Problem 1: In the 8 -input multiplexer below, constructed from smaller multiplexers, the select inputs, s_{0}, s_{1}, and s_{2}, were connected in what would normally be considered the wrong order. That is, if the mux inputs were numbered consecutively starting from the top from 0 to 7 then a select input of 2 would not route the third input to the output.

Number the inputs based on the select bits as connected so that if the select bits represent i then input i (using your numbering) is routed to the output. (Do not change the select bit ordering, even though they are wrong.) Hint: Set the select bits to 3 ($s_{2}=0, s_{1}=1, s_{0}=1$), then figure out which input is routed to the output. Label that input 3. Repeat for the other 7 possible select inputs.

Problem 2: Consider the pair of logic functions:

$$
\begin{aligned}
& f_{0}=(a+b c+\bar{b} c d) \bar{e} \\
& f_{1}=(a+b c+b \bar{c} d) \bar{e}
\end{aligned}
$$

(a) Show how these can be implemented using a PLA(without external logic). Indicate: The number of inputs (n), the number of product terms (AND gates, p), and the number of outputs, m. Draw a diagram of the PLA, using the abbreviated form in which a single wire connects to the ANDand OR-gates' inputs.
(b) Explain why a PAL would be less suitable than a PLA for the pair of functions above.

Problem 3: The diagram below is for a PLA.

(a) One of the outputs appears to be a mistake. Which one, and why?
(b) Write a Boolean expression for each output.
(c) Draw a logic diagram showing only the gates that are needed.

