
Name Solution

Digital Logic I

EE 2720-2

Midterm Examination 1

3 October 2011, 14:40–15:30 CDT

Exam Rules

Use only a pencil or pen. No calculators of any kind are allowed. Texting is out of the question.

Alias Logic Won

Problem 1 (15 pts)

Problem 2 (9 pts)

Problem 3 (9 pts)

Problem 4 (24 pts)

Problem 5 (9 pts)

Problem 6 (9 pts)

Problem 7 (16 pts)

Problem 8 (9 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/ee2720/


Problem 1: (15 pts) Perform the conversions indicated below. For conversions to decimal all
you need to show is the arithmetic that needs to be done to compute the value, there’s no need to

perform the computation. For example, a decimal value can be written as 12 + 3 ×
4

5+6
+ 7 × π−9 .

This only applies to answers in decimal.

�Convert 25710 to hexadecimal.

Hint: 162 = 256.

Hmmm . . . the value of a 4-digit hexadecimal number consisting of digits d2d1d0 is d2 × 162 + d1 × 16 + d0. Now,
we need to find digits such that d2 × 256 + d1 × 16 + d0 = 25710. That must mean d2 = 1 and d1 = 0 and

d0 = 1. So the number in hex is 10116 .

�Convert 2f716 to decimal.

The value is 2 × 162 + 15 × 16 + 7 which is sufficient to get full credit. But for completeness, that’s 75910 in
decimal.

�Convert 2.f716 to decimal. (Don’t overlook the radix point.)

The only difference here is the exponents on the 16’s. The value is 2 × 160 + 15 × 16−1 + 7 × 16−2 . For com-

pleteness, that’s 75910

25610

= 2.96484375 in decimal.

�Convert 2579 to decimal.

Here we use powers of 9. The value is 2 × 92 + 5 × 9 + 7 . For completeness, that’s 21410 in decimal.

�Convert 1011 01002 to decimal.

Here we use powers of 2. The value is 27 + 25 + 24 + 22 , which is 18010. Note that terms for the digits of value
zero were omitted, and the 1× was omitted from terms for the digits of value 1. Those with more experience might by
eye convert it to b416 then compute 11 × 16 + 4 = 180.

2



Problem 2: (9 pts) Perform the conversions below, taking advantage of the fact that all radices
are powers of 2.

�Convert abc16 to binary.

Because the radix is a power of 2, 16 = 24, we know that each digit corresponds to, in this case, 4 bits. If the starting
radix were 2r each digit would correspond to r bits. So we convert each hex digit into 4 bits.

Maybe we remember that a16 = 10102, if not its easy enough to derive. Given that we can convert the other two hex

digits: b16 = 10112 and c16 = 11002. Combining them gives the binary number 1010 1011 11002 .

�Convert abc16 to octal.

We can convert from binary to a radix that is a power of 2, say 2s, by arranging the digits into groups of s and then
converting each group to a digit. For octal (radix 8) we have s = 3, so we need to group digits by 3’s:

1010 1011 11002 = 101 010 111 1002 = 52748

So the answer is 52748 .

�Convert abc16 to radix 4.

This is solved the same way as the previous question, except that s = 2:

1010 1011 11002 = 10 10 10 11 11 002 = 2223304

So the answer is 2223304 .

Problem 3: (9 pts) For each pair below briefly indicate an advantage (in some situations) of the
first coding over the second coding.

�Advantage of Gray code over binary code.

In Gray code only a single bit changes between consecutive numbers. In contrast, with binary encoding multiple bits can
change. For example, consider a four-bit quantity changing from a numeric value of seven to eight. For binary that would
be 0111 → 1000. For Gray code the corresponding change would be 0100 → 1100. Consider again the binary case,
0111 → 1000. Note that every digit position changes. No real device can change all four bits instantaneously, meaning
the bits will change one at a time over some very brief interval. Suppose the order in which the digits changed was random.
Then between the time the value is 0111 and the time the value is at its correct value of 1000 any other number could
appear, albeit briefly. In contrast with Gray code only one bit changes and so no matter when the bits are examined either
the initial value, 0100 (seven), or the final value, 1100 (eight), can appear.

�Advantage of BCD over binary.

See Brown & Vranesic Section 5.7.3. Conversion to decimal is easy.

�Advantage of binary over BCD.

Larger dynamic range for a given number of bits.

3



Problem 4: (24 pts) Perform the conversions indicated below. The number representations in
this problem have specific sizes (e.g., 8 bits).

�Convert the following 8-bit binary unsigned to decimal: 1100 0101

Full-credit answer 27 + 26 + 22 + 20 . Note that 7, 6, 2, and 0 are the positions of the 1’s in 1100 0101. One of the

problems below requires the decimal value of this number, the calculation is 27+26+22+20 = 128+64+4+1 = 197.
Tip: Knowing the powers of 2 up to 216, and approximate values for 220 and 230 will make a good
impression on job interviews.

�Convert the following 8-bit binary signed magnitude to decimal: 1100 0101

In signed magnitude the leftmost digit is a sign (1 means minus, 0 means plus). The remaining digits are the magnitude
represented as an unsigned number. Here the leftmost bit is 1, meaning the result is negative. The remaining bits are

100 0101 and their value is 26+22+20. So the value of the whole thing is −

(

26 + 22 + 20
)

. For the record, that’s
-69. Grading Note: On many exams the parentheses were omitted in this and subsequent problems.

�Convert the following 8-bit binary 2’s complement to decimal: 1100 0101

There are several methods to solve this. In all methods the first step is checking whether the number is positive, and if
so the number is converted to decimal in the usual way. A number is positive if the leftmost bit is 0, but in this case the
leftmost bit is 1 so its negative.

One method to convert a negative 2’s complement number to decimal is to first invert each bit, then add 1, then convert

it as an unsigned number. Using this procedure: 1100 0101
Invert
−−−−→ 0011 1010

Add 1
−−−−→ 0011 1011. Next convert

11 10112 to decimal and negate the result. That yields −

(

25 + 24 + 23 + 21 + 20
)

. For the record, that’s -59.

�Convert the following 8-bit binary 1’s complement to decimal: 1100 0101

A quick way to solve this is to remember that the 1’s complement is just one smaller in magnitude than 2’s complement
(because a 1 isn’t added). So take the answer from the last part and add 1: −

(

25 + 24 + 23 + 21 + 20
)

+ 1 which

is −

(

25 + 24 + 23 + 21
)

.

Or one can start from the beginning: Follow the same procedure as for 2’s complement, except don’t add one: 1100 0101
Invert
−−−−→ 0011 1010. Next convert 11 10102 to decimal and negate the result. That yields −

(

25 + 24 + 23 + 21
)

or -58.

�Convert the following 8-bit binary 2’s complement to 12-bit binary 2’s complement: 1100 0101

Notice that the answer is in binary too. To convert to 12-bit binary 2’s complement all we need to do is prepend four
more bits (put four bits on the left-hand side). If the original number is positive those four bits should be 0’s, otherwise

if the number is negative (which it is in this case) they should be 1’s. So the answer is 1111 1100 0101 .

4



�Convert the following 12-bit (yes 12 bit even though 8 bits are shown) binary 2’s complement
to decimal: 1100 0101

If this were an 8-bit 2’s complement number it would be negative and the value would be -59 (see one of the earlier
parts). But it’s 12 bits and so the leftmost bit is 0. Notice that leftmost bit refers to the full 12-bit representation,
0000 1100 0101. Since the number is positive convert it as unsigned. The answer will be the same as the first part,

27 + 26 + 22 + 20 or 197.

�Convert the following 8-bit binary unsigned to 12-bit BCD: 1100 0101

The 8-bit number is the same as the first part, its value is 19710. The 12-bit BCD representation consists of 3 digits, 1,

9, and 7: they are 0001 1001 0111 .

�Convert the following 8-bit excess-3 code to decimal: 1100 0101

Excess 3 is similar to BCD except that the four bits representing a digit are set to the digit value plus 3. The most
significant digit is 1100. The value would be that minus 3, or 12− 3 = 9. Similarly the least significant digit is 0101

so the digit value would be 5 − 3 = 2. The decimal value is then 9210 .

�Double-check that minus signs were included where necessary in the answers above.

5



Problem 5: (9 pts) Find the minimum number of bits to encode one thousand in each of the
representations below. For example, the number of bits needed for 103 in unsigned binary would be
10 because 100010 = 3e816 and each hex digit spans four bits. Hint: The solution does not require
a tedious conversion.

�Number of bits needed to encode one thousand in BCD:

BCD encodes decimal numbers, one thousand needs four digits to represent in decimal. Each BCD digit is 4 bits so the

total number of bits is 4 × 4 = 16 .

�Number of bits needed to encode one thousand in decimal using ASCII:

The encoding is supposed to be decimal using ASCII characters. In decimal, 1000 requires 4 digits. In ASCII each character

is 8 bits (including the parity bit). So the total number of bits is 4 × 8 = 32 .

�Number of bits needed to encode one thousand in English using ASCII:

The encoding is supposed to be English using ASCII characters. In English “One Thousand” takes 12 characters, each

needing 8 bits. So the total number of bits is 12 × 8 = 96 .

Grading Note: For the first two parts, BCD, and decimal/ASCII, the number of bits specified can
represent not just 1000 but any number between 0 and 1000. That’s not the case here because twelve
characters, for example, cannot represent “nine hundred ninety nine.” This did not seem to bother
anyone.

6



Problem 6: (9 pts) Solve the following arithmetic problems. Show the result (sum) in the same
representation as the operands. To avoid confusion, box your answer and show your work.

�Add the following 8-bit unsigned numbers.

In decimal the sum is 197+83 = 280, or in binary the arithmetic sum is 1 0001 1000. (The problem should be solved
by doing the addition in binary.) The sum is supposed to be put in an 8-bit unsigned representation. So the solution is

0001 1000 . Note that this is not the correct arithmetic sum due to overflow.

� Indicate whether there is overflow:

Yes. Any carry out in unsigned addition indicates overflow (when all operands are the same size).

11000101
+ 01010011

�Add the following 8-bit 2’s complement numbers.

Follow exactly the same procedure as used for unsigned numbers. The result is 0001 1000 , For the record, the
arithmetic is −59 + 83 = 24, and 2410 = 110002.

� Indicate whether there is overflow:

No, because there can never be overflow when one operand is positive and the other is negative.

11000101
+ 01010011

�Add the following 8-bit 1’s complement numbers.

Follow the same procedure as for unsigned numbers except if there is carry out add it to the initial sum to get the final

sum. In this case there is a carry out so the sum will be 0001 1001 . For the record, the arithmetic is −58+83 = 25,
and 2510 = 110012.

� Indicate whether there is overflow:

No, because there can never be overflow when one operand is positive and the other is negative.

11000101
+ 01010011

7



Problem 7: (16 pts) Transform the following Boolean expressions as indicated.

�Simplify.
x · y + x · y · z′ + y · w · x

Apply the cover theorem: a + a · b = a, with a → xy. This eliminates the last two terms leaving just x · y .

�Simplify by eliminating one term.

x · (a + b) + (a + b)′ · (c + e) + (c + e) · x

Apply the consensus theorem: α ·w + α′
· y + w · y = α ·w + α′

· y. In this case α → (a + b), and w → x, and

y → (c + e). The result is x · (a + b) + (a + b)′ · (c + e) .

�Simplify.

Those who recognize something from Homework 2 can solve this quickly.

(a + b + c) · (a + b + e) · (a + b + f)

In Homework 2 we proved that x+y1 ·y2 · · · · ·yn = (x+y1) · (x+y2) · · · · · (x+yn). Here we set x → a+ b,

y1 → c, y2 → e, and y3 → f . That yields a + b + c · d · e .

�Write the following as a sum of products.

[a + b + (c + e)′]
′

+ f

First Demorganize
[a′

· b′ · (c + e)] + f

remove the now superfluous brackets
a′

· b′ · (c + e) + f

finally multiply out to get the answer:
a′

· b′ · c + a′
· b′ · e + f

Grading note: many people made errors applying Demorgan’s theorem. Be careful.

�Write the following as a product of sums.

a + b · (c + e)

Apply the theorem x + y · z = (x + y) · (x + z), here set x → a, y → b, and z → (c + e). That yields

(a + b) · (a + c + e) .

8



Problem 8: (9 pts) Convert the Boolean expressions as indicated.

(a) Show logic gates corresponding to the expression below as written. (That is, don’t simplify or
otherwise transform it.)

[a + b + (c + e)′]
′

+ f

�Show logic gates.

Diagram appears below. Grading Note: On many exams the expression was first simplified. The warning
about not simplifying did not appear on the original exam.

a
bc

e

f

(b) Show the dual of the Boolean equation below:

x + x′
· y = x + y

�Dual of equation above.

An expression is transformed into its dual by changing AND to OR, OR to AND, and the constants 1 to 0 and 0 to 1 (the
expression above does not have constants). One should take care that the order of operations is not changed. A safe
way to do that is to insert parentheses around every operator/operand set. The parenthesized version of the expression
above is

(x + (x′
· y)) = (x + y)

Now swap the operators
(x · (x′ + y)) = (x · y)

and then remove unnecessary parenthesis to yield the cleaned-up solution

x · (x′ + y) = x · y

The following is the wrong answer because the order of operations has changed: x ·x′ + y = x · y. Examining this for
a moment one can see that it can’t be right because since x · x′ = 0 the equality would reduce to y = x · y. Grading
Note: This was a common mistake.

9



(c) Prove that the following equality is valid by constructing a truth table.

x + x′
· y = x + y

�Truth table to prove equality.

Solution:

Inputs ! Left Hand Side Right Hand Side

x y ! x x’y x+x’y x+y

--------+----------------------------------

0 0 ! 0 0 0 0

0 1 ! 0 1 1 1

1 0 ! 1 0 1 1

1 1 ! 1 0 1 1

10


	Cover Page
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7
	Problem 8

