LSUEE 7700-1 Homework 7 sowtion Due: 15 April 2009

Read “NVIDIA GeForce 8800 GPU Architecture Overview,” linked to the course references
page, and answer the questions below.

Problem 1: The 8800 implements a unified shader model, meaning it uses the same processor
for both vertex and fragment (pixel) processing. What is the advantage of doing so. Hint: This is
really easy and can be answered directly from the white paper.

The GPU area needs to be divided between vertex and Tragmo,m shaders (‘Aﬂd other '\t@ms). IT there are too many
vertex processors Then some vertex processors will go unused, the GPU would have been taster if the Qmp area used for
vertex Processors was instead used for ngmém processors. The situation is similar if there were 100 many Tragmem
Processors. The prob\@m is that it's the Qpp\'\Q&UO\'\ that determines how many 18 100 many, 5o for a g'\\/en GPU there may
De 100 many vertex processors running Qpp\'\Q&UOﬁ A and 100 many TY&ngm processors running appnem‘\on B. There ig
NO Qagy way 10 choose.

With 2 unified shader model the same processor can De used for both vertex and Tragm@nt Shgd'mg, 80 there's no
problem.

Problem 2: Describe at least two possible disadvantages of the unified shader model. These
disadvantages might have outweighed the advantages in previous generation GPUs, which had
separate (not unified) programmable shaders. Hint: This question is harder and requires some
understanding of computer architecture.

Vertex and Tragment shaders I\/p'\Q&\\y PQYTONT\ different tasks and so m'\gm have different QOmpUt&I‘OﬂQ\ YqumeQm.S.
This is QSpQC\Q\\y frue for older rend@rmg p'\p@\me models in which a vertex shader would not have access 1o textures and a
Tragmom shader would not need to PQYTOHY\ \1gm‘mg caleulations. A vertex processor under that model could avoid a QOSUy
Texture unit (typ'\(‘,&\\y 'mc\udmg SPQQ'\‘A\'\ZQG address caleulation hardware, the cache itself, and texel ﬂ\tQ\"mg h‘MGWQY@).
A Tragment processor might omit instructions or hardware for computing lighting.

uUnder the unified model & processor would need hardware for both. That's less of an issue in modern sysmms
Decause many grapmes offects require texture access in the vertex Processor anyway.

A second GiS&G\/QM&g@ of us‘mg Q s‘mg\@ processor WPQ is that it pY@Q\UGQS Q s'\mp\ce path for data from GPU ‘mput 1o
VOrtex Processor INPULS, VRrtex proeessor inputs to rasterizer inputs, rasterizer outputs to fragment processors. Instead,
with 4 S'\T\g\Q processor I\ij there must be some kind of & pzm from each processor OUIPUI 10 each processor 'mput. The
GPU Architecture white paper on page 36 implies some Kind of Tast connection from stream Processor Outputs to inputs.
(CUDA applications are foreed to go through uneached global memory.)

Problem 3: The white paper describes texture filter and texture address units. What they do is
straightforward, but how are they used? Are they: (1) programmable units (like the stream pro-
cessors) with a (possibly secret) instruction set of their own, (2) functional units (like floating-point
ALUs) which are used using stream-processor instructions, (3) state machines that are operated
using special control registers (like DMA controllers), (4) just subroutines that run on stream pro-
cessors using ordinary stream processor instructions (like system calls or library functions), or (5)
something else.

Your answer should indicate what you are basing your conclusion on (page number, etc) and
how sure you are it is correct. The answer may range from an educated guess to a precise answer
based on a source. Feel free to find sources other than the NVIDIA white paper.

First lefs rule out some pOSS'\DH'\UQ‘S. POSS'\D'\\'\W (4),]USI subroutines, is UT\\'\KQ\y Decause then there would be no
Way 1o ()VQY\QP texture feteh and m'ﬁQng with other shader code. The white paper sp@emem\y mentions this OVQY\QP.

Oone p\&QQ in which more information can be found on the low-level hardware is the PTX instruction set, an inter-
mediate asso,mb\y—\'\ke \Emguage described Dy NVIDIA as close QﬂOUgY\ 10 machine \‘Aﬁg\l&g@ for opt’\m'\zat'\on purposes (SQQ
The course references P&g@). An ent@rpr'\smg individual has written a disassembler for NVIDIA GE 80—Tam'\\y GPUs, called

1

http://www.ece.lsu.edu/gp/

Decuda. Both PTX and Decuda show texture aceess instructions with texture unit and coordinate source operands that
write the filtered texel to the destination.

These instructions rule out (3) since texture operations are initiated by & specific instruction, not by reads and
WIITes 10 Soma et of control rgisters. (Control registers might be part of a special register set or might be mapped into
an address space and accessed using 10ad and store instruetions. Either way, they aren't used for textures.)

This leaves (1) and (2). In (1) the texture instruction would trigger code on the programmanle processor, in (2) it
would initiate the operation in non-programmable hardware. In Doth cases the texture unit would have to signal completion
10 the stream processor controller.

There are many variations on texture aceass (such as linear or nearest-texel fitering) but no way to specity them in
the texture instruetion. One possibility is that the driver inserts code into a programmanle texture proeessor (1) based on
the texture fiitering specified or for (2) the driver might simply spacify the type of fitering and other options via eontrol
registers writable only from the command processor. (The control registers would only be used for setup, not for initiating
a texture operation.)

To achieve 2 high throughput the texture processor would need specialized hardware to compute mipmap levels and
filter texels, with sueh hardware in place control would probably be simple so a programmable unit would be overkill.
Therefore (2) is more likely. An advantage of (1) though is greater flexibility in fiitering using filtering teehniques not
considered when the hardware was designed.

