Problem 1: Perform the multiplications indicated below.
Multiply the following two 8 -bit unsigned binary integers into a 16 -bit product:
$01110010+10010011$.
Multiply the following two 8 -bit signed 2's complement integers into a 16 -bit product: $01110010+10010011$.

The theorem numbers in the problems below are from Dr. Skavantos' Handout 5, available via http://www.ece.lsu.edu/alex/EE2720/EE2720_HO5.pdf.

Problem 2: Prove the following
(a) Prove theorem T5 (called complement in the notes, but a better name is the damned-if-you-do,-damned-if-you-don't theorem) by perfect (finite) induction.
(b) Prove that

$$
(x+y) \cdot(z+w)=x \cdot z+x \cdot w+y \cdot z+y \cdot w
$$

using the axioms and theorems T1 to T11 (and their duals). Do not prove it using perfect induction or by otherwise substituting values for the variables. (For example, a proof like the following is not allowed: If $x=0$ the statement becomes $y \cdot(z+w)=y \cdot z+y \cdot w$, true by T 8 , if $x=1 \ldots$.)
(c) Draw a logic diagram (a connection of logic gates) for the left- and right-hand side of the equality in the previous problem.
(d) Prove that

$$
x+y_{1} \cdot y_{2} \cdot \cdots \cdot y_{n}=\left(x+y_{1}\right) \cdot\left(x+y_{2}\right) \cdot \cdots \cdot\left(x+y_{n}\right)
$$

using induction.
Problem 3: Simplify the expressions below:
(a) Simplify:

$$
i \cdot n+a \cdot n \cdot t \cdot i \cdot c+t \cdot a \cdot x \cdot i^{\prime}+t \cdot a \cdot n \cdot x
$$

(b) Simplify:

$$
i \cdot n+(i \cdot n)^{\prime} \cdot k+c \cdot a \cdot s \cdot k
$$

(c) Simplify, noting that the difference in the second term in this subproblem and the previous one is significant.

$$
i \cdot n+i^{\prime} \cdot n^{\prime} \cdot k+n^{\prime} \cdot i^{\prime} \cdot b
$$

Problem 4: Perform the conversions indicated below:
(a) Convert the following to sum-of-products form, paying attention to opportunities for simplification.

$$
(a+b) \cdot(a+c) \cdot\left(a^{\prime}+d\right)+b \cdot a \cdot d
$$

(b) Convert the following to product-of-sums form, paying attention to opportunities for simplification.

$$
\left[(a+b) \cdot(a+c) \cdot\left(a^{\prime}+d\right)+b \cdot a \cdot d\right]^{\prime}
$$

(c) Convert the following to sum-of-products form, paying attention to opportunities for simplification.

$$
\left[(a+b) \cdot(a+c) \cdot\left(a^{\prime}+d\right)+b \cdot a \cdot d\right]^{\prime}
$$

(d) Verify your solution to the conversions above by constructing a truth table. One output column should be for the expression $(a+b) \cdot(a+c) \cdot\left(a^{\prime}+d\right)+b \cdot a \cdot d$, and there should be three more columns, one for each of the conversions.

