Problem 1: Perform each of the conversions below.
Convert 812_{10} to Hexadecimal, Binary, and Octal the smart way. The smart way is to convert it to hexadecimal first. From there it is a simple matter to convert the hex to binary and then the binary to octal.
Solution $812_{10}=32 c_{16}=1100101100_{2}=1454_{8}$.
Convert 812_{16} to decimal.
Solution $812_{16}=2066_{10}$.
Convert 812_{10} to BCD, Excess-3, and 2421 encoding.
Solution BCD: $812_{10}=0 \times 812=100000010010$. Excess-3: $812_{10}=0 x b 45=101101000101$. In
2421 encoding: $812_{10}=0 \mathrm{xe} 12=111000010010$.
Convert -812_{10} to 12 -bit: signed magnitude, 2 's complement, and 1's complement representations.
Solution: Signed-magnitude $812_{10}=101100101100$, 2's complement $812_{10}=110011010100$,
1's complement $812_{10}=110011010011$
Convert the 8-bit quantity 10100101 to decimal assuming it is: binary unsigned, 2's complement signed, 1's complement signed, and BCD unsigned. If the quantity 10100101 is not a valid number in any of these representation, then use "not valid" as your answer instead of the decimal number.
Solution: Binary unsigned: $10100101=165_{10}$, 2's complement: $10100101 \rightarrow 01011010_{2}+1 \rightarrow-91_{10}$,
1's complement: $10100101 \rightarrow 01011010_{2} \rightarrow-90_{10}, ~ B C D: 10100101$ The ten's digit in 10100101 is 1010, which is greater than 9 , so 10100101 is not a BCD number. 10100101 is not valid BCD so there is nothing to convert. Note: Assigning an invalid BCD number in the original assignment was a mistake.

Problem 2: Perform the arithmetic indicated below.

- Show the answers in the same representation as the operands (binary, BCD, etc) and also in decimal.
- Show your work.
- Indicate whether there was overflow.

For the problems below do the arithmetic in the indicated representation.
Add the following two 8-bit unsigned binary integers:
$01110010+10010011$.
Solution: In decimal, $114+147=261$. But 261 is not representable as an 8 -bit unsigned number, so there is overflow.
The calculation in the given representation is $01110010+10010011=00000101$.

Add the following two 9-bit unsigned binary integers (leading zeros omitted): $1110010+10010011$.

Solution: In decimal, $114+147=261$, this is representable in 9 bits, so there is no overflow. The calculation in the given representation is $01110010+10010011=100000101$

Add the following two 8-bit unsigned BCD integers:
$01110010+10010011$.
Solution: In decimal, $72+93=165$. The problem statement said that the answers had to be in the same representation as the operands, which is 8 -bit BCD, so the full 3 -digit sum, which would be 000101100101 in 12 -bit BCD, is not representable in 8 -bit BCD and so there is overflow. With the overflow, the sum is: $01110010+10010011=01100101$.

Add the following two 8-bit 2's complement integers:
$01110010+10010011$.
Solution: For 2's complement one should do the arithmetic in binary and double-check in decimal. In decimal 114-109= 5. Since the operands differ in sign there cannot be overflow. $01110010+10010011=00000101$.

Add the following two 9-bit 2's complement integers (leading zeros-and only zeros-omitted): $1110010+10010011$.

Solution: Notice that 10010011 is negative in a 8 bit 2's complement representation but positive in 9 bit 2's complement (because bit position 9 is a zero). So just add them as positive numbers. $01110010+10010011=100000101$.

Add the following two 8-bit 1's complement integers:

```
01110010 + 10010011.
```

Solution: For 1's complement one should to the arithmetic in binary and double-check in decimal. Don't forget to add the carry out to the sum. In decimal $114-108=6$. Since the operands differ in sign there cannot be overflow.

```
01110010 + 10010011 = 00000101 + 1 = 00000110
```

For the problems below, do the arithmetic in any form you like, but show the result in the indicated representation.

Add the following 24-bit ASCII encoded decimal numbers given in hexadecimal: $0 \times 203337+0 \times 203535$.

Solution: First, recall that ASCII encodes characters (alphabetic, numeric, punctuation, etc). So an ASCII-encoded decimal number will consists of characters for the digits. For example a 3 in binary is 11 but the digit 3 in ASCII is $51_{10}=33_{16}=00110011_{2}$. A 24 -bit ASCII encoding can hold 3 characters, and so for 0×203337 the digits are 0×20 $0 \times 330 x 37$ (still in hex), consulting an ASCII table we find that $0 x 20$ is a space, $0 x 33$ is the digit 3 , and $0 x 37$ is the digit 7. Therefore $0 x 203337$ represents the number 37. By a similar argument 0×203535 represents 55 . In decimal, $37+55=92$. Encoding the result back into ASCII we get the sum: $0 \times 203337+0 \times 203535=0 \times 303932$.

Add the following 32-bit ASCII encoded numbers in English given in hexadecimal: $0 x 20204 f 4 e 45+0 x 202054574 f$.

Solution: Consulting our ASCII table we find 0x20204f4e45 = ONE and 0x202054574f = TWO. In decimal, $1+2=$ 3. Representing in English encoded in ASCII we get 0x20204f4e45 + 0x202054574f = 0x5448524545

