
LSU EE 2720­2 Homework 1 Solution Due: 21 September 2011
Solution updated 27 September 2011, 15:30:45 CDT

Problem 1: Perform each of the conversions below.
Convert 81210 to Hexadecimal, Binary, and Octal the smart way. The smart way is to convert

it to hexadecimal first. From there it is a simple matter to convert the hex to binary and then the
binary to octal.

Solution 81210 = 32c16 = 11 0010 11002 = 14548 .

Convert 81216 to decimal.

Solution 81216 = 206610 .

Convert 81210 to BCD, Excess-3, and 2421 encoding.

Solution BCD: 81210 = 0x812 = 1000 0001 0010 . Excess-3: 81210 = 0xb45 = 1011 0100 0101 . In

2421 encoding: 81210 = 0xe12 = 1110 0001 0010 .

Convert −81210 to 12-bit: signed magnitude, 2’s complement, and 1’s complement represen-
tations.

Solution: Signed-magnitude 81210 = 1011 0010 1100 , 2’s complement 81210 = 1100 1101 0100 ,

1’s complement 81210 = 1100 1101 0011 .

Convert the 8-bit quantity 1010 0101 to decimal assuming it is: binary unsigned, 2’s comple-
ment signed, 1’s complement signed, and BCD unsigned. If the quantity 1010 0101 is not a valid
number in any of these representation, then use “not valid” as your answer instead of the decimal
number.

Solution: Binary unsigned: 1010 0101 = 16510 , 2’s complement: 1010 0101 → 0101 10102 + 1 → −9110 ,

1’s complement: 1010 0101 → 0101 10102 → −9010 , BCD: 1010 0101 The ten’s digit in 1010 0101 is 1010,

which is greater than 9, so 1010 0101 is not a BCD number. 1010 0101 is not valid BCD so there is nothing to convert.
Note: Assigning an invalid BCD number in the original assignment was a mistake.

Problem 2: Perform the arithmetic indicated below.

• Show the answers in the same representation as the operands (binary, BCD, etc) and also in
decimal.

• Show your work.

• Indicate whether there was overflow.

For the problems below do the arithmetic in the indicated representation.

Add the following two 8-bit unsigned binary integers:
0111 0010 + 1001 0011.

Solution: In decimal, 114+147 = 261. But 261 is not representable as an 8-bit unsigned number, so there is overflow .

The calculation in the given representation is 0111 0010 + 1001 0011 = 0000 0101 .

1

http://www.ece.lsu.edu/koppel/ee2720/


Add the following two 9-bit unsigned binary integers (leading zeros omitted):
111 0010 + 1001 0011.

Solution: In decimal, 114 + 147 = 261, this is representable in 9 bits, so there is no overflow . The calculation in the

given representation is 0111 0010 + 1001 0011 = 1 0000 0101 .

Add the following two 8-bit unsigned BCD integers:
0111 0010 + 1001 0011.

Solution: In decimal, 72+93 = 165. The problem statement said that the answers had to be in the same representation
as the operands, which is 8-bit BCD, so the full 3-digit sum, which would be 0001 0110 0101 in 12-bit BCD, is not repre-

sentable in 8-bit BCD and so there is overflow . With the overflow, the sum is: 0111 0010 + 1001 0011 = 0110 0101 .

Add the following two 8-bit 2’s complement integers:
0111 0010 + 1001 0011.

Solution: For 2’s complement one should do the arithmetic in binary and double-check in decimal. In decimal 114−109 =

5. Since the operands differ in sign there cannot be overflow. 0111 0010 + 1001 0011 = 0000 0101 .

Add the following two 9-bit 2’s complement integers (leading zeros—and only zeros—omitted):
111 0010 + 1001 0011.

Solution: Notice that 1001 0011 is negative in a 8 bit 2’s complement representation but positive in 9 bit 2’s complement

(because bit position 9 is a zero). So just add them as positive numbers. 0111 0010 + 1001 0011 = 1 0000 0101 .

Add the following two 8-bit 1’s complement integers:
0111 0010 + 1001 0011.

Solution: For 1’s complement one should to the arithmetic in binary and double-check in decimal. Don’t forget to add
the carry out to the sum. In decimal 114 − 108 = 6. Since the operands differ in sign there cannot be overflow.

0111 0010 + 1001 0011 = 0000 0101 + 1 = 0000 0110 .

For the problems below, do the arithmetic in any form you like, but show the result in the

indicated representation.

Add the following 24-bit ASCII encoded decimal numbers given in hexadecimal:
0x203337 + 0x203535.

Solution: First, recall that ASCII encodes characters (alphabetic, numeric, punctuation, etc). So an ASCII-encoded
decimal number will consists of characters for the digits. For example a 3 in binary is 11 but the digit 3 in ASCII is
5110 = 3316 = 0011 00112. A 24-bit ASCII encoding can hold 3 characters, and so for 0x203337 the digits are 0x20
0x33 0x37 (still in hex), consulting an ASCII table we find that 0x20 is a space, 0x33 is the digit 3, and 0x37 is the
digit 7. Therefore 0x203337 represents the number 37. By a similar argument 0x203535 represents 55. In decimal,

37 + 55 = 92. Encoding the result back into ASCII we get the sum: 0x203337 + 0x203535 = 0x303932 .

Add the following 32-bit ASCII encoded numbers in English given in hexadecimal:
0x20 204f 4e45 + 0x20 2054 574f.

2



Solution: Consulting our ASCII table we find 0x20204f4e45 = ONE and 0x202054574f = TWO. In decimal, 1+2 =

3. Representing in English encoded in ASCII we get 0x20204f4e45 + 0x202054574f = 0x5448524545 .

3


