint:

The solution is fairly simple, and does not involve adding any lines of code, just modifying what’s

already there.

(b) Compute the number of floating-point operations per vertex when n = 5. A multiply-add should
be counted as one floating-point operation (the multiply and the add).

(c) Compute the amount of data transferred per vertex when n = 5. Consider both single- and
double-precision numbers. (The code above is written for double-precision FP numbers, which are
8 bytes. Changing the typedef type to float will convert the code to use single-precision FP
numbers, which are 4 bytes.)

(d) Repeat the problem for n−element vertices and an n×n matrix. Assume that n ≪ the number
of vertices.

1

http://www.ece.lsu.edu/gp/

Problem 2: The NVIDIA GTX 690, a GPU meant for home use, has the following specifications:

• Memory bandwidth: 384GB/s.

• Single-precision computation rate of 2.8 TFLOPS (2.8 × 1012 FP operations per second).

• Double-precision rate of 117 GFLOPS (yes, less than a 10th the single-precision rate).

(For the sake of simplicity in this problem a multiply/add instruction (FMADD) is counted as
one floating-point operation.)

Consider the code from the previous problem.

(a) Based on these numbers determine the maximum number of 5−element single-precision vertices
per second that the GTX 690 can process.

(b) Repeat the problem above for double-precision elements.

(c) At what size vertex (value of n) will both the floating point computation rate and data transfer
rate both equally limit the computation rate for the single-precision vertex program?

(d) Consider the results above. If you need the calculations performed in double precision, why
shouldn’t you complain to NVIDIA about the fact that the double-precision performance is less
than 1

10
that of single precision for smaller values of n? Grading note: The original question was

for n = 5, for which there was no reason to complain. See solution.

2

