Problem 1: Consider the following logic function in canoncial form:
$\sum_{a, b, c, d} m(0,2,5,8,10,12,13)$.
(a) Draw a truth table for this logic function.
(b) Draw a logic circuit for this function. Do not simplify.
(c) Draw a Karnaugh map for the logic function.
(d) List the prime implicants.
(e) List the essential prime implicants.
(f) List all of the minimum cost sum-of-product expressions.
(g) Draw a logic diagram for your favorite one.

Problem 2: Consider again the logic function from the previous problem, $\sum_{a, b, c, d} m(0,2,5,8,10,12,13)$. This time however suppose the outputs are don't care for two sets of inputs, $a=0, b=1, c=0, d=0$ (corresponding to row (minterm) 4) and $a=0, b=1, c=1$, $d=1$ (corresponding to row (minterm) 7).
(a) Draw a Karnaugh map, include the don't cares.
(b) Find a minimum-cost sum-of-products expression making the best use of the don't cares.
(c) Draw a logic diagram corresponding to the minimum-cost expression.

Problem 3: The population of an n-bit quantity is the number of bits with value 1 . For example, the population of 4 -bit quantity 0101 is 2 , the population of 1101011 is 5 .
(a) Show a truth table for a Boolean function with an output that's logic 1 if the population of 2 -bit input $a_{1} a_{0}$ is the same as the population of 2 -bit input $b_{1} b_{0}$. (The function has four inputs, a_{1}, a_{0}, b_{1}, and b_{0}.)
(b) Derive a Boolean algebraic expression for the same function without using the truth table. Use the following approach: derive an expression that's logic 1 when the population of $a_{1} a_{0}$ is zero. Derive similar expressions for when the population is 1 and when the population is 2 . Then pair such expressions for a and b.
(c) Draw a logic diagram for either the hand-derived expression (the previous part) or if you couldn't do the previous part, an expression based on the truth table.
(d) Try simplifying the Boolean expressions using the exclusive or (\oplus) operator $\left(a \oplus b=a b^{\prime}+a^{\prime} b\right)$. If successful, draw a logic diagram based on the simplified expressions.

