
LSU EE 7700­1 Homework 2 Due: 19 February 2009

As noted in class, the lighting of large triangles does not appear realistic when the light is
closer to the interior of the triangle than a vertex. A realistic image would show a pool of light
within the triangle, but all our code shows is nearly uniform lighting (based on the lighted color of
the vertices).

Consider triangle V0V1V2 illuminated by a light at L. Let P denote the point on the plane
defined by V0V1V2 which is closest to L. (Point P is the brightest spot on the triangle’s plane.) The
first-order Vaidyanathan tessellation of V0V1V2 is either the set of three triangles PV1V2, V0PV2,
and V0V1P , if P is inside V0V1V2, or just V0V1V2 (the original triangle) otherwise.

A first-order Vaidyanathan tessellation will partly solve the lighting problem. (Note: Dr.
Vaidyanathan is not actually famous for this tessellation, he just suggested it to me.)

Problem 1: Modify hw2.cc so that when variable opt-split-triangles is true the first-order
Vaidyanathan tessellation is applied to all triangles. (Applying means splitting the triangle only if
the light is within it.)

• The ’s’ key is already set up to toggle the state of opt-split-triangles.

• Finding P is easy with a little knowledge of geometry and the pre-defined geometry code.
The sample-code routine in the assignment file shows how to use the geometry classes and
functions.

• The changes must be within the rendering pipeline code, not at the point where triangles
are inserted into the vertex list.

• The changes must be at an appropriate place in the rendering pipeline code. The modified
code must still operate by applying a small operation to a large number of elements. (That is,
don’t reorganize the code to process an entire triangle, from transformation to rasterization,
in one step.)

Problem 2: Consider the performance implications of the first-order Vaidyanathan tessellation.
There are two aspects to performance: determining whether a triangle should be tessellated, call
this the tessellation test, and any additional work in processing the increased number of triangles.

(a) Estimate the performance impact of the tessellation test on the rendering pipeline up to, but not
including, rasterization. Quantify performance by an operation count obtained by hand (number
of floating-point operations, etc.).

(b) Compare your performance estimate to the render time provided by the frame buffer simulator.
(Be sure to not run the -debug version of the code.) Comment on any differences.

(c) Suggest a way of reducing the computation needed by using a less compute-intensive method
of deciding to not tessellate a triangle.

Problem 3: Assuming that the rasterization code has no way of determining whether a triangle
was tessellated, estimate the performance impact of tessellating a triangle.

(a) Specify performance overhead of rasterization in terms of scene characteristics including the
number of tessellated triangles plus something else. (That is, the overhead is not as simple as 3nt,
where nt is the number of tessellated triangles.)

1

http://www.ece.lsu.edu/gp/

