Problem 1: Consider the following logic function in canoncial form:
$\sum_{a, b, c, d} m(0,2,5,8,10,12,13)$.
(a) Draw a truth table for this logic function.

SOLUTION:
row a b c d ! f
--------------+----
$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1$
$1000011!0$
$2000101!1$
$3 \quad 0 \quad 0 \quad 1 \quad 1 \quad!\quad 0$
$4 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0$
$5 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1$
$6 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0$
$7 \quad 0 \quad 1 \quad 1 \quad 1 \quad!\quad 0$
$8 \quad 1000011$
$9 \quad 1 \quad 0 \quad 0 \quad 1 \quad!\quad 0$
$10 \quad 101011$
$11 \quad 101110$
$12 \quad 110011$
$\begin{array}{lllllll}13 & 1 & 1 & 0 & 1 & 1\end{array}$
$14 \quad 11101!0$
$15 \quad 111110$
(b) Draw a logic circuit for this function. Do not simplify.

Diagram appears below. The and gates are labeled with minterm numbers.

(c) Draw a Karnaugh map for the logic function.

Solution appears below, the prime implicants are circled.

(d) List the prime implicants.

As shown in the Karnaugh map above, the prime implicants are: $b^{\prime} d^{\prime}, a b c^{\prime}, b c^{\prime} d$, and $a c^{\prime} d^{\prime}$.
(e) List the essential prime implicants.

The essential prime implicants are $b^{\prime} d^{\prime}$ (because of minterms 0,2 and 10), and $b c^{\prime} d$ (because of minterm 5).
(f) List all of the minimum cost sum-of-product expressions.

There are only two,

$$
b^{\prime} d^{\prime}+b c^{\prime} d+a c^{\prime} d^{\prime}
$$

and

$$
b^{\prime} d^{\prime}+b c^{\prime} d+a b c^{\prime} .
$$

(g) Draw a logic diagram for your favorite one.

Diagram appears below.

Problem 2: Consider again the logic function from the previous problem,
$\sum_{a, b, c, d} m(0,2,5,8,10,12,13)$. This time however suppose the outputs are don't care for two sets of inputs, $a=0, b=1, c=0, d=0$ (corresponding to row (minterm) 4) and $a=0, b=1, c=1$, $d=1$ (corresponding to row (minterm) 7).
(a) Draw a Karnaugh map, include the don't cares.

Solution appears below. The d for minterm 4 (the one on the left) is set to 1 , the other is set to zero. This enables the minterms in three "real" non-corner minterms to be covered by just one prime implicant, $b c^{\prime}$, which happens to be an essential prime implicant.

(b) Find a minimum-cost sum-of-products expression making the best use of the don't cares.

Based on the diagram above the two essential prime implicants cover the whole expression. So the minimum cost expression is $b^{\prime} d^{\prime}+b c^{\prime}$.
(c) Draw a logic diagram corresponding to the minimum-cost expression. Solution appears below.

Problem 3: The population of an n-bit quantity is the number of bits with value 1 . For example, the population of 4 -bit quantity 0101 is 2 , the population of 1101011 is 5 .
(a) Show a truth table for a Boolean function with an output that's logic 1 if the population of 2 -bit input $a_{1} a_{0}$ is the same as the population of 2 -bit input $b_{1} b_{0}$. (The function has four inputs, a_{1}, a_{0}, b_{1}, and b_{0}.)

SOLUTION:
row a1 a0 b1 b0

-- ---------------						
0	0	0	0	0	$!$	1
1	0	0	0	1	$!$	0
2	0	0	1	0	$!$	0
3	0	0	1	1	$!$	0
4	0	1	0	0	$!$	0
5	0	1	0	1	$!$	1
6	0	1	1	0	$!$	1
7	0	1	1	1	$!$	0
8	1	0	0	0	$!$	0
9	1	0	0	1	$!$	1
10	1	0	1	0	$!$	1
11	1	0	1	1	$!$	0
12	1	1	0	0	$!$	0
13	1	1	0	1	$!$	0
14	1	1	1	0	$!$	0
15	1	1	1	1	$!$	1

(b) Derive a Boolean algebraic expression for the same function without using the truth table. Use the following approach: derive an expression that's logic 1 when the population of $a_{1} a_{0}$ is zero. Derive similar expressions for when the population is 1 and when the population is 2 . Then pair such expressions for a and b.

The three cases are population 0,1 , and 2. For population 0 both bits of a and b must be 0 , that is true when $a_{1}^{\prime} a_{0}^{\prime} b_{1}^{\prime} b_{0}^{\prime}$ is true. For population 2 both bits of a and b must be 1 , that happens when $a_{1} a_{0} b_{1} b_{0}$ is true. Population 1 can happen two ways, either $a_{1}=1$ and $a_{0}=0$ or $a_{1}=0$ and $a_{0}=1$. The expression for that for a is $a_{1} a_{0}^{\prime}+a_{1}^{\prime} a_{0}$. The population for both a and b will be 1 when both expressions are true: $\left(a_{1} a_{0}^{\prime}+a_{1}^{\prime} a_{0}\right)\left(b_{1} b_{0}^{\prime}+b_{1}^{\prime} b_{0}\right)$. Combining all of these conditions yields the solution: $a_{1}^{\prime} a_{0}^{\prime} b_{1}^{\prime} b_{0}^{\prime}+a_{1} a_{0} b_{1} b_{0}+\left(a_{1} a_{0}^{\prime}+a_{1}^{\prime} a_{0}\right)\left(b_{1} b_{0}^{\prime}+b_{1}^{\prime} b_{0}\right)$.
(c) Draw a logic diagram for either the hand-derived expression (the previous part) or if you couldn't do the previous part, an expression based on the truth table.

(d) Try simplifying the Boolean expressions using the exclusive or (\oplus) operator $\left(a \oplus b=a b^{\prime}+a^{\prime} b\right)$. If successful, draw a logic diagram based on the simplified expressions.

Note that $a_{1} a_{0}^{\prime}+a_{1}^{\prime} a_{0}=a_{1} \oplus a_{0}$. Using that we get for the entire expression:
$a_{1}^{\prime} a_{0}^{\prime} b_{1}^{\prime} b_{0}^{\prime}+a_{1} a_{0} b_{1} b_{0}+\left(a_{1} \oplus a_{0}\right)\left(b_{1} \oplus b_{0}\right)$.
The logic diagram appears below.

