Essentials of Robust Control

These slides will be updated when I have time.

Last updated on August 28, 2000



Introduction

This introduction is adopted from some of John Doyle’s lectures.



Classical control in the 1930’s and 1940’s
Bode, Nyquist, Nichols, ...

e Feedback amplifier design

e Single input, single output (SISO)
e Frequency domain

e Graphical techniques

e Emphasized design tradeoffs

— Effects of uncertainty
— Nonminimum phase systems

— Performance vs. robustness

Problems with classical control

Overwhelmed by complex systems:
e Highly coupled multiple input, multiple output systems
e Nonlinear systems

e Time-domain performance specifications



The origins of modern control theory

Early years

e Wiener (1930’s - 1950’s) Generalized harmonic analysis, cybernetics,
filtering, prediction, smoothing

e Kolmogorov (1940’s) Stochastic processes

e Linear and nonlinear programming (1940’s - )

Optimal control

e Bellman’s Dynamic Programming (1950’s)

e Pontryagin’s Maximum Principle (1950’s)

e Linear optimal control (late 1950’s and 1960’s)

— Kalman Filtering
— Linear-Quadratic (LQ) regulator problem
— Stochastic optimal control (LQG)



The diversification of modern control
in the 1960’s and 1970’s

e Applications of Maximum Principle and Optimization

— Zoom maneuver for time-to-climb
— Spacecraft guidance (e.g. Apollo)

— Scheduling, resource management, etc.
e Linear optimal control
e Linear systems theory

— Controllability, observability, realization theory
— Geometric theory, disturbance decoupling
— Pole assignment

— Algebraic systems theory
e Nonlinear extensions

— Nonlinear stability theory, small gain, Lyapunov
— Geometric theory

— Nonlinear filtering
e Extension of LQ) theory to infinite-dimensional systems

e Adaptive control



Modern control application: Shuttle reentry

The problem is to control the reentry of the shuttle, from orbit to
landing. The modern control approach is to break the problem into two
pleces:

e Trajectory optimization

e Flight control

e Trajectory optimization: tremendous use of modern control principles

— State estimation (filtering) for navigation
— Bang-bang control of thrusters
— Digital autopilot

— Nonlinear optimal trajectory selection
e Flight control: primarily used classical methods with lots of simulation

— Gain scheduled linear designs

— Uncertainty studied with ad-hoc methods

Modern control has had little impact on feedback design because it
neglects fundamental feedback tradeoffs and the role of plant uncertainty:.



The 1970’s and the return of the frequency domain

Motivated by the inadequacies of modern control, many researchers
returned to the frequency domain for methods for MIMO feedback control.

e British school

— Inverse Nyquist Array

— Characteristic Loci
e Singular values

— MIMO generalization of Bode gain plots
— MIMO generalization of Bode design

— Crude MIMO representations of uncertainty
e Multivariable loopshaping and LQG/LTR

— Attempt to reconcile modern and classical methods
— Popular, but hopelessly flawed

— Too crude a representation of uncertainty

While these methods allowed modern and classical methods to be blended
to handle many MIMO design problems, it became clear that fundamen-
tally new methods needed to be developed to handle complex, uncertain,
interconnected MIMO systems.



Postmodern Control

e Mostly for fun. Sick of “modern control,” but wanted a name equally
pretentious and self-absorbed.

e Other possible names are inadequate:

— Robust ( too narrow, sounds too macho)
— Neoclassical (boring, sounds vaguely fascist )
— Cyberpunk ( too nihilistic )
e Analogy with postmodern movement in art, architecture, literature,

social criticism, philosophy of science, feminism, etc. ( talk about
pretentious ).

The tenets of postmodern control theory

e Theories don’t design control systems, engineers do.

e The application of any methodology to real problems will require some
leap of faith on the part of the engineer (and some ad hoc fixes).

e The goal of the theoretician should be to make this leap smaller and
the ad hoc fixes less dominant.



Issues in postmodern control theory

e More connection with data
e Modeling

— Flexible signal representation and performance objectives
— Flexible uncertainty representations
— Nonlinear nominal models

— Uncertainty modeling in specific domains
e Analysis
e System Identification

— Nonprobabilistic theory

— System ID with plant uncertainty

— Resolving ambiguity; “uncertainty about uncertainty”
— Attributing residuals to perturbations, not just noise

— Interaction with modeling and system design
e Optimal control and filtering

— H, optimal control
— More general optimal control with mixed norms

— Robust performance for complex systems with structured uncer-
tainty
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Chapter 2: Linear Algebra

linear subspaces

eigenvalues and eigenvectors
matrix inversion formulas
invariant subspaces

vector norms and matrix norms
singular value decomposition
generalized inverses

semidefinite matrices
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Linear Subspaces

e [linear combination:
oy +...+apxy, x EF, A EF
span{xy, T2, ..., xp = {r =aqx1 + ... + xp . ; € F}.

® I1,%9,...,T; €F" linearly dependent if there exists aq,...,ap € F
not all zero such that ajxzy + ... + apxp = 0; otherwise they are
linearly independent.

o {x1,T9,..., 2} € S is a basis for S if x1,x9,...,x) are linearly
independent and S = span{xi, xs, ..., Tk}
o {1,79,..., 2} in F* are mutually orthogonal it xfz; = 0 for all

i # 7 and orthonormal it x7x; = ;.

e orthogonal complement of a subspace S C F":
St ={ycr: y'r=0foralzcS}
e linear transformation
A:F'— "
e kernel or null space
KerA = N(A) :={xz € " : Az =0},
and the image or range of A is

ImA=R(A) ={yer" :y= Az, x € ¥"}.

mxn
)

Let a;, 1 = 1,2,...,n denote the columns of a matrix A € F
then
ImA = span{ay, as, ..., a,}.
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e The rank of a matrix A is defined by
rank(A) = dim(ImA).

rank(A) = rank(A*). A € ¥"*" is full row rank if m < n and
rank(A) = m. A is full column rank if n < m and rank(A) = n.

o unitary matrix UU =1 =UU",

e Let D € ¥** (n > k) be such that D*D = I. Then there exists a
matrix D € #*"=F) guch that [ D D, } is a unitary matrix.

e Sylvester equation

AX+XB=C

with A € ", B € ¥ and C € ¥ has a unique solution
X e ™ if and only if \;(A) + X\;(B) # 0, Vi = 1,2,...,n and
i=1,2,....m.

“Lyapunov Equation”: B = A*.
o Let A € F™ " and B € F**. Then

rank (A) + rank(B) — n < rank(AB) < min{rank (A), rank(B)}.
e the trace of A = |a;j] € c™"
Trace(A) = f: ;.
i=1

Trace has the following properties:

Trace(aA) = o Trace(A), Yaec, Aec™”
Trace(A + B) = Trace(A) + Trace(B), VA, B € c™"

Trace(AB) = Trace(BA), VA € c™™, B € ™",



Eigenvalues and Eigenvectors

e The eigenvalues and eigenvectors of A € ¢ X\, x € "
Axr = Az

x is a right eigenvector

y is a left eigenvector:
A=yt
e cigenvalues: the roots of det(Al — A).
e the spectral radius: p(A) := maxy<ij<y |\
e Jordan canonical form: A e ™" 3 T
A=TJT™!
where
J = diag{Jy, Jo, ..., Ji}
Ji = diag{Ji1, Jiz, . . ., Jim, }
1 i
A1
Jij = c i < "Mij

A1
Ai |

The transformation T has the following form:
T=|T T ... T

T,

Lij

T Tz .. T, |

Gyt tijz e tigng |
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where ¢,;; are the eigenvectors of A,
Atij = Nitiji,
and ¢;;, # 0 defined by the following linear equations for k£ > 2
(A =Nt = tijge—1)

are called the generalized eigenvectors of A.

A € R with distinct eigenvalues can be diagonalized:

oY
Al xq xg---xn]Z[m Ty - Tp )\2.
An |
and has the following spectral decomposition:
A= f:l)\lxlyf
where g; € C" is given by
s
y}‘ =X Ty - Ty -

A € R with real eigenvalue A € R = real eigenvector x € R".

A is Hermatian, ie., A = A* = d unitary U such that A = UAU*
and A = diag{ A1, Ao, ..., A\, } is real.
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Matrix Inversion Formulas

. A11 A12 _ I 0 A11 0 I A1_11A12
Asr Ao AglAl_ll I 0 A 0 I

A= Ay — A21Af111412
. A A | [T ApAy) A0 I 0
Ay A | |0 I 0 Ay || AsAo T
A= A — A1 Ay Ay

A11 A12 }1 _ { Al_ll + A1_11A12A_1A21A1_11 —A1_11A12A_1 }

Agy Ao — A1 Ay A AN
and
An A B B A1 —A_11412142_21
{Am AQJ B {_AQ;AQlAl A221+A221A21A1A12A221]
Ay 0 _1_ A 0
{Am A22] ; {_14221142114111 A221]

—1
A Anp _ At AT AR AL
0 AQQ 0 A2_21 .
o det A = det Ayq det(AQQ—A21A1_11A12) = det Ay det(An—AlgAQ_QlAgl).
In particular, for any B € ¢ and C' € "™, we have

I, B
—-C' I,

and for z,y € " det([, + zy*) = 1 + y*z.

det { ] = det ([, + CB) = det(I,, + BC)

e matrix imversion lemma:

(A1 — A12A2_21A21)_1 = Aﬁl + A1_11A12<A22 — A21A1_11A12)_1A21A1_11-
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Invariant Subspaces

e a subspace S C ¢" is an A-invariant subspace if Az € S for every

reS.

For example, {0}, ¢, and KerA are all A-invariant subspaces.

Let A and x be an eigenvalue and a corresponding eigenvector of

A € ™" Then S = span{z} is an A-invariant subspace since
Ar =X x € 5.
In general, let A1, ..., Ar (not necessarily distinct) and x; be a set of

eigenvalues and a set of corresponding eigenvectors and the generalized
eigenvectors. Then S = span{xy, ..., x;} is an A-invariant subspace
provided that all the lower rank generalized eigenvectors are included.

An A-invariant subspace S C ¢” is called a stable invariant subspace
if all the eigenvalues of A constrained to S have negative real parts.

Stable invariant subspaces are used to compute the stabilizing solu-
tions of the algebraic Riccati equations

Example

A[:Ul To I3 x4]:[azl To X3 x4]

with ReA; < 0, A3 < 0, and Ay > 0. Then it is easy to verify that

S1 = Spaﬂ{l’l} Sy = Spaﬂ{xl,@} Sioz = Spaﬂ{SUl,CUQ,CU?)}
Sy = span{x3} Si3 = span{xy,x3} Siu = span{zi,x9, 14}
Sy = span{xy} Sy = span{xy, x4} Sz = span{xs, x4}

are all A-invariant subspaces. Moreover, S7, S3, S12, S13, and S}z are
stable A-invariant subspaces.
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However, the subspaces
Sy = span{xy}, Sog = span{xe, x3}

Saq = span{Ty, T4}, Sozs = span{Ty, T3, T4}
are not A-invariant subspaces since the lower rank generalized eigen-

vector a1 of x5 is not in these subspaces.

To illustrate, consider the subspace Sss. It is an A-invariant subspace
if Axy € So3. Since
Axy = Arg + 21,

Axy € Sy3 would require that x; be a linear combination of x9 and
x3, but this is impossible since x; is independent of x5 and x3.
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Vector Norms and Matrix Norms

X a vector space. ||| is a norm if
(1) [lz]l = 0 (positivity):
(ii) ||«|| = 0 if and only if z = 0 (positive definiteness);
(iii) ||ax|| = |a] ||z, for any scalar a (homogeneity);
(i) llz + yl < Il + llg] (riangle inequality)

forany x € X and y € X.
Let x € ¢". Then we define the vector p-norm of = as

n 1/p
], = (Z \xi\p> , for 1 <p < o0.
i=1
In particular, when p = 1,2, co we have
n
llly = 3 lal;
1=1
< 2.
lly =) 3 Jl*:
1=1

il = e foil

the matrix norm induced by a vector p-norm is defined as

HASL‘H

o [l

1AL,

In particular, for p = 1, 2, oo, the correspondmg induced matrix norm can
be computed as

Al = Dax g la;j| (column sum) ;

1A]l, = Amax(A*A) ;
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4l = i, 3 Ja| - (row sum)

The Euclidean 2-norm has some very nice properties:
Let x € ¥" and y € 7.

1. Suppose n > m. Then ||z|| = ||y|| iff there is a matrix U € g"*™
such that x = Uy and U*U = 1.

2. Suppose n = m. Then |z*y| < ||z| ||ly]|]. Moreover, the equality
holds iff x = ay for some o € F or y = 0.

3. ||z|| < |ly|| iff there is a matrix A € F"™*™ with ||A]] < 1 such that
r = Ay. Furthermore, ||z|| < [|y|| iff [|A] < 1.

4. ||Uz|| = ||z|| for any appropriately dimensioned unitary matrices U.

Frobenius norm

|Allp = |/ Trace(A*A) = Jz 3 Joul

1=1j=

Let A and B be any matrices with appropriate dimensions. Then

1. p(A) < ||A|| (This is also true for F norm and any induced matrix
norm).

2. |AB| < ||A||||B]|. In particular, this gives [A~Y| > [|A[| " if A is
invertible. (This is also true for any induced matrix norm.)

3. |[UAV|| = ||A]|, and [|[UAV|| = ||A||, for any appropriately di-

mensioned unitary matrices U and V.

4 [AB||p < [[AI[ |1 Bl and |AB|[p < | BI[ | All -
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Singular Value Decomposition

Let A € F*". There exist unitary matrices

U = [u,ug,...,uy €7
Vo= |v,09,...,0,] € F"
such that
21 0
A=UXV* Y=
Usv, {O O]
where ] ]
o 0 -+ 0
o
L 00 0y
and

o1 > 09> ---2>0,>0, p=min{m,n}.

Singular values are good measures of the “size” of a matrix
Singular vectors are good indications of strong/weak input or output

directions.
Note that
AUZ' = 0o;Uy
A*’LLZ‘ = 0;0;.
A*A . 2
Ui = 0,7
AA u; = 02'2%'-

0(A) = 0pa(A) = 01 = the largest singular value of A;
and

0(A) = opmin(A) = 0, = the smallest singular value of A .
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Geometrically, the singular values of a matrix A are precisely the lengths
of the semi-axes of the hyper-ellipsoid E defined by

E={y:y=Az, x €", ||z| =1}

Thus vy is the direction in which ||y|| is the largest for all ||z|| = 1; while
v, 1s the direction in which ||y|| is the smallest for all ||z|| = 1.

v1 (vy,) is the highest (lowest) gain input direction

uy (uy,) is the highest (lowest) gain observing direction

e.g.,

cosfy —sinby | | o cosbfy —sinb,

A=

sinf; cos6O, o9 | | sinfy cosb,

A maps a unit disk to an ellipsoid with semi-axes of oy and os.
alternative definitions:

o(A) == max ||Az]|

lz]=1

and for the smallest singular value ¢ of a tall matriz:

o(A) = min ||Az|.

ll=1
Suppose A and A are square matrices. Then
(1) lo(A+A) —a(A)] <T(A);

(ii) a(AA) > a(A)a(A);
1
a(A)

if A is invertible.

(iii) o(A™Y) =
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Some useful properties
Let A € F™*" and

o1>09> >0, > 041 =---=0, r <min{m,n}.
Then
1. rank(A) = r;
2. KerA = span{v,;1,...,v,} and (KerA)* = span{vy, ..., v, };
3. ImA = spanf{uy, ..., u,} and (ImA)* = span{u, 41, ..., Up};
4. A € F"*" has a dyadic expansion:

A= 27’: O'Z‘UZ"U; = Urzr‘/r*
1=1

where U, = [uq, ..., u,], V. = [v1, ..., 0,], and X, = diag (o4, . .., 0,);

NAF =0t + 03+ + 0%

Al = o1

oi(UgAVy) = 04(A), i = 1,...,p for any appropriately dimensioned
unitary matrices Uy and V;

. Let k < r =rank(A) and A, := ¥ | ojuv}, then

min  ||[A — Bl = ||A — Ai|| = ok11-
rank(B)<k
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Generalized Inverses

Let A € ¢™". X € "™ is a right inverse if AX = I. one of the
right inverses is given by X = A*(AA*)~1.

YA =1thenY is a left inverse of A.

pseudo-inverseor Moore-Penrose inverse A™:

(i) AA*A = A;

(i) ATAAT = A*,
(i) (AA*)* = AA*;
(iv) (At A) = A* A,

pseudo-inverse is unique.

A=DBC

B has full column rank and C has full row rank. Then

AT =0 (ceHH(B*B) B

or
A=UXV"
with
> 0
> = " > .
{0 o]’ r>V
Then AT = VX TU* with
Z+: T

0 0

I O]
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Semidefinite Matrices

o A = A*is positive definite (semi-definite) denoted by A > 0 (> 0),
if z*Az >0 (> 0) for all z # 0.

e AcrFand A=A*>0,3 B e with r > rank(A) such that
A= BB*.

o Let B € ¥ and C € F**™. Suppose m > k and B*B = C*C.
3 U € #** such that U*U = I and B = UC.

e square root for a positive semi-definite matrix A, AY? = (AY2)* >0,
by
A — A1/2A1/2.

Clearly, AY2 can be computed by using spectral decomposition or
SVD: let A =UAU*, then

A2 — A2
where
A =diag{\, ..., A} AY2 =diag{V 1, ... V)
e A=A*>0and B=B*>0. Then A > B iff p(BA™!) < 1.

o Let X = X* > 0 be partitioned as

X1 X12]

Xiy Xoo |

Then KerXsy € KerXips. Consequently, if X5, is the pseudo-inverse
of X9, then Y = X9 X solves

|

Y X9 = Xy
and
X117 X9 _ I X12X2+2 Xll—Xng;QXTQ 0 I 0
Xiy X2 0 1 0 X9 X2+2Xik2 I




Chapter 3: Linear Systems
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dynamical systems
controllability and stabilizability
observability and detectability
observer theory

system interconnections
realizations

poles and zeros
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Dynamical Systems

e Linear equations:

& = Ax+ Bu, z(ty) =
y = Cx+ Du

e transfer matrix:

Y(s) =G(s)U(s)
G(s)=C(sI — A 'B+ D.

e notation
A|lB L -1
{CD].—C(SI—A) B+ D

e solution:

x(t) = ey +/ A=) By(r
y(t) = Cx ()+DU()

e impulse matrix
g(t) = L7H{G(s)} = CeMB1,(t) + D(t)
e input/output relationship:

y(t) = (g u)(t) = [ gt —T)ulr)dr.
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Matlab

> G=pck(A, B, C, D) % pack the realization in partitioned form
> seesys(G) % display G in partitioned format

> [A, B, C, D|=unpck(G) % unpack the system matrix

> G=pck({[], [], [], 10) % create a constant system matrix

> [y, x, t]=step(A, B, C, D, Tu) % Iu=i (step response of the ith
channel)

> [y, x, t]=initial(A, B, C, D, xq) % initial response with initial
condition xg

> [y, x, t]=impulse(A, B, C, D, Tu) % impulse response of the
ITuth channel

> [y,x]=Isim(A,B,C,D,U,T) % U is a length(7T") x column(B) ma-
trix input; 1" is the sampling points.
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Controllability

e Controllability: (A, B) is controllable if, for any initial state x(0) =
xo, t1 > 0 and final state z, there exists a (piecewise continuous)
input u(-) such that satisfies x(t1) = z1.

e The matrix
W.(t) = /Ot A" BB e Tdr

is positive definite for any ¢ > 0.

e The controllability matrix
C=|B AB A’°B ... A"'B|

has full row rank, i.e., (A|ImB) := s, Im(A"'B) = r".

e The eigenvalues of A + BF can be freely assigned by a suitable F'.
PBH test:

e The matrix [A — AI, B] has full row rank for all A in c.

e Let A and x be any eigenvalue and any corresponding left eigenvector
of A, ie., x*A ="\, then 2*B # 0.



Stability and Stabilizability
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A is stable if ReA(A) < 0.

e (A, B) is stabilizable.

e A+ BF is stable for some F'.
PBH test:

e The matrix [A — AI, B] has full row rank for all ReA > 0.
e For all A and x such that *A = 2"\ and ReA > 0, x*B # 0.
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Observability

e (C, A)is observable if, for any t; > 0, the initial state x(0) = x( can
be determined from the time history of the input u(t) and the output
y(t) in the interval of [0, ¢1].

e The matrix
t *
W,(t) = [ " TC*Cedr
is positive definite for any ¢ > 0.

e The observability matrix

C
C'A
O=| CA?

car
has full column rank, i.e., N Ker(C A1) = 0.

e The eigenvalues of A + LC' can be freely assigned by a suitable L.

e (A* C*) is controllable.

PBH test:
A— )\
C

e Let A and y be any eigenvalue and any corresponding right eigenvector
of A, ie., Ay = \y, then Cy # 0.

e The matrix has full column rank for all A in c.




Detectability
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The following are equivalent:
e (C, A) is detectable.
o A+ L(C is stable for a suitable L.
o (A* C*) is stabilizable.
PBH test:

A— AN
C

e For all A and x such that Az = Ax and Re\ > 0, Cz # 0.

e The matrix has full column rank for all ReA > 0.

an example:
‘A1 0 010]
Al B 0 A& 1 011
{C’ D] =10 0 N 0]«
0 0 0 X1
1 0 0 B8]0

> C= ctrb(A, B); O= obsv(A, C);
> We(oo)=gram(A, B); % if A is stable.
> F=-place(A, B, P) % P is a vector of desired eigenvalues.
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Observers and Observer-Based Controllers

An observer is a dynamical system with input of (u,y) and output of,
say 2, which asymptotically estimates the state x, i.e., Z(t) — x(t) — 0 as
t — oo for all initial states and for every input.

An observer exists iff (C, A) is detectable. Further, if (C,A) is de-

tectable, then a full order Luenberger observer is given by
¢ = Aq+ Bu+ L(Cq+ Du —y)
T =q

where L is any matrix such that A + LC' is stable.

Observer-based controller:

>

= (A+ LC)z+ Bu+ LDu— Ly
u = Fz.
u=K(s)y

and
_[A+BF+LC+ LDF|-L

F 0

K{(s)
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Example

1 2 1

10 0
Design w = F'x such that the closed-loop poles are at {—2, —3}

F=|-6 -8

LetA—{ B=|_ [landC=|10]

> F = —place(A, B, [—2,—3]).
Suppose observer poles are at {—10, —10}

Then L = —21

_gq | can be obtained by using

> L = —acker(A',C', [-10, —10])

and the observer-based controller is given by

K(s) —534(s + 0.6966)
S) = .
(s + 34.6564)(s — 8.6564)

stabilizing controller itself is unstable: this may not be desirable in prac-
tice.
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Operations on Systems

A By | Ay By
o-oin] e-lan]

e cascade:
Gy G
_AlBll {Aszl
GGy =
e | Cl ‘ D1 CQ ‘ D2
Ay, BCy | BiD, Ay, 0 By
= 0 AQ B2 = B102 Al B1D2
' C1 DG, | DD, DCy Cy | DD,
e addition:
A 0 B
A | B Ay | B
Gy + Gy — {%WH%W] 04| B
H 21 Ci1 Cy | Dy + Dy
e feedback:
Y G I r
Go
A} — B1Dy R C — B Ry Cy B Ry
T = B2R1_2101 Ao — B2D1R2_1102 B2D1R2_11
RO —RyD\Cy | DRy

where Rio =1 + D1Ds and Roy = I + Dy D;.
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e lranspose or dual system
G+— G'(s) = B*(s] — A*)"'C* + D*

or equivalently

o)~ 5

C*
B* '

D*

® conjugate system
G+— G™(s) =G (=s) = B*(—sI — A")'C* + D*

or equivalently

A|B —A* | =C*
C|D B* | D* |’
In particular, we have G*(jw) := [G(jw)]" = G~ (jw).

e Let DT denote a right (left) inverse of D if D has full row (column)

rank. Then
A— BD'C|-BD'

D'’c | D

-

is a right (left) inverse of G.

GGy <= mmult(Gy,Gy), |G Gy | < sbs(Gy,Gy)

G1+ Gy <= madd(G1,Gy), G;— Gy <= msub(Gy, Go)

G1 Gl
GQ GQ

G'(s) <= transp(G), G~(s) < cjt(G), G '(s) = minv(G)
a G(s) <= mscl(G, a), «ais a scalar.

] < abv(Gq, Gs), { ] < daug(Gq, Ga),



36

State Space Realizations

Given G(s), find (A, B, C, D) such that

o 4

which is a state space realization of G(s).

e A state space realization (A, B, C, D) of G(s) is minimal if and only
if (A, B) is controllable and (C, A) is observable.

o Let (A1, B1,C4, D) and (A, By, Cy, D) be two minimal realizations
of G(s). Then there exists a unique nonsingular 7" such that

Ay =TA T, By=TB;, Cy=C,T.
Furthermore, T' can be specified as
T = (050,) 71030,

or

T = CiCHCsC)

where Cq, Co, O1, and Oy are e the corresponding controllability and
observability matrices, respectively.



SIMO and MISO
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SIMO Case: Let

g1(s) 1 2
G(s) = 92.(8) _ ﬂlsn + ﬂzi ot By1s+ B, a
m(s)

where 3; € R and d € rR". Then

Alb
G(s) = ?"], ber", Cer™" der™
where ] _ o
—a; —as -+ —Aap—1 —ap 1
1 0o --- 0 0
A= 0 1 - 0 0 b:=10
0 0o --- 1 0 i 0 |

C= {ﬁl Bo -+ Bn ﬁn}
MISO Case: Let

G(s) = (91(s)  ga(s) 9p(s))
s s s+,
sS"+ars" 4+ -+ a, 18+ a, *
with 0, d* € r”. Then

d

—a; 10 --- 0] m ]
—as 01 -+ 0| m
G =) 0 00 - 1ln
—a, 00 --- 0] n,
1 00 ---0| d
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Realizing Each Elements

To illustrate, consider a 2 x 2 (block) matrix

Gi(s) Gals) ]

Gls) = Gs(s) Gals)

and assume that G;(s) has a state space realization of

A;| B
Ci| D;
Note that G;(s) may itself be a MIMO transfer matrix.

Then a realization for G(s) can be given by

Gi(S): , ’i:1,...,4.

(A 0 0 0|B; 0]
0 A, 0 0|0 By
0 0 A; 0|B; 0
0 0 0 Ayl 0 By
c, Cy, 0 0Dy Dy
0 0 C3 Cy4|Ds Dy

Problem: minimality.

> G=nd2sys(num, den, gain); G=zp2sys(zeros, poles, gain);
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Gilbert’s Realization

Let G(s) be a p x m transfer matrix

with d(s) a scalar polynomial. For simplicity, we shall assume that d(s)
has only real and distinct roots A\; # A; it ¢ # j and

d(s)=(s=A)(s—=Xy) (s = \).

Then G(s) has the following partial fractional expansion:

Gis)=D+3y

i=1S — )\@

Suppose
rank W, = k;

and let B; € rR¥*™ and C; € rRP*¥ be two constant matrices such that
W, = C;B,.

Then a realization for G(s) is given by

A1y, By |
Gls) = " A, B
¢ - ¢ D

This realization is controllable and observable (minimal) by PBH tests.
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Repeated Poles

Note that
G(s) =
C1 C9 0
_ C1 [bg + (S — )\)bﬂ n Cobo
(s — \)? s— A

c1b, n c1b1 + cobg
(s —A)? s— A
A realization procedure:

e Let G(s) be a p X ¢ matrix and have the following partial fractional
expansion:

R R
G(S>_(5—)\)2+s—)\

e Suppose rank(R;) = 1 and write

R :Clbl, C1 ERp, by € r?

e Find ¢y and by if possible such that
c1b; + cobs = Ry
Otherwise find also matrices C5 and Bs such that

c1b1 + cobgo + (C3B3 = Ry

by

B, full row rank.

and [c; C3] full column rank and

o if rank(R;) > 1 then write
R :Clb1+51[~)1—|—...

and repeated the above process.



Consider a 3 x 3 transfer matrix:
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1 2s + 1 S
(s+1)(s+2) (s+1)(s+2) (s+1)(s+2)
1 s2+55+3 S
R B R e | (R
1 2s +1 S
i (s+1)2(s+2) (s+1)2(s+2) (s+1)32(s+2) |
P
00 0 . 0 by
Gs)=|01 0|+ ST -1 —1]
000 GTD,
L 2
O b1 1 ba
1 e N
+ 1[031]+0[1—1—1]
s+ 1
1 0
0 1
+1 o[—101}+ 0 [1—3—2}
s+ 1 | s+ 2 |

So a 4-th order minimal state space realization is given by

—1 1 0 0|0 3 1]
0 -1 0 0|1 —1 -1
0 0 —1 0]-1 0 1
Gs)=|0 0 0 —2|1 -3 =2
0 1 0 —1]0 0 0
1 0 0 0]0 1 0
1 0 1 1/0 0 0|
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Let ]
A1 0]bH
10 A 1b
Gl =10 0 Albs
¢ ¢ 3|0
o C1 [bg + (S — )\)bz + (S — )\)2191}
N (s = A)?
Cg[bg + (S — )\)bg] n c3b3
(s — N)? s— A
_ Cibg N c1by + cobg N c1b1 + coby + c3bs
(s = \)3 (s = N)? s— A
Example: Let
1 1
G(s) = (s+2)is+5) 865
S+2
c1 €2

) (8+12>3 {é]mﬂsjz)? {_05]{707

3
—— b3

+si2ﬁ]m+si5{é][—§7 ]

Take by = 0 and by = 0, we get

2 1 0 0] 0 0]
0 -2 1 0] 0 0
0 0 -2 0] 1 0
G(s) = ,
5 9 v L 00
0 0 1 0]0 0]
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O | — |
o )
PR \M —; | —
o + Sy O .
s Ale |§ =
F_%AOlO o A CH IR
) N _3_
4+ 10 A S
S T
_
S + T
.IWQO 0\0} — ~mvo ®
+ 2! o S 5{aN N o
/nmu\ p3_|_
= +
[ &101
Ve
= +

Example: Let

Hence

003

01000]
0100 2

0
0
0
1

—p

0
0
0

01100
01000

1

—p|0 10

0
0
0
0

0
0
1

0

01000
01000

0000
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System Poles and Zeros

An example:
1 1

G(s) = 551 SJ{Q

s+2 s+1
which is stable and each element of G(s) has no finite zeros. Let

s+ 2 s+ 1

s—V2  s—\2
0 1

K

which is unstable. However,

B s+V§
_ s+1)(s+2
KG ( 2)( ) 1
s+ 2 s+ 1.

is stable. This implies that G(s) must have an unstable zero at /2 that
cancels the unstable pole of K.
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Smith Form

e a square polynomial matrix Q(s) is unimodularif and only if det Q(s)
15 a constant.

e Let Q(s) be a (p x m) polynomial matrix. Then the normal rank of
Q(s), denoted normalrank (Q(s)), is the maximally possible rank
of Q(s) for at least one s € c.

an example:
S

1
Q(s)= |5 1
s 1

()(s) has normal rank 2 since rank Q(2) = 2. However, Q(0) has rank
1.

o Smith form: Let P(s) be any polynomial matrix, then there exist
unimodular matrices U(s), V (s) € R[s] such that

(s) 0 .- 0 O]
0 fs) ==+ 0 0
U(s)P(s)V(s) = S(s) =] S S
0 0 Yr(s) 0O
0 0 0 0

and ;(s) divides v;41(s).
S(s) is called the Smith form of P(s). r is the normal rank of P(s).
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an example:

s+1 (s+1)2s+1) s(s+1)
s+2 (s+2)(s*+5s+3) s(s+2)|.
1 25 +1 S

P(s) =

P(s) has normal rank 2 since det(P(s)) = 0 and
s+1 (s+1)(2s+1)

_ 2 2
det s+ 2 (s+2)(52+5s—|—3)]_(5+1> (s+27#0.
Let

00 1
U=|01 —(s+2)
10 —(s+1)
1 —(2s4+1) —s
Vis)=[0 1 0
0 0 1
Then

1 0
S(s) =U(s)P(s)V(s) = l() (s+1)(s+2)
0 0

o O O

} |
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Smith-McMillan Form

e Let G(s) be any proper real rational transfer matrix, then there exist
unimodular matrices U(s), V (s) € R[s] such that

aq(s)
A1) (2) !
as(s
0 Ba(s) 0
U(s)G(s)V(s) = M(s) := 5 5
ar(s)
0 0 Bi(s) 0
0 0 0 0

and «a;(s) divides ;1 1(s) and Gi41(s) divides G;(s).
e Write G(s) as G(s) = N(s)/d(s) such that d(s) is a scalar polynomial

and N (s) is a p X m polynomial matrix.
Let the Smith form of N(s) be S(s) = U(s)N(s)V(s).
Then M(s) = S(s)/d(s).
o McMillan degree of G(s) = x; deg(Bi(s)) where deg(3;(s)) denotes
the degree of the polynomial (;(s).

e McMillan degree of G(s) = the dimension of a minimal realization of

G(s).
e poles of G = roots of G;(s)

e transmission zeros of G(s) = the roots of «;(s)

2p € C is a blocking zero of G(s) if G(zy) = 0.
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An example:

1 2s+1 S
(s+1(s+2) (s+D(s+2) (s+1)(s+2)
1 s2+5s+3 S
)=  Grip CESE CESE
1 2s+1 s
L (s+1)2(s+2) (s+1)2(s+2) (s+1)2%(s+2)

Then G(s) can be written as

s+1 (s+1)(2s+1) s(s+1)

G(s) = GTIEG1D) s—il—2 (8—1-2);2_:-158—1-3) s(s:—2) :
G(s) has the McMillan form
i | o i
(s+1)%(s+2)
M(s) = 0 s+ 2 0
s+ 1
0 0 0

McMillan degree of G(s) = 4.
poles of the transfer matrix: {—1, -1, -1, —2}.
transmission zero: {—2}.

The transfer matriz has pole and zero at the same location {—2};
this 1s the unique feature of multivariable systems.



49

Alternative Characterizations

e Let G(s) have full column normal rank. Then 2, € cis a transmission

zero of G(s) if and only if there exists a vector 0 # wug such that
G(Zo)UQ = 0.

not true if G(s) does not have full column normal rank.

Bl

G has no transmission zero but G(s)uy = 0 for all s.

an example

B 1
Cs+1

11
11

, Uy =

G(s)

2o can be a pole of G(s) although G(zy) is not defined. (however
G(zp)ug may be well defined.) For example,

1

NE

—1
=5 0
Then G(1)ug = 0. Therefore, 1 is a transmission zero.

s+2
O s—1

G(s) =

y Uy =

e Let GG(s) have full row normal rank. Then 2y € c is a transmission
zero of G(s) if and only if there exists a vector 1y # 0 such that
noG(zo) = 0.

e Suppose zy € € is not a pole of G(s). Then z is a transmission zero

if and only if rank(G(2p)) < normalrank(G(s)).

e Let G(s) be a square m x m matrix and det G(s) #Z 0. Suppose

2, € C is not a pole of G(s). Then zy € c is a transmission zero of
G(s) if and only if det G(zy) = 0.

1 1 ,
2—5
det | S 1 s+2 — )
¢ 5 Jf (s +1)%(s+2)?
s+2 s—+1
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Invariant Zeros

The poles and zeros of a transfer matrix can also be characterized in
terms of its state space realizations:

consider the following system matrix

O R

Zp € C 18 an invartant zero of the realization if it satisfies

A—2zl B A—sl B
C D C D\

A—sl B
C D
an invariant zero iff there exist 0 £ x € ¢” and u € ¢ such that
A— Z()] B
C D

Moreover, if u = 0, then zj is also a non-observable mode.

A—sl B
C D
invariant zero iff there exist 0 # y € ¢" and v € ¢? such that

A—Z()] B
¢ D

Moreover, if v = 0, then z; is also a non-controllable mode.

A—sl B]

rank < normalrank

® Suppose has full column normal rank. Then zy € C is

Sl —

u

e Suppose has full row normal rank. Then z; € ¢ is an

= 0.

v o]

e (G(s) has full column (row) normal rank if and only if

¢ D

has full column (row) normal rank.
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This follows by noting that

A—sl B| I O||A—sl B
C D| |CA-s 1T 0 G(s)
and
normalrank A=sl Bl _ n + normalrank(G(s)).
C D
AlB . L . .
o Let G(s) = { oD be a minimal realization. Then zj is a transmis-

sion zero of G(s) iff it is an invariant zero of the minimal realization.

e Let G(s) be a p x m transfer matrix and let (A, B, C, D) be a min-
imal realization. Let the input be u(t) = uge, where A € ¢ is
not a pole of G(s) and uy € c™ is an arbitrary constant vector,
then the output with the initial state z(0) = (A — A)~'Bug is
y(t) = G(Nupe, Vt > 0.

e Let G(s) be a pxm transfer matrix and let (A, B, C, D) be a minimal
realization. Suppose that z; € ¢ is a transmission zero of G(s) and
is not a pole of G(s). Then for any nonzero vector uy € ¢” such
that G(z9)up = 0, the output of the system due to the initial state
2(0) = (20 — A)"'Bug and the input u = upe®’ is identically zero:
y(t) = G(z0)upe™" = 0.

A B ZC_Z]O T
CD|lul “loo||u
M N

MATLAB command: eig(M, N).
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Example

Let ] ]
-1 -2 11123
0 2 —-1|321
G(s)—{é g]— —4 =3 =2|1 1 1].
1 1 1000
2 3 4100 0]
Then the invariant zeros of the system can be found using the MATLAB

command
> G=pck(A, B, C, D), z¢=szeros(G), % or
> zg = tzero(A,B,C, D)

which gives zp = 0.2. Since G(s) is full-row rank, we can find y and v
such that

{y* ’U*] A—Z()]B — 0
C D ’
which can again be computed using a MATLAB command:
- 0.0466 |
0.0466
> null([A — zg xeye(3),B;C,D]) = z = | —0.1866
—0.9702
0.1399
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e Hilbert space
e H5> and H,, Functions

e State Space Computation of Hy and H, norms
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Hilbert Spaces

Inner product on ¢

n L1 (A1
(T,y) =2y =Y Tjy; Vo= L y=|1: |ec"
! SUn yn
|z|| == {z, ),
(z,y)
cos £(z,y) = , Zz,y) € 10,7
2] [y

(i

orthogonal if 2(x,y) = 7.

Definition 0.1 Let V' be a vector space over c. An inner product on V'

is a complex valued function,
(,y: VxVi—c
such that for any z,y,z € V and o, 8 € C

(i) (x,ay + Bz) = alz,y) + Bz, 2)
(ii) (z,y) = (y,x)
(iii) (z,x)y > 0if x #£ 0.

A vector space V' with an inner product is called an inner product space.

inner product induced norm ||z|| := /{(x, z)
distance between vectors z and y: d(x,y) = || — y||.
Two vectors x and y orthogonal if (x,y) = 0, denoted x L .
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o [(z,y)| < ||| |ly|| (Cauchy-Schwarz inequality). Equality holds iff
x = ay for some constant a or y = 0.

o [z + yH2 + ||x — ?JH2 =2 HZCH2 + 2 HyH2 (Parallelogram law) .
o |z+yl®=llz|*+ |ly|* ifz Ly

Hilbert space: a complete inner product space.
Examples:

e C" with the usual inner product.

nxm
C

o with the inner product

(A, B) := Trace A*B % bij VA, B e "

|| M§

e [s]a, b]: all square integrable and Lebesgue measurable functions de-
fined on an interval [a, b] with the inner product

= [, ey glt)d:
Matrix form: (f, g) := s° Trace [f(t)*g(t)] dt.
o Lo = Ly(—00,00): (f,g) =/ Trace[f(t)"g(t)]dt.
o Lo, = L5]0,00): subspace of Lo(—00, 00).
o Ly = Lo(—00,0]: subspace of Lo(—00, 0).
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Analytic Functions

Let S C ¢ be an open set, and let f(s) be a complex valued function
defined on S:
f(s): S —c.

Then f(s) is analytic at a point zy in S if it is differentiable at z; and
also at each point in some neighborhood of z.

It is a fact that if f(s) is analytic at zy then f has continuous derivatives
of all orders at zy. Hence, a function analytic at z; has a power series
representation at zg.

A function f(s) is said to be analytic in S if it has a derivative or is
analytic at each point of .S.

Mazximum Modulus Theorem: 1f f(s) is defined and continuous on a
closed-bounded set .S and analytic on the interior of .S, then

max | f(s)| = max|f(s)|

ses s€0S
where 05 denotes the boundary of S.
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Ly and H, Spaces

L5(jr) Space: all complex matrix functions F' such that the integral
below is bounded:

/_OZO Trace [F*(jw)F(jw)] dw < o0
with the inner product
(F,GY = —/ Trace [F*(jw)G(jw)] dw
and the inner product induced norm is given by
[l = {F F).

RLy(jr) or simply RLy: all real rational strictly proper transfer
matrices with no poles on the imaginary axis.

H, Space: a (closed) subspace of Lo(jR) with functions F'(s) analytic
in Re(s) > 0

1 /oo
|F||3 = sup {—/_OO Trace [F*(0 + jw)F(0 + jw)] dw}
1

= [ Trace [F () F(jw)] do

RH> (real rational subspace of Hy): all strictly proper and real ra-
tional stable transfer matrices.

H; Space: the orthogonal complement of Hy in Lo, i.e., the (closed)
subspace of functions in Lo that are analytic in Re(s) < 0. .

727'(2L (the real rational subspace of Hy): all strictly proper rational
antistable transfer matrices.

Parseval’s relations:
Lo(—00,00) = Lo(jR)  Lo[0,00) X Hy  La—00,0] = Hy.
|Gll2 = llgll, where G(s) = L|g(t)] € L2(jr)
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L. and H, Spaces

L (jr) Space

L (jr) or simply L, is a Banach space of matrix-valued (or scalar-
valued) functions that are (essentially) bounded on jr, with norm

|F]|o = esssupa [F(jw)] .

RL(jR) or simply RL..: all proper and real rational transfer ma-
trices with no poles on the imaginary axis.

H. Space

Ho is a (closed) subspace of L., with functions that are analytic and
bounded in the open right-half plane. The H,, norm is defined as

[Flloc = sup 7 [F(s)] = supa [F(jw)].

Re(s)>0 WER

The second equality can be regarded as a generalization of the max-

imum modulus theorem for matrix functions. See Boyd and Desoer
[1985] for a proof.

R'H: all proper and real rational stable transfer matrices.

H_, Space

H is a (closed) subspace of L., with functions that are analytic and
bounded in the open left-half plane. The H_ norm is defined as

|Fll i= sup o [F(s)] = supo [F(jw)]

Re(s)<0 WER

R'H_.: all proper real rational antistable transfer matrices.
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H., Norm as Induced H, Norm

Let G(s) € Lo be a p x ¢ transfer matrix. Then a multiplication
operator is defined as

MG . [,2 — [,2
Mof = GF.
G
Then | Mg = sup 15712
rety |1 flls

IGAIE = 5 [, F )G ()G (w) () de

1
< 2 1 oo 2
< 16T L MG do
= IGIEITIE

To show that |G|« is the least upper bound, first choose a frequency wy
where 7 [G(jw)] is maximum, i.e.,

7 [G(jwo)] = 1Gll

and denote the singular value decomposition of G(jwy) by

G (jwo) = Tui(jwo)vy (jwo) + ,_%Uiui(jwo)vf(]'wo)

where 7 is the rank of G(jwy) and w;, v; have unit length.
If wy < oo, write v1(jwy) as

[ el ]

. o2
’Ul(on) = ’

J0q
| Qg€ |
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where «; € R is such that 0; € (—m,0]. Now let 0 < 3; < oo be such that
0 = . (ﬁz’ — jwo)
Bi + jwo
(with 8; = 0o if 6; = 0) and let f be given by
[ B1=8 ]

13
1+S
Ba—s

Fls)=| A fs)

Bq—s
L Oéqﬂcﬁs |

(with 1 replacing % if §; = 0) where a scalar function f is chosen so

that
()| = c if |w—wy| <eor|w+wy <e
J | 0 otherwise

where € is a small positive number and ¢ is chosen so that f has unit
2-norm, i.e., ¢ = y/m/2¢e. This in turn implies that f has unit 2-norm.
Then
1 . :
IGFI3 ~ 5 [ [G(—jwn)x + 7 [Clwn) ]
_ 2
= 7[G(jw)]” = [|IG]I5-

Similarly, if wy = oo, the conclusion follows by letting wy — oo in the
above.
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Computing £; and H; Norms

Let G(s) € Ly and g(t) = L7!G(s)]. Then
IG5 = % /_OZO Trace{G"(jw)G(jw)} dw = ;j%Trace{GN(s)G(s)} ds.

the residues of Trace{G~(s)G(s)}
at its poles in the left half plane.

— /_OZO Trace{g"(t)g(t)} dt = ||g|5

Consider G(s) = {%’%

|G||3 = trace(B*L,B) = trace(CL.C*)
where L, and L. are observability and controllability Gramians:

AL.+LA"+BB*=0 A'L,+L,A+C"C=0.

€ R'Hs. Then we have

Ced'B, t>0
0, t <0

L,= [~ erCrCe’ dt, Lo= [~ eMBB e dt,

Note that g(t) = L7HG) = {

1G5 = /OOO Trace{g*(t)g(t)} dt = /OOO Trace{ B*et'C*Ce B} dt
= Trace{B* /OOO et Cedt B} = trace(B*L,B)
= /OOO Trace{g(t)g*(t)} dt = /OOO Trace{Ce " BB*e*'C*} dt.

hypothetical input-output experiments: Apply the impulsive input d(¢)e;
(6(t) is the unit impulse and e; is the i*! standard basis vector) and denote
the output by z;(t)(= g(t)e;). Then z; € Lo, (assuming D = 0) and

m
IGI3 = 5 1213

Can be used for nonlinear time varying systems.
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Example
Consider a transfer matrix
3(s +3) 2
|l (s=1)(s+2) s—1|_
G = s 1 =G, + Gy,
(s+2)(s+3) s—4
with ] ] ]
-2 0 |-=10 1 0(4 2
0 =3/ 2 0 0 4|0 1
Gs‘looo’G“_u)oo‘
1 110 0 010 0

Then the command h2norm(Gs) gives |G;||, = 0.6055 and h2norm(cjt(Gy))
gives [|G, ||, = 3.182. Hence |G|, = ||G4ll3 + |Gll; = 3.2393.

> P =gram(A,B); Q =gram(A’,C’); or P =lyap(A,BxB’);

> [Gs, Gy] = sdecomp(G); % decompose into stable and antistable
parts.
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Computing £, and H,, Norms

Let G(s) € L&
Gl i= ess sup{Gljo)}.
e the farthest distance the Nyquist plot of G from the origin
e the peak on the Bode magnitude plot
e estimation: set up a fine grid of frequency points, {wy, -+, wn}.

|Gl = max o{G (jwr)}-

1<k<N

A|B

Let v > 0 and G(s) = {

oD € RL.

|Gl < 7<= 7(D) <y & H hasno jw eigenvalues
e g | A+BRIDC BR'B"
" | -C*(I+ DR 'D"C —(A+ BR'D*C)*
and R =~ — D*D.

Let ®(s) = v2I — G~(s)G(s).
Gl <
— P(jw) > 0, Yw € r.
<= det P(jw) # 0 since P(0c0) = R > 0 and P(jw) is continuous
<= ®(s) has no imaginary axis zero.
<= ®7!(5s) has no imaginary axis pole.

|

—~C*DR™!

O l(s) =
'R'D*'C R'B*|| R
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<= H has no jw axis eigenvalues if the above realization has neither
uncontrollable modes nor unobservable modes on the imaginary axis.

Assume that jwy is an eigenvalue of H but not a pole of ®*(s). Then
jwo must be either an unobservable mode of ({ R™'D*C R'B* } ,H)

BR™!
_C*DR!
unobservable mode of ([ R'D*C R™'B* ] ,H). Then there exists an

or an uncontrollable mode of (H, { ]) Suppose jwy is an

= 0 such that

o —

Iy
I2
Hzy = jwoz, | R7'D*C R™'B* |z = 0.

)
(jwol — A)zy = 0
(Jwol + A" )xy = —C*Cy
D*Cxy+ B*zy = 0.

Since A has no imaginary axis eigenvalues, we have x1 = 0 and x5 = 0.
Contradiction!!!

Similarly, a contradiction will also be arrived if jwy is assumed to be an
BR™! ])

uncontrollable mode of (H, { DR
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Bisection Algorithm

(a) select an upper bound =y, and a lower bound ~; such that v <
Gl <

(b) if (7w = v1)/ <specified level, stop; ||G|| ~ (yu + 71)/2. Otherwise
g0 to next step;

(c) set v = (n +7u)/2;
(d) test if ||G||s < v by calculating the eigenvalues of H for the given ~;

(e) if H has an eigenvalue on jr set v, = +; otherwise set v, = ~v; go
back to step (b).

WLOG assume v = 1 since |G|, < v iff [y G| < 1
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Estimating the H., norm

Estimating the H,, norm experimentally: the maximum magnitude of
the steady-state response to all possible unit amplitude sinusoidal input

signals.
z = |G(jw)|sin(wt+ < G(jw)) u = sinwt
G(s)
Let the sinusoidal inputs be
i (A sin(wot + (bl) ] i (8 ]
ult) — Us sin(wzot + ¢9) G Us
| ugsin(wot + @) | U,

Then the steady-state response of the system can be written as

Ly sin(wot + 67) | |
y(t) = | V2 Siﬂ(w:ot + 6s) - y:2
| ypsin(wot + 6,) | Yy |
for some vy;, 6;, 1 =1,2,...,p, and furthermore,
|Gl = sup 2
P \wo,l

where ||| is the Euclidean norm.
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Examples

Consider a mass/spring/damper system as shown in Figure 0.1.

Figure 0.1: A two-mass/spring/damper system

10°

The largest singular value
10" & b

10° L =

107" The smallest singular value

10~ -y \0
1o frequency (rad}lgec)

10"

Figure 0.2: ||G||, is the peak of the largest singular value of G(jw)

The dynamical system can be described by the following differential

equations:
X1 X1
T X9 Fi
Sl =A + B
T3 T3 Fy
| Ty | | Ty |
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with
0 0 1 0 0 0
0 0 0 1 0 0
A=|_ B kb g L
ma ma ma m mq
ﬂ _kl—l—kg by _bl—l-bg 0 L
L T2 mo mo mo | L mao 1

Suppose that G(s) is the transfer matrix from (Fy, Fy) to (z1, x2); that is,

1000

C=10100

, D=0,

and suppose k1 =1, ko =4, b1 = 0.2, by = 0.1, my = 1, and my = 2 with
appropriate units.

> G=pck(A,B,C,D);

> hinfnorm(G,0.0001) or linfnorm(G,0.0001) % relative error
< 0.0001

> w=logspace(-1,1,200); % 200 points between 1 = 10~ and 10 =
10

> Gf=frsp(G,w); % computing frequency response;

> [u,s,v]=vsvd(Gf); % SVD at each frequency;

> vplot('liv,lm’;s), grid % plot both singular values and grid.

|G (s)||, = 11.47 = the peak of the largest singular value Bode plot in
Figure 0.2.

Since the peak is achieved at wy. = 0.8483, exciting the system using
the following sinusoidal input

F
-

0.9614 sin(0.8483¢)
0.2753 sin(0.8483t — 0.12)
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gives the steady-state response of the system as

X1

__{]].47:%(l9614sh1a18483t——].5483)

T2 11.47 x 0.2753 sin(0.8483t — 1.4283)

This shows that the system response will be amplified 11.47 times for an
input signal at the frequency wmax, which could be undesirable if F; and
F5 are disturbance force and 27 and x5 are the positions to be kept steady.

Consider a two-by-two transfer matrix

10(s + 1) 1
_ | s240.2s + 100 s+1
G(s) = s+ 2 5(s + 1)
| 2+ 01s+10 (s+2)(s+3) |

A state-space realization of G can be obtained using the following MATLAB
commands:

> G11=nd2sys([10,10],[1,0.2,100]);

> G12=nd2sys(1,[1,1]);

> G21=nd2sys([1,2],[1,0.1,10]);

> G22=nd2sys([5,5],[1,5,6]);

> G=sbs(abv(G11,G21),abv(G12,G22));

Next, we set up a frequency grid to compute the frequency response of GG
and the singular values of G(jw) over a suitable range of frequency.

> w=logspace(0,2,200); % 200 points between 1 = 10% and 100 =
10?%;

> Gf=frsp(G,w); % computing frequency response;

> [u,s,v]=vsvd(Gf); % SVD at each frequency;
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> vplot('liv,lm’,s), grid % plot both singular values and grid;

> pkvnorm(s) % find the norm from the frequency response of the
singular values.

The singular values of G(jw) are plotted in Figure 0.3, which gives an es-
timate of ||G||,, =~ 32.861. The state-space bisection algorithm described
previously leads to |G|, = 50.25+0.01 and the corresponding MATLAB
command is

> hinfnorm(G,0.0001) or linfnorm(G,0.0001) % relative error
< 0.0001.

10°

10" F

10° |

10 E

-2
10
10° 10" 10°

Figure 0.3: The largest and the smallest singular values of G(jw)

The preceding computational results show clearly that the graphical
method can lead to a wrong answer for a lightly damped system if the
frequency grid is not sufficiently dense. Indeed, we would get |G|, ~

43.525, 48.286 and 49.737 from the graphical method if 400, 800, and 1600
frequency points are used, respectively.
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e internal stability
e coprime factorization over RH

e performance
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Internal Stability

Consider the following feedback system:

_|_“ P
ﬁ ; @Lw@

K

o well-posed if I — K (c0)P(00) is invertible.
e Internal Stability: if

;I -k

—P I

(I-KP)"! K(—-PK)!
P(I - KP)™' (I —-PK)™!

]ERHOO

e Need to check all Four transfer matrices. For example,

—1 . 1
p=""" K-— "
s+ 1 s—1
o s+ 1 B s+ 1
I =K | _|s+2 (s—1)(s+2)
P I s—1 s+ 1
s+ 2 s+ 2

e Suppose K € H.. Internal stability <= P(I — KP)™! € Ho..
e Suppose P € Ho. Internal stability <= K(I — PK)™! € Ho..
e Suppose P, K € H... Internal stability <= (I — P[A()_1 € Heoo.

e Suppose no unstable pole-zero cancellation in PK.
Internal stability <= (I — P(s)K(s))™" € Hu
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Let P and K be two-by-two transfer matrices

1
P = s—1
0
Then
-1 -1
PK = |st+1 5_—11 ’
0
s+ 1]

So the closed-loop system is not stable even though

(54 2)?
(s+1)°

det(] — PK) =

0 i
1| K=
s+1
(I - PK)™ =

s+ 1
S+ 2

0

(s+ 1)

(s +82_)ﬁ§5 —1)

s+ 2

has no zero in the closed right-half plane and the number of unstable poles

of PK = nj + n, = 1. Hence, in general, det(I — PK) having no zeros

in the closed right-half plane does not necessarily imply (I — PK)™ e

RH .
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Coprime Factorization over R'H

e two polynomials m(s) and n(s) are coprime if the only common factors
are constants.

e two transfer functions m(s) and n(s) in RHy are coprime over
R'H if the only common factors are stable and invertible transfer
functions (units):

h,mh ', nh™" € RHoo => h™" € RH.
Equivalent, there exists x,y € RH such that

xm +yn = 1.

e Matrices M and N in R'H., are right coprime over RH, if there
exist matrices X, and Y, in R’ H,, such that

M

N =X, M+Y,N=1.

X ]

e Matrices M and N in RH are left coprime over RHo if there
exist matrices X; and Y; in R'H ., such that

X

[ N[

]_MXZ+NYZ_J.
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Let P=NM"1'= M1 Nand K = UV =V1U be rcf and [cf,

respectively. Then the following conditions are equivalent:

1. The feedback system is internally stable.

2.

3.

M U

NV 1s invertible in RH .

VU

is invertible in R'H .

-N M

4. MV — NU is invertible in R M.
5. VM — UN is invertible in R H .

Let P = [ é ZB; be a stabilizable and detectable realization, and let
I and L be such that A+ BF and A + LC' are both stable.
Define
M v A+BF|B —L
N x| = F I 0
l C+DF|D I
X v, A+ LC|—(B+LD) L
C —-D I
Then
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Example

s —2
13 and @ = (s+ 1)(s+3). Then P(s) = n(s)/m(s)

§—2 S
and m(s) =
(s+1)(s+3) s+1
tion. To find an x(s) € Hy and a y(s) € Hy such that x(s)n(s) +
s—1
) ) s+ 10
Then K = u/v with u = K and v = 1 is a coprime factorization and

B (s 4 11.7085)(s + 2.214)(s + 0.077)
m(s)uls) = nls)uls) = (s+ 1)(s+ 3)(s + 10)
Then we can take

Let P(s) =

with n(s) = forms a coprime factoriza-

y(s)m(s) = 1, consider a stabilizing controller for P: K = —

= f(s)

B B (s =1)(s+1)(s+3)
x(s) = —u(s)/B(s) = (s + 11.7085)(s + 2.214)(s + 0.077)

B B (s+1)(s+3)(s+10)
y(s) =v(s)/B(s) = (5 + 11.7085)(s + 2.214)(s + 0.077)

MATLAB programs can be used to find the appropriate F' and L matri-

ces in state-space so that the desired coprime factorization can be obtained.
Let A € R, B € "™ and C' € rRP*". Then an F' and an L can be
obtained from

> F=-1qr(A, B, eye(n), eye(m)); % or
> F=-place(A, B, Pf); % Pf= poles of A+BF
> L =—Iqr(A’,C' eye(n),eye(p)); % or
> L = —place(A’,C',Pl); % Pl=poles of A+LC.
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e Feedback Properties

e Weighted Hy and H., Performance
e Selection of Weighting Performance
e Bode’s Gain and Phase Relation

e Bode’s Sensitivity Integral

e Analyticity Constraints
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Feedback Properties

r KU {d&p p Ld Y
i

Si=I+KP)', S,=(I+PK)"

T,=1-S;=KPI+KP)', T,=1-S,=PK(I+PK)™!
y="T,(r—n)+ S,Pd; + S,d
uy, = KSy(r —n) — KS,d+ Sid;.

Disturbance rejection at the plant output (low frequency):

a(S,) = 6(([+PK)‘1> = a(IJrlPK) («1)
o(S,P) = o ((I+PK)'P)=5(PS) (<1)

Disturbance rejection at the plant input (low frequency):

a(S;) = 6((I+KP

)_1) N o(l + KP) (<)

7(SK) = o(K(I+PK)™") =5(KS,) (<1)

Sensor noise rejection and robust stability (high frequency)

7(T,) = 7(PK(I+PK)™") («1)
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Note that
(S,) <1 <= a(PK)>1
(S) <1 <= ao(KP)>1
(7,) < 1 <= o(PK) < 1.

Ql

Q

g
[

Now suppose P and K are invertible, then

o(PK)> loro(KP)>1

7(S,P) = ((1+ PK)'P) ~ o(K ) = g
— { o(KS,) =7 (K(I+ PK) ) ~a(P?) = QLP)

Desired Loop Shape
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Weighted H>; and ‘H,, Performance

i d; d

W Wi W,

- - dz d
AW, o K e P W
T S

Figure 0.4: Standard feedback configuration with weights

H, Performance: Assume d(t) = 16(t) and E(nn*) = I
Minimize the expected energy of the error e:

2 00 |1 12 2
E{llella} = E{)) el dtf = [WeS,Wall3
Include the control signal u in the cost function:

W,S, W,
oW, K S, W,

2
2 ~ 112
E{lell2 + o2 1all2) =

2

H,, Performance: under worst possible case

sup |lelly = [WeSoWall
4[] <1

restrictions on the control energy or control bandwidth:

Sup HaHQ = HWuKSoWdHoo

4[] <1

Combined cost:
9

2 ~ 112
sup {lell; + o [lally} =
I4]l,=1

WeSOWd
oW, KS, W,

o0
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Selection of Weighting Functions: SISO

Let L = PK be a standard second-order system

W,
s(s 4 26wn)
re
0.6 + 2.16 4 B
POk 5, 03<E<08 tom—3 My=e V¥ 0<é<1
W gwn

10" ¢

10° |

sensitivity function

107k

-2
10
107" 10° 10"
normalized frequency

Figure 0.5: Sensitivity function S for & = 0.05,0.1,0.2,0.5,0.8, and 1 with normalized frequency

(w/wn)
1 s(s+26wy)
1+ L 824 2bw,s 4 w?

[S(jwa/V2)| =1

closed-loop bandwidth wy &~ w, /v/2 since |S(jw)| > 1, Yw > wy
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A good control design: M, = ||S||,, not too large.

peak sensitivity
N w
N (4] w (4]
T T T T

=
4l
T

[

i i i i i i i i i
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
damping ratio

Figure 0.6: Peak sensitivity M versus damping ratio &

MS
1
Figure 0.7: Performance weight W, and desired S
We require
()] < | w, ¥
s)| < s =jw, Vw
S/MS + Wy 7 ’
s/M, ~+ wyp
— (W5 <1, W,.= /
S

s/ Mg+wy,

Practical consideration: W, = =2 roose
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Figure 0.8: Practical performance weight W, and desired S

Control weighting function W,:

S + wa/Mu
W, =
€18 + Wpe
My :
[KS(w)|
1
S

Figure 0.9: Control weight W, and desired KS
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Bode’s Gain and Phase Relation

L stable and minimum phase:

~ dIn|L
L(jwo) / n\ ‘lncoth‘;‘dy v = In(w/wy)

N
o
T

Incothy |/ 2
N

[
o
T

vl

Figure 0.10: The function Incoth > Vs v

dIn|L(j
2 L(jwy) depends mostly on the behavior of | . L) near wy:
%
| V] 1.1406 (rad), o =1In3 65.3°, a =1n3
— /a In coth 7dy = ¢ 1.3146 (rad), a=In5 = 75.3°, a=1Inb
T —Q

1.443 (rad), a=In10 | 82.7°, a =In10.

/L(jwo) large if |L| attenuates slowly near wy and small if it attenuates
rapidly near wy. For example, it is reasonable to expect

—f{ x 65.3°, if the slope of L = —/ for % < wio <3
/L(jwy) < { —€ x 75.3°, if the slope of L = —/ for % < wio <5
—¢ x 82.7°, if the slope of L = —/ for 1—10 < wio < 10.

The behavior of #L(jw) is particularly important near the crossover fre-
quency w., where |L(jw.)| = 1 since m + #L(jw,) is the phase margin of
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the feedback system. Further, the return difference is given by

. T+ /L(jw,.)
sin

11+ L(jw)| = |1+ L™ (jw.)| =2

)

which must not be too small for good stability robustness.

It is important to keep the slope of L near w,. not much smaller than
—1 for a reasonably wide range of frequencies in order to guarantee some
reasonable performance.

L stable and nonminimum phase with RHP zeros: 21, 2o, ..., 21

—S+ 21 —S8+ 29 —S + 2k
L(s) = Loy (s
() S+21 S+ 29 S+ 2k mp()

where Ly, is stable and minimum phase and |L(jw)| = |Luyp(jw)|. Hence

/OO dln‘me‘l coth '21
2

which gives

L(jwo) = — /

_]WO + Z;

Jwo + 2i
an additional phase lag and imposes limitations on the rolloff rate of the

In coth il
2

Since / < 0 for each 7, a nonminimum phase zero contributes

open-loop gain. For example, suppose L has a zero at z > 0; then

—Jwo + 2
Jwo + 2

— _90°, —53.13°, —28°.
wp=2,2/2,z/4

P1(wo/z) =2

Since the slope of | L| near the crossover frequency is, in general, no greater
than —1, which means that the phase due to the minimum phase part,
L, of L will, in general, be no greater than —90°, the crossover frequency
(or the closed-loop bandwidth) must satisfy

we < 2/2
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20+

phasap,(uy /z) (in degree)

-90 L L L L I

0 0.1 02 013 (Sé/ |Zr)‘.5 0.6 0.7 0.8 09

Figure 0.11: Phase ¢(wy/2) due to a real zero

z>0

-1401 : y/x=0.01

phaseap, (wy/ |z] ) (in degree)

-200 I I I I I I I I I
0 0.1 0.2 0.3 (504/ | P.S 0.6 0.7 0.8 0.9
z

Figure 0.12: Phase ¢a(wp/|2|) due to a pair of complex zeros:

z=x+jyand x > 0
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for closed-loop stability and some reasonable closed-loop performance.
Next suppose L has a pair of complex right-half zeros at z = = £ jy
with z > 0; then
—Jwy+ 2 —jJjwg+ 2
Jwo+ 2 Jwot 2 =) 21/2,)21/3,2] /4
—180°, —106.26°, —73.7°, —=56°, R(z) > I(z)
~{ —180°,  —86.7°, —55.9°) —41.3°, R(2) ~ I(z)
—360°, 0°, 0°, 0°, R(z) < I(2)
In this case we conclude that the crossover frequency must satisfy
[2]/4, R(z) > S(z)
we <3 |2]/3, R(z) =~ 3(2)
2, R(z) < 3(z)

in order to guarantee the closed-loop stability and some reasonable closed-

Pa(wo/|z]) =

loop performance.
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Bode’s Sensitivity Integral

Let p1,po, ..., pm be the open right-half plane poles of L

(0.¢] . m
/0 In|S(jw)|dw =7 21 R(p;) (0.3)
1=
In the case where L is stable, the integral simplifies to
oo .
/0 In|S(jw)ldw =0 (0.4)
water bed effect:
1SG o)
/////////// SN
1| LT
///:/:EE Ay w

Figure 0.13: Water bed effect of sensitivity function

Suppose
S(jw)| <e< 1, Ywe|, wj

Bandwidth constraints and stability robustness:

|L(jw)| < e <é<1l, Vwée |wp, 00)

“I

1 wp—w wh
max |S(]w)| > e (—) e (1 — g)ﬂ(wh—wl)

WE|wy,wp] €

where
I Zily §R(pl)
Wp — Wi
The above lower bound shows that the sensitivity can be very significant

in the transition band.
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Poisson integral relation: Suppose L has at least one more poles than
zeros and suppose z = xg + jyo with xy > 0 is a right-half plane zero of
L. Then

T m oz 4 pi

1S5 dw = 71 0.5
Fo 80N g e =T oy 09
Define .
W 0
") = o o =™
Then .
Di o0 . i)
1 = In|S d
T nzﬂl —p /_OO n|S(jw)| 2+ (W — )2 W

< (7= 0(2)) In |[S(w)l[ + 6(2) In(e),

1 72(92() ) [ m —0(2)
ISl > (o) (11222
=1

which gives
2+ Di
2 = Pi
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Analyticity Constraints

Let p1,po, ..., pm and 21, 29, ..., 2z be the open right-half plane poles
and zeros of L, respectively.

S(pl):O7 T(pl>:17 221,2,,77’2,

and
S(zj)=1, T(z)=0,j=12,...,k
Suppose S = (I+L)'and T = L(I+L) ! arestable. Then p1, pa, ..., pm
are the right-half plane zeros of S and 21, 2o, . . ., 25 are the right-half plane
zeros of T'. Let
mos—p; ks —z

B,(s) = , B.(s)=
»(s) z’l;[18+p¢ (s) jl;[18—|—2j

Then |B,(jw)| = 1 and |B.(jw)| = 1 for all frequencies and, moreover,

B 1(5)S(s) € Hoo, B.'(s5)T(s) € Hee.

Y% z

Hence, by the maximum modulus theorem, we have
156w =B, (5)S(s)], = 1B, 1(2)S(2)] = |B, ' (2)]
for any z with $(z) > 0. Let z be a right-half plane zero of L; then

_ mzZ+p;
S > |B;Y(2)] =
ISt 2 18, ()l = [T ==
Similarly, one can obtain
_ Lotz
175l > 1B )| = 1T | —
J=1P — Zj

where p is a right-half plane pole of L.
The weighted problem can be considered in the same fashion. Let W,
be a weight such that W,S is stable. Then

m |z +p;
IWe(s)S(s) oo = Wele)] 1=

1=1
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M _ '
Now suppose W,(s) = 5/ n - wb, |WeS ||, <1, and 2 is a real right-half
S wpe

plane zero. Then

Z/M8+wb§ﬁz_pi::a§1,
Z + wye i=112 + p;

which gives
< (o) maa— o)
w o — ~ z(a —
"Sl-ae M, M,

bandwidth must be much smaller than the right-half plane zero.
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Chapter 7: Balanced Model Reduction

e Balanced Realization
e Balanced Model Reduction
e Frequency Weighted Balanced Model Reduction

e Relative Reduction
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Balanced Realization

Consider the following Lyapunov equation
AX+XA+Q =0
Assume that A is stable, then the following statements hold:
o X = et QeMdL.
e X >0if@>0and X >0if Q) > 0.
e if ) >0, then (Q, A) is observable iff X > 0.
Suppose X is the solution of the Lyapunov equation, then
e Rel;(A) <0if X >0and Q > 0.
o Aisstableif X >0 and Q > 0.
e Aisstableif X >0, Q >0 and (Q, A) is detectable.

Let A be stable. Then a pair (C, A) is observable iff the observability
Gramian () > 0
A'Q+QA+C"C =0.

Similarly, (A, B) is controllable iff the controllability Gramian P > 0
AP+ PA*"+ BB* =0

A|B
o Let {F’ﬁ] be a state space realization of a (not necessarily stable)

transfer matrix G(s). Suppose that there exists a symmetric matrix

P 0

P=pP =
{o 0

with P, nonsingular such that

AP + PA*+ BB* = 0.
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Now partition the realization (A, B, C, D) compatibly with P as
An A | By

A21 A22 B2
C, G| D

G

is also a realization of G. Moreover, (Ay1, By) is controllable if Ajq is
stable.

Then

Proof Using
0=AP+ PA"+ BB”

to get By = 0 and Ay; = 0. Hence, part of the realization is not
controllable:

All A12 Bl All A12 Bl A B
A21 AQQ BQ - 0 AQQ O - {%%] .
Cl 02 ‘ D 01 02 ‘ D !

o Let [ é ZB; ] be a state space realization of a (not necessarily stable)

transfer matrix G(s). Suppose that there exists a symmetric matrix

Q1 0
0 0

Q—Q*—[

with ()1 nonsingular such that
QA+A"Q+C*C =0.
Now partition the realization (A, B, C, D) compatibly with @) as

An A | By
Ay Ay | By
¢, Cy|D
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Then
A | By
Cy| D
is also a realization of G. Moreover, (C}, A1) is observable if Ay is
stable.
Let P and () be the controllability and observability Gramians,

AP+ PA*+ BB* =0

A*Q+ QA+ C*C =0.

Suppose
P =Q =X =diag(oy,09,...,0,)

Then the state space realization is called internally balanced realiza-
tion and o1 > 09 > ... > o0, > 0, are called the Hankel singular
values of the system.

Two other closely related realizations are called input normal real-
ization with P = I and Q = Y2, and output normal realization
with P = ¥? and (Q = I. Both realizations can be obtained easily

from the balanced realization by a suitable scaling on the states.

Let P and () be two positive semidefinite matrices. Then there exists
a nonsingular matrix 7" such that

TPT" =

(T—l)*QT—l _

respectively, with X1, X9, X3 diagonal and positive definite.
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AlB
C\|\D

realization can be obtained through the following simplified procedure:

is a minimal realization, a balanced

In the special case where {

1. Compute P > 0 and @) > 0.

2. Find a matrix R such that P = R*R.

3. Diagonalize RQR* to get RQR* = UX?U*.

4. Let T7' = R*UY Y2, Then TPT* = (T*)7'QT~' = ¥ and

1
[Téqg T T]f ] 1s balanced.

Suppose o, > 0,1 for some r then the balanced realization implies
that those states corresponding to the singular values of 0,1, ..., 0,
are less controllable and observable than those states corresponding
to o1,...,0.. Therefore, truncating those less controllable and ob-
servable states will not lose much information about the system.

input normal realization: P = I and Q = X°
output normal realization: P = ¥? and Q = I.
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Suppose
G(s) = [%’%] € RHxo
is a balanced realization; that is, there exists
¥ = diag(o1ls,, 0015, ... ,on1sy) > 0
with 01 > 09 > ... > oy > 0, such that
AYX+YA"+BB =0 AYX+XA+CC=0

Then N
o1 <Gl < [ llg(t)] dt <2 20

where g(t) = Ce'B.

Proof.
r = Ar+ Bw
z = Chu.
(A, B) is controllable and (C', A) is observable.
d
a(az*Z_laz) = 'Y ey = (AT YT A+ 2(w, B*Y )
d 2 =112
@2 w) = |l — [w - BE
Integration from t = —oo to t = 0 with 2(—o0) = 0 and z(0) = x gives

1S wo = |lwl; — [lw — B a3 < Jlwl;

: 2 . k1
wecé?_foo,()){”w“Q 2(0) = w0} = 255w

Given z(0) = xg and w = 0 for ¢ > 0, the norm of z(t) = Ce'z( can be
found from

/OOO [2(8)|]° dt = /OOO zie O CeMlaydt = xSy
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To show 01 < ||G||,., note that

Glo= sp revl_ L Ll &
X wels(—so0)  ||Wll w€Ly(—00,00) \/f Hw(t)H dt

> sup \/f H dt sup 522 o
- vl 01
W Ly(~00,0] W900Hw ()| dt wo%OJZUOZ Ly

We shall now show the other inequalities. Since

= /OOO g(t)e™*'dt, Re(s) > 0,

by the definition of H,, norm, we have

Gl = sup T g(t)e |

S lotte

< | llg@®llat.

To prove the last inequality, let e; be the ith unit vector and define
Bi=len o en] -

IN

Ey = [ Csi+-tsy_ 1+l 7" Esptetsy } :

N
Then Y E;E" =1 and
i=1

o o0 N
Fla@lde = f|ce & BiEe2B) a
=1

IA

g:l | |CetPE Bt B dt

IN

N (0. ]
>y |ce

IN

N s —
by [ |CeAr2 B dnf [ |Brer BI dt

N

2) 0;

1=1

IA
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where we have used Cauchy-Schwarz inequality and the following relations:

b loe

St = [ A (BN CMPE) dt

= 2)\max (E*ZEZ> = 20’@
Y dt = 1 Amax (Ef BB e P E;) dt

0

> [Ab, Bb, Cb, sig, Tinv]=balreal(A, B, C); % sigis a vector
of Hankel singular values and Tinv = T~

> [Gyp, sig] = sysbal(G);
> Gy = strunc(Gy, 2); % truncate to the second-order.
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Balanced Model Reduction

G=G, +0, = if [G-G..

deg(Gr)<r
® Suppose
A Ap | By
G(s) =] An Axn | By
C, G, | D

is a balanced realization with Gramian > = diag(¥y, )
AL +YXA*+BB =0 AX+YXA+CC=0.
where

21 - diag<0-11817 0-21827 st 70T[37')

22 — diag(o-r+1187+17 O-T+2]S7»_|_27 e ey O-NISN)

and
01> 09 >+ >0p > 0py] > Opyg >+ >0N

where o; has multiplicity s;, t = 1,2,..., N and s1+So+- - -+sy = n.

An | By
Cy | D

is balanced and asymptotically stable. Furthermore

Then the truncated system

G.(s) =

|G(s) = Grls)lloe < 2(0r41 + o2+ -+ + on).

o ||G(5) — G(c0)|l o < 2(01 + ...+ 0N).
¢ [|G(5) = Gaa(s)

||oo = 20’]\7.
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Proof. We shall first show the one step model reduction. Hence we shall
assume Yo = oy, . Define the approximation error

A A | By
Ey = | Ay Ap | By | — %’%}
1 G, | D :
| All 0 0 Bl_
B 0 An Awp| b
N 0 Ay Axp| DB
—C) C; Oy | 0 |

Apply a similarity transformation 71" to the preceding state-space realiza-
tion with

I/2 I/2 0 I I 0
T=\1/2 -1/20]|, T '=|I 10
0 0 I 0 0 I

to get

[ All 0 A12/2 Bl ]
0 AH —A12/2 0
Ay —Asyy Ay | B

0 20, Oy |0

Consider a dilation of Ey1(s):

By =

FEr1(s) Eqa(s)
Bs) = | gus) EQQ(S)]
Ay 0 A2 | Bl 0
0 A1q —A12/2 0 O’]\[Zl_lcfi<
= Aoy —Ay A By —C5
0 —2CY Cy 0 2o0n1
| —20NBiXit 0 — By |20n] 0
_ [AlB
i
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Then it is easy to verify that

P=|0 o2 0
0 0 20n15,
satisfies
AP + PA*+ BB* = 0
PC*+ BD* = 0

Using these two equations, we have

A —BB*| BD*
E(s)E~(s) = | 0 —A* | C*
' C —DB*|DD*
(A —AP — PA* — BB*| PC* + BD*
= |0 — A* C*
C -CP-DB* | DD
(A0 0
= |0 —A*| C*
'C 0 |DD*
= [)[)*:40%\[[

where the second equality is obtained by applying a similarity transfor-
mation

=107

Hence || Evi| o, < ||E||,, = 20, which is the desired result.
The remainder of the proof is achieved by using the order reduction

by one-step results and by noting that Gy(s) = {All B ] obtained by

IP]

| G| D
the “kth” order partitioning is internally balanced with balanced Gramian
given by
21 = diag(allsl, 0'2]52, ceey Uk[sk)
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Let Ei(s) = Grea(s) — Gi(s) for k =1,2,..., N — 1 and let Gy(s) =
G(s). Then
o [Ep(Jw)] < 20441

since G(s) is a reduced-order model obtained from the internally balanced
realization of G41(s) and the bound for one-step order reduction holds.
Noting that

Gls) — G (s) = Zg Ey(s)

by the definition of Ej(s), we have

_ _ N-1 . N-1
olGlw) = Grw)] < X o lEp(jw)]] <2 X ok

This is the desired upper bound. O
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e bound can be tight. For example,

o v
n b —az \/b72
G(s)= X == s
3:18—|-a,2 _an \/E
Vi VB - B 0
with a; > 0 and b; > 0. Then P = (@ = a—vjj and
iy

IGs)l = GO = 3

= 2trace(P) = 2 % o;
i=1

e bound can also be loose for systems with Hankel singular values close
to each other. For example,

| —19.9579 —5.4682 9.6954 0.9160 | —6.3180 |

5.4682 0 0 0.2378 | 0.0020
G(s) =| —9.6954 0 0  —4.0051|—0.0067
0.9160 —0.2378 4.0051 —0.0420| 0.2893
- —6.3180 —0.0020 0.0067 0.2893 0

with Hankel singular values given by

or =1, o9=0.9977, o3 = 0.9957, 54 = 0.9952.

r 0 1 2 3
|G — Gl 2 | 1.996 | 1.991 | 1.9904
Bounds: 2%}, ., 0| 7.97725.9772 | 3.9818 | 1.9904
20,41 2 | 1.9954|1.9914 | 1.9904
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General Case: inf HW (G — G)Will
deg(Gr)<
Al|B A; | B; | Ay B,
G—{C O]’ Wi= C; Dz]7 WO_{CO Do]
A 0 BC;|BD;]
BC A, 0| 0 | [A|B
WGWi=1"4 A; | B _{C 0]
' D,C C, 0 0

Let P and @ be the solutions to the following Lyapunov equations
AP + PA*+ BB* = 0
QA+ A*Q +C*C = 0.

The input/output weighted Gramians P and ) are defined by

P=|1I, o}PH], Q=|1I, O]Q“;‘]

P and @ satisty the following lower order equations
A BG [P Pa| [P Py [ A BC; | | BD: [ BD; | 0
0 Az P1*2 PQQ P1*2 PQQ 0 Az Bz Bz o

cp: [ cp: 1°
C*

o

Q Qul[ 4 o] [ 4 o][Q Qu
QT2 Q22 BOC Ao BOC Ao _QTQ Q22

W; =1 = P can be obtained from

_l’_

PA*+ AP+ BB* =0
W, =1 = () can be obtained from

QA+ A*Q +C*C =
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Now let T" be a nonsingular matrix such that

2

TPT = (T-)QT " =
209

(i.e., balanced) and partition the system accordingly as

TAT'|TB A A By
o7 ‘ 0| = Aoy Az | By
¢, Cy| 0

Then a reduced order model GG, is obtained as

A | By
GT—{%W]-

Works well but with guarantee.
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Relative Reduction

G, = G(] + Arel)p — inf
deg(Gy)<r

G_l(G o Gr)

0

and a related problem is

Let G(s) = {%’%

Then W, = G (s) = {

G = GT’(] + Amul)

€ R'H, be minimum phase and D be nonsingular.

A—-BD™'C|-BD™! ]
D¢ | D' |
(a) Then the input/output weighted Gramians P and @) are given by
PA*+ AP+ BB" =0
QA —-BD'C)+(A-BD'C)*Q+C*(D D™ 'C =0.
(b) Suppose P and @ are balanced:

P =Q =diag(oils,...,0.1, 0111 o onIsy) = diag(Xy, Xo)

r+10 "
and let G be partitioned compatibly with >; and >y as
A A | By
G(s)= | An Axn| By
Ci Cy|D

G, (s) = {%’%}

is stable and minimum phase. Furthermore

Then

N
|8l < T (142041407 +07)) = 1
1=r+1

N
1Al < I (1+20@-( 1+0i2—|—0@-)>—1.
1=r+1
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Chapter 8: Uncertainty and Robustness

e model uncertainty

e small gain theorem

e additive uncertainty

e multiplicative uncertainty
e coprime factor uncertainty
e other tests

e robust performance

e skewed specifications

e example: siso vs mimo
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Model Uncertainty

nomina model

x\ o

I
actual model

P( w)

w(jw)

Suppose P € II is the nominal model and K is a controller.
Nominal Stability (NS): if K stabilizes the nominal P.
Robust Stability (RS): if K stabilizes every plant in IT.

Nominal Performance (NP): if the performance objectives are
satisfied for the nominal plant P.

Robust Performance (RP): if the performance objectives are satis-
fied for every plant in II.
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Examples

0((2+0.2a)s? + (2 + 0.3 + 0.48)s + (1 + 0.23))
(s +0.55 4+ 1)(s® + 25 + 3)(s®> + 35 + 6)

a, 6 € [_17 H
P(s,a,B) e {Py+ WA | [|A| <1}
with Py := P(s,0,0) and

Pls,a,8) = >

10 (0.2s* 4+ 0.7s + 0.2)

W(s) = P(s,1,1)=P(s,0,0) =
(8= Plo L D=Pl 0.0 = G055 1 1) (52 + 25 1 3)(52 + 35 1 6)

The frequency response Py + WA is shown in Figure 0.14 as circles.

0.5

ofF

-0.5f

-1+

-15F

-2t

251

-3t

-3.5
-2

Figure 0.14: Nyquist diagram of uncertain system and disk covering

Another way to bound the frequency response is to treat o and 3 as
norm bounded uncertainties; that is,

P(S, Oé,ﬁ) c {Po + W1A1 + WQAQ ‘ HAZHOO S 1}
with Py = P(s,0,0) and

10(0.25% + 0.3s)

W pr—
' (824055 + 1)(s2 + 25 + 3)(s2 + 35 + 6)




111

10(0.4s +0.2)
(52 +0.55 4+ 1)(s* + 25+ 3)(s®> + 35+ 6)
It is in fact easy to show that

{Po+WiA +Whls | Al <1} ={R+ WA Al <1}

with |[W| = |[W3| + |Ws|. The frequency response Py + WA is shown in
Figure 0.15. This bounding is clearly more conservative.

Wy =

1

0.5f

o

-05r

1

-15F

2k

-2.5¢

-3t

-35
-2

Figure 0.15: A conservative covering

Consider a process control model

ke~ TS
Gls)= 0 4<k<9,2<T<3 1<71<2.
Ts+1
Take the nominal model as
6.5
Go(s) =

(2.5s+ 1)(1.5s + 1)

Then for each frequency, all possible frequency responses are in a box, as
shown in Figure 0.16.

A(jw) = G(jw) = Go(jw)

> mf= ginput(50) % pick 50 points: the first column of mf is the
frequency points and the second column of mf is the corresponding
magnitude responses.
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Imaginary

Figure 0.16: Uncertain delay system and G,

> magg=vpck(mf(:,2),mf(:,1)); % pack them as a varying ma-
trix.

> W, =fitmag(magg); % choose the order of W, online. A third-
order W, is sufficient for this example.

> [A,B,C,D]=unpck(W,) % converting into state-space.
> [Z, P, K]=ss2zp(A,B,C,D) % converting into zero/pole/gain

form.
We get
W,(s) = 0.0376(s + 116.4808)(s + 7.4514)(s + 0.2674)
¢ (54 1.2436)(s + 0.5575)(s + 4.9508)
and the frequency response of W, is also plotted in Figure 0.17. Similarly,

define the multiplicative uncertainty
(;(S) — C?o(S)
(;0(8)
and a W, can be found such that |A,,(jw)| < |[W(jw)|, as shown in
Figure 0.18. A W,, is given by
2.8169(s + 0.212)(s* + 2.6128s + 1.732)
s? 4+ 2.2425s + 2.6319

Ap(s) =

W, =




10 1
.=
_____ =
10° B
10
-2
10
107 107" 10° 10" 10°

Figure 0.17: A, (dashed line) and a bound W, (solid line)

10°

S I I I

10~ 10~ 10 10

10

iy
o

Figure 0.18: A,, (dashed line) and a bound W,, (solid line)
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Small Gain Theorem

wn m€1
(& \_pw
M 23 :

Small Gain Theorem: Suppose M € (RHo)" 7. Then the system is
well-posed and internally stable for all A(s) € RH ., with

() 18], < 1/ if and only if [ M(s)]l. < 7
(b) Al < 1/ if and only if | M(s)]|.c < 7.

Proof. Assume v = 1. System is stable iff det(I — MA) has no zero in
the closed right-half plane for all A € RH and ||A|| < 1.

(<) det(I — MA) #0 for all A € RHo and ||A||,, < 1 since
AL — MA)| > 1—max|A\(MA)| >1—||M|,>0

(=) Suppose ||M||,, > 1. There exists a A € RHq with ||A] < 1
such that det(I — M(s)A(s)) has a zero on the imaginary axis, so the
system is unstable. Suppose wy € Ry U {00} is such that a(M (jwy)) > 1.
Let M (jwy) = U(jw)E(jwo)V*(jwy) be a singular value decomposition
with

U(jwy) = [ul Uy -+ up]

V(jwo):[fvl vy - qu]

01
Z(jwo) = 09
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We shall construct a A € RH s such that A(juwg) = Uilvluik and [|A]|, <
1. Indeed, for such A(s),

det([—M(ij)A<ij)) = det(]—UZV*’Ul’UT/O'l) = 1—UTUZV*’1)1/O'1 =0

and thus the closed-loop system is either not well-posed (if wy = o0) or
unstable (if w € r). There are two different cases:

(1) wo =0 or co: then U and V are real matrices. Chose

1
A = —uvjuj € rRT?.
01

(2) 0 < wy < oo: write uy and v; in the following form:
I U116]¢1 1

J92
. 0 0 0 _ | V12€
up = | up e/’ uppe!? oo ug,elr } , U=

V€70 |
where u1;, v1; € R are chosen so that 6;, ¢, € [—,0).

Choose 3; > 0 and «; > 0 so that

P (ﬁz —jw()) —0. (Oéj _jwo) _ ¢,

Bi + jwo a; + jwy
Let
) N
- : 15 ... P
A(S) — o1 C-kq_s lullﬁl+s U1p5p+s 1 € RHOO
1qoaq—|—s

Then |A]l, =1/01 <1 and A(jwy) = Uilvluik.
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The theorem still holds even if A and M are infinite dimensional. This
is summarized as the following corollary:.

The following statements are equivalent:

(i) The system is well-posed and internally stable for all A € H, with

[A] e <1/

(ii) The system is well-posed and internally stable for all A € RH with
[A] e <1/

(iii) The system is well-posed and internally stable for all A € c?*? with
IA[ <1/

(i) M), <.

It can be shown that the small gain condition is sufficient to guaran-
tee internal stability even if A is a nonlinear and time varying “stable”
operator with an appropriately defined stability notion, see Desoer and
Vidyasagar [1975].



117

Additive Uncertainty

S,=I+PK)"', T,=PK(I+PK)!
Si=(I+KP)', T)=KP(I+KP)"

Let IT = {P + W1AW;: A € RH} and let K stabilize P. Then
the closed-loop system is well-posed and internally stable for all ||Al| < 1
if and only if ||WoKS,Wi||,, < 1.

Ws A Wi i

. p

—WoKS,W,
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Multiplicative Uncertainty

A

—WoT, Wy

Let II = {({ + W1 AWL)P . A € RH } and let K stabilize P. Then
the closed-loop system is well-posed and internally stable for all A € R H
with ||A|l, < 1if and only if ||WoT, W4 ||, < 1.
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Coprime Factor Uncertainty

Ay AN
“

Let P = M~'N be stable left coprime factorization and K stabilize P.
Suppose

1= (M +Ay) (N +Ay), As=[Ay Ay]

with Ay, Ay € RHeo. Then the closed-loop system is well-posed and
internally stable for all ||Al|, < 1 if and only if

{ []( ] (I+PK)'M7Y <1

o0
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Other Tests

Wi € RHo Wo € RHoo A€ RHo ||A]L <1

Perturbed Model Sets
I1

Representative Types of

Uncertainty Characterized

Robust Stability Tests

(I + Wi AW,) P

output (sensor) errors
neglected HF dynamics
uncertain rhp zeros

W T, W, <1

P(I + W1 AW,)

input (actuators) errors
neglected HF dynamics
uncertain rhp zeros

[WaTiWil, < 1

(I + WiAW,) 1P

LF parameter errors
uncertain rhp poles

HWQSOWluoo S 1

P(I + Wi AW,) ™!

LF parameter errors
uncertain rhp poles

W2 SiWh|l,, <1

P+ W, AW,

additive plant errors
neglected HF dynamics
uncertain rhp zeros

[WaK S W[ <1

P(I + Wi AW, P)~!

LF parameter errors
uncertain rhp poles

|WaS,PWh|, <1

M+ Ay) Y (N + Ay)

~~

LF parameter errors

P=DM1N neglected HF dynamics Hl II( ] S,MH| <1
A= [ Av Ay } uncertain rhp poles & zeros h
(N + An)(M + Ap)~' | LF parameter errors

P=NM"1 neglected HF dynamics |M-LS[K 1), <1
A = AN uncertain rhp poles & zeros




121

Robust Performance

d
" o K P Jywee

sup lefl, <1
Jdl,<1

T.g=W,(I+ PyK)"', Pell

Suppose Pa € {(I + AW,)P : A € RHw, ||A|l, <1} and K inter-
nally stabilizes P. Then robust performance is guaranteed if

F(W,S,) + o(WaT)) < 1.

(T,g) < o(W.S,)o[(I + AWLT,) 1] =
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Skewed Specifications

1= {P(I+wA): A€ RHa, ||A]l, <1}.

z w d
1A |
w 1 I
T K1 | p—d—W =
robust stability:
[wTi]l o <1,
nominal performance:
[WeSolloo < 1.

Toq = WeSo(I + PAwKS,) ™" = WS, [I + PAP™(wT,)] .

robust performance is guaranteed if
a(W.S,) + k(P)o(wT;) < 1

or

a(W.S,) + k(P)o(wT,) < 1.
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Why Condition Number?

II, = {P(Iﬂ—th) A €e RHOO, HAHOO < 1}
I, = {{+wA)P: A e RHw, ||A] <1}.

I, OII; if  |wy| > Juy|k(P) Vw
since P(I + wA) = (I +w,PAP™Y)P.

[ —02 0.1 110 1 ]
—0.05 0 010 0.7
Ps)=| 0 0 —11 0 |=—| 5  (sFDE+0.07
0 olo o @ls) [ =005 0.7(s +1)(s +0.13)
0 1 010 0|

where a(s) = (s + 1)(s + 0.1707)(s + 0.02929).

frequency
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Example: SISO vs MIMO

y

d)l o 0 a w1 (5] . 1 a w1
W | | —a 0| ws Uy |’ Y= a1 W9
1 [ s—a* a(s+1)
P(s) —
(s) s2+a?| —a(s+1) s—a
S L puapo Lo
B - s+1la s |’ N 541 —a 1]’

Each loop has the open-loop transfer function as — so each loop has phase
margin @max = —@min = 90? and gain margin kyin = 0, kpax = 00.
Suppose one loop transfer function is perturbed

Uy

P | us

D

Denote

- Ty =
w(s) H s+1
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Then the maximum allowable perturbation is given by

1 —_—
1Tl
which is independent of a. However, if both loops are perturbed at the

same time, then the maximum allowable perturbation is much smaller, as
shown below.

191l < !

i o T gi11 ; 1

21 921
g | A

_____________________

___________________

511 512

Pa=(I+AP, A=
a=U+4) [521 2

]ERHOO

1Al < 7. The system is robustly stable for every such A iff
PR
Tl Ve e

In particular, consider

(< 1lifa>1).

011
092

2%2

A=A, = ER

Then the closed-loop system is stable for every such A iff

(82 + (24 011 + 022)s + 1 + 611 + 20 + (1 + CL2)511522)

det(] + TAd) = (S n 1)2
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has no zero in the closed right-half plane. Hence the stability region is
given by
24011+ 09 > 0
14 011 + 099 + (1 + a2)511522 > 0.

The system is unstable with

1

011 = —02 = Vi
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Chapter 9: Linear Fractional Transformation

Mll M12

over A is defined as
My My

A (lower) LFT of M = {

Fo(M,A) := My + MipA(I — Moy A) " My
Similarly, an upper LET:

FulM,A,) = My + Moy Ay (I — M A) My,

21 w1 A
M U
Y2 U9
y1|( __‘ul 29 L J W9
A M
<1 — M w1 _ My My, wq
(7! Uy My My | | wy
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Properties

o Fy(M,A) is well-posed if (I — MyyA) is invertible.
o (Fu(M,A\)™" = F,(N,A) with N given by

|

My — MigMyyt Moy — Mo M, ]
My Moy My '

e Suppose C' is invertible. Then

(A+BQ)(C+DQ)™" = Fi(M,Q)
(C+QD)(A+QB) = F(N,Q)

with
C-1 —C7'D

C1A Cc1
B—-DC'A —-DC™ |

—1 . —1
M:{AC B — AC D]7

N:

e if M5 is invertible, then
Fi(M,Q) = (C+QD)"(A+QB)

with A = M1_21M11, B = Mgl — M22M1_21M11, C = M1_21 and D =
—M22M1_21.

o if My, is invertible, then
Fi(M,Q) = (A+ BQ)(C +DQ)™"

with A = MllMQ_ll, B = My — M11M2_11M22, C = M2_11 and D =
—M2_11M22.
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Example

The following diagram can be rearranged as an LFT z = Fy(G, K)w
with

W = (i) 5 = ( v ) G=| | () _________ () W1 .
u “FP ZF ZFP
Uf Wl
ld

A, | B, Ar| By A, | By A, | B,
"o {Cp 0 ] a {Cf Df]’ e {Cu Du]’ e {Cv Dv]'
That is,
&, = Apr, + Byd+u), y, = Cpxy,
xp=Apzy+ Brlyp +n), —y=Crzp+ Dy, +n),
T, = Ayx, + Byu, uy = Cyx, + Dyu,
T, = Ayzy + Byyp, v = Cyzy+ Dyy,.
Now define a new state vector
)]
Lf
Ly

Ly
and eliminate the variable y, to get a realization of G as
r = Ax+ Biw + Bou
z = Cix + Dyjyw + Disu
y = Cox + Doyw + Doyu
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with
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Parametric Uncertainty: A Mass/Spring/Damper System

F
m
=
. C F
T+ —T+ —T=—.
m m m
x 1 T 1 x 1 F
s s m(140.16,,) B
¢(1+0.26,)
+
k(1 +0.30)
Then o
: L1
i
_1 ::]%(A47AQ )
)
_F_
where
0 1 0,0 0 0
_ko_e li 1 1 _od (5, 0 0
M=103k 0 0.0 0 0 |, A=|04 0
0 02 0,0 0 0 0 0 by |
—k —¢ 1:—-1 —1 —0.1
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one page missing here



—d Y2 5 Uz_e
|
)1 uy
Y2 U2
ys | = M | ug
Ya Uy
z w
where i o
0 —e —d 01
10 0 00
M=[1 0 0 00
0 —be —bd+c 0}b
0 —ae —ad lia
Then
z=Fu(M,Nw, A= orfz 0
0 09l

ug 5 Ys Uq 5 Y1

133
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HIMAT Example

" 50(s + 100) ] C0.5(s + 3) ;
_ | s+ 10000 | s+003
Waa = ] 50(s + 100) | Wr = ) 05(s+3) |
s+ 10000 | _ s+0.03 .
2(s +1.28) ;
_ s + 320
W = o 2As+129) |
s + 320
[ 0.0226 —36.6 —18.9 —32.11 0 0
0 —19 0983 0 |—0414 0
, 0.0123 —11.7 —2.63 0 | —77.8 224
’ 0 0 1 0 0 0
0 573 0 0 0 0
0 0 0 5731 0 0
{22} --------------------- [dl ]
| D1 do
| - |:p2 | )
Wiel l €1 ]
i T i €2

1 1 O Wp " -
____________________________ _ [ nq

Figure 0.19: HIMAT closed-loop interconnection
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The open-loop interconnection is

b1
<1 b2
) dy
€1 A dg
= G(s)
€9 n
Y1 T2
Y2 Ui
Uz
The SIMULINK block diagram:
aircraft.m
File Edit Options Simulation Style
Y
M x = Ax+Bu [
i Demux ¥ = Cebul” Mux pertl
State Space: Wdel s 2
z - X = Ax+BuU + pe
xy =:’E§;EE)UU - T y = Cx+Du
o7 @J;me Space wp | ¢ [stefe Space: himat distl
Demuxi Mux _J
4
4 MU<2 distz
S g
e L e mud e "7
D > Suml B h
vz emuee State Space: Wn Mux3 noisez
Mux
ul
hMux
uz ’
| ] | |

Figure 0.20: SIMULINK block diagram for HIMAT (aircraft.m)

The G(s) A\ B b ted b
e S) = Ccan pe compute
c|p ’

> [A, B, C,D] = linmod(’aircraft’)
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which gives

[ —1000075 0 0 0 0 0 0 0
0 ~0.0226 —36.6 —189 —32.1 0 0 0
0 0 ~1.9  0.983 0 0 0 0
Y 0 00123 —11.7 —263 0 0 0 0
0 0 0 1 0 0 0 0
0 0  —54.087 0 0 —0018 0 0
0 0 0 0 —54087 0  —0018 0
0 0 0 0 0 0 0 —320I, |
0 0 0 0 —703.5624 0 1
0 0 0 0 0 —703.5624
0 0 0 0 0 0
5 | 04140 0 0 0 ~0.4140 0
778 224 0 0 778 99.4
0 0 0 0 0 0
0 0 —0.94397, 0 0 0
0 0 0 —95.247615 0 0o |
[ 7035624, 0 0 0 0 0 0 0 0 |
0 0 2865 0 0 —09439 0 0 0
C = 0 0 0 0 2865 0  —09439 0 0
0 0 573 0 0 0 0 252476 0
] 0 0 0 0 573 0 0 0 252476
[0 0 0 00 5 0]
00 0 00 0 50
L_|0005 0 00 0 0
00 0 0500 0 0
00 1 0 200 0
00 0 1 02 0 0




137

Redheffer Star Products

p_ P11 P12 B Kll K12
Py Py |’ Ky Ko
Py — Fy (P, Kn) Py (I — K Pp) ™' Ki
Ko (I — P22K11)_1 P F, (K, Py)
Figure 0.21: Interconnection of LFTs
| A| B, B, | Ax | Bxk1 Bxs |
P = Ch|Dy1 Do K = Cr1|Dk11 Dro
| O3 | Dy Day | | Cko| Di21 Dios |
Then the transfer matrix
W z
Px K : —
W z
has a representation
A\ B, By L
PxK=\|C{|Dy; D 4|5
* = = —
_1 _11 _12 oD
| O3 | Dy Do |
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where

s _ A+ Bzé_lDKnCz Bzé_lcm
. BxRT'C Ag + Bg1R™' DoyCicy
5 _ | By + B,R'Dyc11 Dy ByR ' D1y
_ Bri1 R~ Dy, Brs + Bg1R™' Doy D1
O - ' C) + Dy Dy R71C, DiyR7'Cx
_ DgaR7'Ch Cr2+ Dga1R™ ' DyyCy
5 — | Dy, + DiyDgyy R Dy DR Dy
Dga1R™' Dy, Dg2s + Dot R Dy Dcra

R=1—Dy»Dg11, R=1— Dgi1Doam.

i A B, D11 Cra |
Oy Dy Br1 Ax

B B B Dk Diao |
| Do Dy Brk1 Bk

O 'y Dy . D11 Cra |
| Oy Dy Do Cro

5 _ | Dn De| | Drn Dl
| Do Dy Dpgo1 Dicoo

> P xK = starp(P, K, dimy, dimu)
> Fi(P,K) = starp(P, K)
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Chapter 10: ;1 and p Synthesis

general framework

analysis and synthesis methods for unstructured uncertainty
stability with structured uncertainties

structured singular value

structured robust stability

robust performance

extension to nonlinear time varying uncertainties

skewed problem

overview on u synthesis
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General Framework

General Framework:

Analysis Framework

M(s) = Fi(P(s), K(s)) =

MH(S) Mm(S)}
M21<S) MQQ(S) 7

2= Fu(M, Ayw = [ Moy + My A(I — My A) ™ M| w.

ZLAJ’UJ

JY/




Analysis and Synthesis Methods for Unstructured
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Uncertainty
Input Performance Perturbation Analysis Synthesis
Assumptions Specifications Assumptions Tests Methods
Blu(yw(r)) | Be)=0) <1 LQG
=0(t—1)1
A=0 | Maz]l, <1 | Wiener-Hopf
= Uyd(t
w=U00) ) B3 <1
EOU;) =1 Ha
lwll, <1 llzlly <1 A=0 |Ma2s||,, <1 | Singular Value
Loop Shaping
flwll, <1 Internal Stability | [|Allo <1 | [[Mill <1 Hoo
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Stability with Structured Uncertainties

Assume

A(s) =diag [01L,,, ..., 05l 4, A1,y ..., Ap] € RHoo

S

with |0, < 1 and [[Aj]| < 1.

Robust Stability <= The following interconnection is stable.

Mll(S)

Stability Conditions:
(1) (sufficient conditions) ||[Mi1]|,, < 1.
Conservative, ignoring structure of the uncertainties.

(2) (necessary conditions) Test for each §; (4;) individually (assuming no
uncertainty in other channels): ||(Mi1)q],, < 1.

Optimistic because it ignores interaction between the §; (4;).
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Structured Singular Value

_|_“ A
T

Unstructured A

Problem: Given M € cP*?, find a smallest A € c?*? in the sense of
a(A) such that
det(l — MA) = 0.

It is easy to see that
Quin = inf {T(A) : det(I — MA) =0, A € ¢}
=inf{a: det(l —aMA) =0, 7(A) <1, A € c??}
and
max p(MA) = agiy =7(M)
with a smallest “destabilizing” A:
1

a(M)
where M = a(M)uiv] + oquqvs + - - -

So @(M) can be defined as

Ades = viuy, det(l — MAges) =0

o(M) = inf{o(A) : det(l — MA) =0, A € c?*?}
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Structured A

A ={diag [011,,...,05L,q, A1,...,Ap| 16, € C,A; € "IN

S

Opin = INf {T(A) : det(l — MA) =0, A € A}
=inf{a: det(l —aMA)=0, d(A) <1, Ae A}

and

ol
max p(MA) = ayl, < 7(M)

7(A)< min

Definition of SSV

For M € ™", ua (M) is defined as

1
pa (M) = min {a(A) : A € A det (I — MA) =0} (0:6)

unless no A € A makes I — MA singular, in which case ux (M) = 0.

e [fA={fl:0€c} (S=1,F=0,r1=n), then ua (M) = p (M), the
spectral radius of M.

o If A =c"" (§=0,F=1,m=n), then pa (M) = o(M).

p(M) < pa(M) <7 (M).
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for any 8 > 0. Then p(M) = 0 and o(M) = 3. But

0 0
p(M) = 0 since det(I — MA) =1 for all admissible A,

. Then p(M) =0 and (M) = 1. Since

5 — 08

det(l — MA) =1+ 5

0

if 91 = —dy=—1.s0o u(M)=1.

Thus neither p nor @ provide useful bounds even in these simple cases.
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U ={UecA: UU =1,

diag |Dy, ..., Ds,diLp,, ..., dp_1Ip; Iy -
D; e i D;=D;>0,d; € R, d; >0
Note that forany A €e A, U e U, and D € D,

U'ed UANeA AUeA GUA) =0c(AU)=7(A)
DA = AD.

ForallU el and D € D

,LLA(MU) :uA<UM) :,LLA(M> ZMA(DMD_I).

S —1
max p(UM) < max p(AM) = ua (M) < inf o (DMD™)

e —1
max p(UM) < pa(M) < info (DMD™).

[Doyle, 1982] ax p(MU) = ua(M).  Not Convex.

pa (M) = inf o(DMD™) if 28 + F <3

DeD

F=] 0 | 1] 2| 3|4

S=
0 yes | yes | yes | no
1 yes | yes| no | no | no

2 no | no | no | no | no
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> [bounds,rowd] = mu(M,blk)

(5, 0 0 0 0 0

0 6 0 0 0 0

0 0As 0 0 0
A =

0 0 0 A, 0 0

0 0 0 0 61 0

0 0 0 0 0 Ag

51,52,55, € C, Ag € (CQXB,A4 € ngg,AG € (C2X1

can be specified by

blk =

O W W N~ D
_ o W W = O

> [Dy, D;] = unwrapd(rowd, blk)
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Structured Robust Stability

How large A (in the sense of |A||, ) can be without destabilizing
the feedback system?

Since the closed-loop poles are given by det(I — MA) = 0, the
feedback system becomes unstable if det(I — M(s)A(s)) = 0 for some
s € C.. Now let a > 0 be a sufficiently small number such that the
closed-loop system is stable for all stable |A||,, < o. Next increase o
until o, so that the closed-loop system becomes unstable. SO oy,
is the robust stability margin.

Define

A ={A(") € RHy : A(sy) € A for all s, €T, }

Let 3 > 0. The system is well-posed and internally stable for all
A(-) € A with ||A||, < % if and only if

sup pa (G(jw)) < 6

WER

w1 €1
" A
_|_
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Robust Performance

G (s) = G G
g Ga1 G
A 0
Ap = A e A Ay e
0 A
A(s)
N Gp(5> v

Let 8 > 0. For all A(s) € A with ||A]l,, <
well-posed, internally stable, and ||F, (G, A)

%, the system is
< B if and only if

e

sup A, (GplJw)) < 6.

WER
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Extension to Nonlinear Time Varying Uncertainty

Suppose A € Ay is a structured Nonlinear (Time-varying) Uncer-

tainty and suppose D is constant scaling matrix such that DAD™! €
Ay.
Then a sufficient condition for stability is (by small gain theorem)

HD_lG(s)DHOO <1

————————————————————————————

____________________________

————————————————————————————

____________________________
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HIMAT Example

> (A, B, C, D] = linmod('aircraft’)
> G = pck(A,B,C,D);
> [K, Gp,7] = hinfsyn(G, 2,2,0,10,0.001, 2);

which gives v = 1.8612 = |G, ||, a stabilizing controller K, and a
closed loop transfer matrix G,:

P
21 P2
) _G(s) d; Gys) = Gpi1 Gpiz |
e ds Gpo1 Gy
€2 ni

_n2

maximum singular value

1.5+

0.5r

=

10° 107 10" 10° 10" 10° 10°
frequency (rad/sec)

Figure 0.22: Singular values of G,(jw)

Now generate the singular value frequency responses of G:
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> w=logspace(-3,3,300);

> Gpf = frsp(Gp,w); % Gpf is the frequency response of G;
> [u, s, v] = vsvd(Gpf);

> vplot('liv,m’;s)

The singular value frequency responses of G, are shown in Figure 0.22.
To test the robust stability, we need to compute ||Gpi1|| -

> Gpi1 =sel(Gp,1:2,1:2);
> norm_of_Gyp;; = hinfnorm(Gyp1,0.001);

which gives ||Gp11|,, = 0.933 < 1. So the system is robustly stable.
To check the robust performance, we shall compute the pia,(Gp(jw))
for each frequency with

, Aec”? Apect

Ay

Maximum Singular Value and mu
T T T

maximum singular value

1.5

mu bounds

0.5 . . . . .
107° 107 10™ 10° 10" 10 10°
frequency (rad/sec)

Figure 0.23: pa,(G,(jw)) and 7(G,(jw))

> blk=[2,2;4,2];
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> [bnds,dvec,sens,pvec]=mu(Gpf,blk);
> vplot('liv, m’, vnorm(Gpf), bnds)
> title(Maximum Singular Value and mu’)
> xlabel('frequency(rad/sec)’)
> text(0.01, 1.7/ maximum singular value’)

> text(0.5,0.8,/ mu bounds')

The structured singular value pia,(Gp(jw)) and o(G,(jw)) are shown
in Figure 0.23. It is clear that the robust performance is not satisfied.

Note that
Gpll Gp12
Gpo1/v Gpoa/y

Using a bisection algorithm, we can also find the worst performance:

e UGy Al = 12.7824.

<1

Hgnla}il | Fu(Gy, A)HOO <<= SUD fIAp

o
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Skewed Problem

—WoT,W, —WoKS, Wy
W.S,PW, WS, Wy

G:

robust performance condition:

—WoTiWy  —d WoKS,W,
TWeS,PWy WS, Wy

ia (G(jw)) = inf 0(

J<:

pa (G(jw)) < (W PW) (WL + || WS, Wall).

for all w > 0. An upper bound:

(4 is proportional to the square root of the plant condition number.
Assumptions:

We=wsl, Wy=1, Wy =1, Wy =wl,
and P is stable and has a stable inverse (i.e., minimum phase) and
K(s) = P (s)l(s)
such that K(s) is proper and the closed-loop is stable. Then
1 [(s)

S, =5, = = I, T,=T,= I = I
i) ) T i(s)) =T
—wyrl —wr P
G — W T W T
wse P weel
Then

—wytl —wyT(dP)™!

dERr weedP weel

ua (G(jw)) = inf a(
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Let the SVD of P(jw) be
P(jw) =UXV™ Y =diag(o1,09,...,0m)

with o7 = @ and o,, = ¢ where m is the dimension of P. Then

—wyrl —wr(dX) ! )

weeds weel
— Pldiag<M17 MQ) SRR M?TL)PQ

dER+

ia(Gljw)) = inf @ (

—’wﬂ'[ —’th(dZ>_1

weed>) weel

where P, and P, are permutation matrices and where

1
—wyT  —wyT(do;)
M, =
weedo; WE

Hence
—wr  —wyT(do;) !

ua (G(jw)) = inf maxo
A( ( )) dery 1 wsedo; wse

|
1 (doy)! ])

= inf max /(1 + |do;|=?)(|wsedo;|? + |weT|?)
d€R+ [/

. _ —WT
= dmf maxo
€R+ v wsgdo—z

W T 2

dO’Z‘

— inf maXJ lwse|? + |wyT|? + |wsedo;|? +
d€R+ [/

The maximum is achieved at

d2 _ ‘th‘
(wse|oT’
and
1
i (G0) = [+ erf + el P) +

na(G(jw)) ~ \Jwsel[wer|5(P) .
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Overview on i Synthesis

2z w
G

=

Fg(G, K) =G+ Gng(I — GQQK)_lel.

min | 7(G, K],

The p-synthesis is not yet fully solved. But a reasonable approach is to
“solve”

D@10

by iteratively solving for K and D, i.e., first minimizing over K with D
fixed, then minimizing pointwise over D with K fixed, then again over K,
and again over D, etc. This is the so-called D-K [teration.

o Fix D
win HDﬂ(G, K)D‘lHOO

is a standard H,, optimization problem.

o Fix K

it [PFiC D7

is a standard convex optimization problem and it can be solved point-
wise in the frequency domain:

sup Dinefpﬁ [Dw]:g(G, K)(jw)D;l] :
Note that when S = 0, (no scalar blocks)

D, =diag(d{I,...,dy I,1) € D,
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D-K Iterations:

(i) Fix an initial estimate of the scaling matrix D,, € D pointwise across
frequency.

d;i(s) € RHo fori =1,...,

e/

(ii) Find scalar transfer functions d;(s)
(F — 1) such that |d;(jw)| ~ d¥.

(iii) Let
D(s) = diag(dy(s)1,...,dp_1(s)I,T).

Construct a state space model for system

(iv) Solve an Hso-optimization problem to minimize

|7, K],

A

over all stabilizing K’s. Denote the minimizing controller by K.

(v) Minimize o[D,Fi(G, K)D;'] over D,,, pointwise across frequency.
The minimization itself produces a new scaling function.

(vi) Compare D,, with the previous estimate D,,. Stop if they are close,
otherwise, replace D,, with D, and return to step (ii).

The joint optimization of D and K is not convex and the global con-
vergence is not guaranteed, many designs have shown that this approach
works very well.
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Chapter 11: Controller Parameterization

A| B, B, |
G(S): Cy| Dy Dyp | =
| O3 [ Doy Do |

Gu(s) Gials) ] |
Ggl (S) GQQ(S)

Suppose (A, Bs) is stabilizable and (Cs, A) is detectable.

Youla parameterization:
all controllers K that internally stabilize G.

e Suppose G € R'Hy. Then
K = Q(I-F GQQQ)_l, Q € RH
and I + D9y(Q)(00) nonsingular.

K stabilizes a stable plant Gag iff K(I — G K )_1 1s stable. So let
Q = K([ — GQQK)_l.

e General Case: Let F and L be such that A+ LCy and A + By F are
stable. Then K = Fy(J, Q):

A+ ByF + LCy+ LDywF | —L By + LDy |

J = F 0 I

—(Cy + Dy F) I — Dy

with any @) € RHy and I + D9y(QQ(00) nonsingular.
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||||||||||||||||||||||||||

B,
F

Cs

Doy
J
A

||||||||||||||||||||||||||

Figure 0.24: Structure of Stabilizing Controllers
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e Closed-loop Matrix:
FilG, K) = Fi(G, F(J,Q)) = Fu(T, Q).

={T11 + T12QT2 : Q € RHoo, I+ D22Q(c0) invertible}
where T" is given by

| A+ ByF  —B,F B, B,
T Ty1 Tis B 0 A+ LCy| By + LDy 0
T Ty Ch1+ Do’ —DoF D Dy

0 Ch Dy 0 |

e Coprime factorization approach: Let Gos = NM ' = M N be ref
and lcf of Gog over R'H o, respectively. And let Uy, Vi, Uy, Vi € R'Hso
satisty the Bezout identity:

Vo —Uo||M Uy| |10
N M || N V, 01|
Then
K = (Up+MQ,)(Vo + NQ,) ™
= (Vo +Q,N)" Uy +Q,M)
- FE(Jy>Qy)> Qy ERHOO
where

Jy =

UO‘/()_l ‘70—1
‘/0—1 —Vb_lN
and (I + V; 'NQ,)(o0) is invertible
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Chapter 12: Algebraic Riccati Equations

A X+ XA+ XRX+Q=0, R=R" Q=0Q
The associated Hamiltonian matrix:

A R
—Q —A*

H =

Then
0 —1

JIH]=—-JHJ = —H*, J:=
I 0

so H and —H* are similar. Thus ) is an eigenvalue iff —\ is.

eig(H) # jw < H has n eigenvalues in Re s < 0 and n in Re s > 0.
Let X_(H) be the n-dimensional spectral subspace corresponding to
eigenvalues in Re s < 0.

X1

X_(H) =Im
X

where X7, Xo € c"*". (X7 and X5 can be chosen to be real matrices.)
If X is nonsingular, define

X = Ric(H) = XoX;': dom(Ric) C R —s R"™".
where dom(Ric) consists of all H matrices such that

e H has no eigenvalues on the imaginary axis

0

e X (H), Im are complementary (or X is nonsingular.)
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Theorem: Suppose H € dom(Ric) and X = Ric(H). Then
(i) X is real symmetric;
(ii) X satisfies the algebraic Riccati equation
A X+ XA+ XRX +Q =0;

(iii) A+ RX is stable .

X
Proof. (i) Let X_(H) = Im Xl ] We show X7 X, is symmetric. Note
2
that there exists a stable matrix H_ in R™*" such that
X X
gl =" 5
X X
Pre-multiply this equation by
X, J
X
to get
X X X X
g T = g T H
X5 X5 X5 X5

Since JH is symmetric =:
(= X7 Xo+ X0 X1)H_ = H (- X7 X0+ X5 X4)"
= —H"' (- X{ X0+ X5 X3).

This is a Lyapunov equation. Since H_ is stable, the unique solution is

— X7 Xo+ X5X,=0.



i.e., X7Xyis symmetric. = X = (X7 H*(X7 X)X ! is symmetric.
(ii) Start with the equation

I
X

Now pre-multiply by [X — I]:

X -—IH

This is precisely the Riccati equation.

(i) [T 0] (H

X X

XlHXll) =

A+RX = X,H_X[ .
Thus A + RX 1is stable because H_ is.

> [X1, Xs] =ric_schr(H), X = X5/X;

163
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Theorem: Suppose eig(H) # jw and R is semi-definite (> 0 or < 0).
Then H € dom(Ric) < (A, R) is stabilizable.

X1 X1 X1
CH _ H.
X X X

We need to show that X; is nonsingular, i.e., Ker X; = 0.

Proof. (<) Note that X_(H) = Im

Claim: Ker X is H_-invariant.
Let x € Ker X; and note that X5 X is symmetric and

AXq1+RXy, =X H_ .

Pre-multiply by z* X3, post-multiply by x to get
r*XRXox =0= RXox =0= X1H =0

le. H_x € Ker Xj.
Suppose Ker X7 # 0. Then H_|ke x, has an eigenvalue, A, and a
corresponding eigenvector, x:

H_z = \x, Re A <0, 0# z € Ker Xj.

Note that
—QX1 — A Xy=XoH_ .

Post-multiply the above equation by x:
(A" 4+ A )Xoz = 0.
Recall that RXsx = 0, we have
" X5[A+ X R]=0.

(A, R) stabilizable = Xox =0 = r = 0= 2 = 0since has

X
full column rank, which is a contradiction.

(=) H € dom(Ric) = A+ RX stable = (A, R) stabilizable.

Xo
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Bounded Real Lemma: Let v > 0, G(s) = € RH

A B
C\D
A+ BR'D*C BR'B*
—~C*(I+ DR 'D")C —(A+ BR'D*C)*
where R = 421 — D*D. Then the following conditions are equivalent:

(1) [|Glloe <.

a(D) < v and H has no eigenvalues on the imaginary axis.

a(D
(

and

H =

(i1)
(iii)
)

(iv

<~ and H € dom(Ric) .

)
D) < v and H € dom(Ric) and Ric(H) > 0 (Ric(H) > 0 if
C, A) is observable).
(D) <~ and there exists an X > 0 such that

/—\q‘

QI

(v)

X(A+BR'D*C)+(A+BR'D*C)* X+ XBR 'B*X+C*(I+DR 'D*)C =0

and A+BR'D*C+BR~!'B*X has no eigenvalues on the imaginary
axis.

(vi) (D) < 7 and there exists an X > 0 such that
X(A+BR'D*C)+(A+BR'D*C)*X+XBR 'B*X+C*(I+DR'D*)C < 0.

(vii) there exists an X > 0 such that

XA+ A*X XB C* |
B*X  —vI D* | <.
C D —~T |

Proof. (v) — (¢): Assume D = 0 for simplicity. Then there is an X > 0

XA+ A*X + XBB* X/ +C*C =
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and A + BB*X/~? has no jw-axis eigenvalue. Hence

Wis) = B*X/fy‘ VI

has no zeros on the imaginary axis since
A+ BB*X/v? ‘ B/~
B*X/v* \ I/~
has no poles on the imaginary axis. Next, note that
—X(jwl — A) — (jwl — AX + XBB*X/y* + C*C =

Multiply B*{(jwI — A)*}~! on the left and (jwl — A)~'B on the right
of the above equation to get

—B*{(jwl — A} 'XB - B*X(jwl — A)'B
+B*{(jwl — A} ' XBB*X (jwl — A) ' B/~
+B*{(jwl — A} 'C*C(jwl — A)~'B = 0.
Completing square, we have

G*(jw)G(jw) = T = W*(jw)W (jw).

Wi(s) =

Since W (s) has no jw-axis zeros , we conclude that |G| < 7.
(vi) = (vid) follows from Schur complement.
(vi) = (i) by following the similar procedure as above.
i):

(1) = (vi): let
A|B
G=|c|D|.
el 0|
Then there exists an € > 0 such that HGA‘OO < 7. Now (vi) follows by

applying part (v) to G. O
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Theorem: Suppose H has the form

A —BB*
—C*C A"
Then H € dom(Ric) iff (A, B) is stabilizable and (C, A) has no unob-

servable modes on the imaginary axis. Furthermore, X = Ric(H) > 0.
And X > 0 if and only if (C, A) has no stable unobservable modes.

H —

Proof. Only need to show that, assuming (A, B) is stabilizable, H has
no imaginary eigenvalues iff (C; A) has no unobservable modes on the

x
imaginary axis. Suppose that jw is an eigenvalue and 0 # is a
2z

corresponding eigenvector. Then
Ax — BB*z = jwax, —C*Cr — Az = jwz.
Re-arrange:
(A — jwl)x = BBz, —(A — jwl)*z = C*Ch.

Thus

(z, (A — jwlx) = (2, BB*z) = | B*z||?

—(z,(A = jwl)*2) = (z,C*Cx) = ||Cz|?
so (x, (A — jwl)*z) is real and
—[[C* = (A = jwI)z, z) = (2, (A = jwl)z) = || B"2|>.

Therefore B*z =0 and Cz = 0. So

(A — jwlz =0, (A — jwl)*z=0.

Combine the last four equations to get
A—jwl

2*[A—jwl B]=0, -

xz = 0.
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The stabilizability of (A, B) gives z = 0. Now it is clear that jw is an
eigenvalue of H iff jw is an unobservable mode of (C| A).

(A= BB*X)'X + X(A—-—BB*X)+ XBB*X +C"C = 0.
X > 0since A — BB*X is stable. O

Corollary: Suppose (A, B) is stabilizable and (C, A) is detectable.
Then
A X+ XA-XBB*X+C'C=0

has a unique positive semidefinite solution. Moreover, it is stabilizing.

Corollary: Suppose D has full column rank and denote R = D*D > 0.
Let H have the form

A0 B
H = - R DC B
| —C*C —A*| | —C'D
| A-Br'DC ~BR™'B*
| —C*(I ~ DR™'D*)C —(A— BR™'D*C)’

A—jwl B

C D
column rank for all w. Furthermore, X = Ric(H) > 0if H € dom(Ric),
and Ker(X) = 0 if and only if (D%C, A — BR™'D*C) has no stable
unobservable modes.

Then H € dom(Ric) iff (A, B) is stabilizable and has full

A—jwl B
C D
(I = DR™'D*)C; A — BR™'D*C') has no unobservable modes on jw-

axis.

This is because has full column rank for all w <
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Chapter 13: H,; Optimal Control

e H5 optimal control

e stability margins of Hy controllers
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H,; Optimal Control

Z w

" A| B, B, |
G(S)Z Cl 0 D12
_CQ D21 0 |

Assumptions:
(i) (A, By) is stabilizable and (Cs, A) is detectable;

(ii) Dy has full column rank with [ Di» D, ] unitary, and Doy has full

row rank with | unitary;
D,
[ A=jel By
(iii) has full column rank for all w;
Ci D
| A—jwl B ]
(iv) has full row rank for all w.
Cy  Dan

Hy Problem: find a stabilizing controller K that minimizes
[ Tewll, -

Xo(A—ByD5,Cy) 4 (A= ByD3Ch ) Xo — XoBoBiXo+CiD DX Cy = 0

Ya(A — B1D3,Cy)* + (A — B1D3,Cy)Ys — YoCiCyYs + B1D* D Bf =0
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Define
F2 = —(B;XQ + DTQCl), L2 = _(}/QO; + BlD;l)
A+ BoFs |1 A+ LoCy| By + LoDy
Ge(s) = ‘ , Gy(s) = ‘ :
CY 4+ Do F5 ‘ 0 I ‘ 0

There exists a unique optimal controller

A+ BoFy + LoCy | — Ly
£ 0

Kop(s) =

Moreover, min || Ty, |3 = |GeBill3 + | FoGrll3 = ||GeLall3 + [|C1Gyll3-

A+ BF, | B
o U = 2z ‘ * e RH is inner and U~G,. € RHQL.
C1 + DioFy ‘ D1
A+ L.C5| By + Ly D
o/ = ’ 2‘ ! et € RHx 1s co-inner and GV~ €
C ‘ Doy
RH; .

e all stabilizing controllers K(s) = Fy(Ms, @), Q € RHs with

A4 BoFy+ LoCy| —Ly By |
MQ(S) = F5 0 I
—C, I 0|

e Closed-loop with K

Tow = G.B, — URG + UQV.
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y%@%u
yl[ 0 jul

2 2 2 2
|Teully = |GeBilla + |Gy = QVIl; = |GeBilla +IIBGyll; + Q1

and ) = 0 gives the unique optimal control: K = Fy(Ms,0).
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Stability Margins of H, Controllers

e LQR margin: > 60° phase margin and > 6dB gain margin.

e LQG or Hy Controller: No guaranteed margin:

11 v ol o]
01 Vo O _1_
¢ =| [vaval| , o
0 0 _1_
10| | [o1] o
Then
X, — 200« oy, - 20 ﬁ]
a 6B
and
1
FQZ—O{[lll, Lgﬁ{ll
where

a=24+VItq, B=2+Vi+o.

1-p5 L5
Kot =| —(a+8) 1 —a|B
— —a |0

Suppose the controller implemented in the system (or plant Gas) is
actually

K = kK,
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with a nominal value £k = 1. Then the closed-loop system A-matrix

becomes )
11 0 0
- 01 —k —k
q_ o) o
60 1-0 1
_6 0 —a—p 1 —o |

The characteristic polynomial has the form
det(s] — fl) — ays* + ass® + ass® + a1s + ag
with
ag=a+0—44+2k—1af, a=1+(1-k)ag.
— necessary for stability: ag > 0 and a; > 0.
—a>land > land k # 1= ay~ (1 —k)af and a1 ~
2(k — 1)ap.
—a > land § > 1 (or ¢ and o), the system is unstable for

arbitrarily small perturbations in & in either direction. Thus, by
choice of ¢ and o, the gain margins may be made arbitrarily small.

It is interesting to note that the margins deteriorate as control weight
(1/q) gets small (large q) and/or system driving noise gets large (large
o). In modern control folklore, these have often been considered ad
hoc means of improving sensitivity.

Hs> (LQG) controllers have no global system-independent guaranteed
robustness properties.

Improve the robustness of a given design by relaxing the optimality
of the filter (or FC controller) with respect to error properties. LQG
loop transfer recovery (LQG/LTR) design technique. The idea is to
design a filtering gain (or FC control law) in such way so that the
LQG (or Hz) control law will approximate the loop properties of the
regular LQR control.



Chapter 14a: Understanding H,, Control

175

Objective: Derivation of H,, controller
Methods: Intuition and handwaving

Background: State Feedback and Observer

e Problem Formulation and Solutions

e An intuitive Derivation
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Problem Formulation and Solutions

_ : z w
A| By By aQ
G(s)=|Ci| 0 Dy yF Wu
i Cy1 Dy 0 | K

(i) (A, By) is stabilizable and (C, A) is detectable
(ii) (A, Bs) is stabilizable and (C5, A) is detectable

(1) Tzlcl DlQ]:[O ]]
0

v D3, =
(iv) n =

Doy

(i) Together with (ii) guarantees that the two AREs have nonnegative
definite stabilizing solutions.

(ii) Necessary and sufficient for G to be internally stabilizable.

(iii) The penalty on z = Ciz + Diou includes a nonsingular, normalized
penalty on the control u. In the conventional Hs setting this means
that there is no cross weighting between the state and control and
that the control weight matrix is the identity.

(iv) w includes both plant disturbance and sensor noise, these are orthog-
onal, and the sensor noise weighting is normalized and nonsingular.

These assumptions can be relaxed.
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Output Feedback H.,, Control

JK such that ||T., || < 7 if and only if
(i) 3 X >0
XA+ A X+ Xoo(B1B} /7v* — BoB) X oo + C1CL =0
(i) 3 Y > 0
AY o + Yoo A"+ Yo (CFC /7 — CiCo) Yoo + BB =0

(iil) p(XooYao) < 72

Ko(s) — A | ~Zoo Lo

where
Ay = A+~ BB Xo + BoFoo + Zoo Lo Cs

Fyo = —B;Xy, Ly =-YC;
Zoo = (I — 7Y X)L
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Bounded Real Lemma

z=CG(s)w, G(s)=C(sI —A)'B e Hy

00 2

E— R
« m 2

L N T

1G]l = sup

Gl <

)
(207 = A2 lwll?) de < 0, VY #0
0
1 X = X* > 0 such that
XA+ A*X + XBB*X/22 + C*C = 0
and A + BB*X/~? is stable

0

3Y =Y* > 0 such that
YA*+ AY +YC*CY/y*+ BB* =0
and A + Y C*C/~? is stable




Let ®(s) = v*I — G~(s)G(s). Then
|G|l <7 <= P(jw) >0, Vw ER <= det O(jw) #0
since ®(00) = v*I > 0 and ®(jw) is continuous

<= ®(s) has no imaginary axis zero.
<= ®7!(5) has no imaginary axis pole.

A 0 |—-B
O(s)= | —C*C —A*| 0
0 B |y

A BB*/¥* B/y*]
o l=1| _crc —A* 0
0 By |y°T

A BB*/v? L
— has no jw axis eigenvalues
—-C*C A"
Apply the following similarity transformation to =1
I 0
T p—
—X 1
A+ BB*X/~? BB* /4 B/~?
ol = M(X) —A* — XBB*/y?*| - X B/~?
B*X/v* B/~ v

M(X)=-XA—-A*X — XBB*X/y* - C*C
If M(X) =0, we have
A+ BB*X/7*|B/y* | | ~(A+ BB X/

—XB/y’
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(I)—l _ /YQ

BX/ |1/ B/~? I/
d(jw) > 0 if A+ BB*X/~? has no jw eigenvalue
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System Equations:
r = Ax+ Biw+ Byu
z = Chix+ Dipu
y = Cox+ Dyyw
State feedback| u = Fx:
&t = (A+ ByF)x + Biw
z = (Cr+ DpF)x

By Bounded Real Lemma, ||| < v

0

4 X = X* > 0 such that
X(A+4 BoF) + (A4 BoF)* X + XBBfX/y? + (C1 + D13 F)*(C1 + D12F) =0

and A + BoF + B1B; X /~? is stable

complete {§ square

4 X = X* > 0 such that
XA+ A*X + XB1BiX/v* — XBB3X + CiCy + (F + B3X)*(F + B3X) =0

and A+ ByF + By B; X /~* is stable

Intuition = F = —-B)X

4 X = X* > 0 such that
XA+ A*X + XB1B:X/7? — XBaBiX + CiCy =0

and A + B1B; X /+* — ByB3 X is stable




Output Feedback| Converting to State Estimation
Suppose 3 a K such that

1 Tzwlloo <
Then x(00) = 0 by stability (note also x(0) = 0)

(0. ] 2 2
5 (120 = A2 Hwl]l?) de
I 2 2 2 d *
= (1 = A el + G (@ X))
— [ (120 = P 0] + & X oo + @* Xooit) dt
Substituting © = Az + Byw + Bou and z = Cix + Diou
00 P p 9
= 7 (ICw))* + lull® = > Jw|
+22" XA + 22" X oo Byw + 22" X o Bou) dt
= |y (#7(C1C1 + XA+ A Xoc)r + [l

—2 ||lw||* + 22* X oo Brw + QQZ*XOOBgu) dt

using X, equation

— [ (0" (X BB Xo /7’ + X Ba By X o) + [[u]

~7* wll® + 22" Xoo Biw + 22" Xoo Bou) dt

= [ (= 1B Xoc/7|* = 72 ]| + 22" X oo Byw

+ 1| Bs Xoo|* + [[ul® + 22" X oo Byu) dt

completing the squares with respect to u and w

— /OOO (Hu + B3 X ooz|)” — A2 Hw — fy_QBfXOO:UH2> dt

181
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Summary:

122 = 2wl dt = [ (o) = 22 [r]1) dt

v=u+ B Xor=u—Foxr, T=w— ”y_zBi‘Xooaz

Rewrite the system equation with: w = r + v 2Bf X oo

& = (A+ BB Xy /7)) x + Bir + Bou
V = —IFT +U
Yy = OQQE‘FDQﬂ“

HTszoo <Y = HTWHOO <7

= [ (llu— Fxz|* = ¥*[Ir|*) dt <0

If state is available: v = F x
worst disturbance: w, = v ?Bf Xoo@
State is not available: using estimated state
u=Fyx
A standard observer:
Z = (A+ B\B; Xy /v?)i& + Bou + L(Coi — )

where L is the observer gain to be determined.
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Let e := x — 2. Then

e = (A + BlBikXOO/’)/Q + LCg)e + (Bl + LDQl)T

v = —Fye

| Tor|l. <v==3aY >0 by bounded real lemma

Y (A+BB{ Xoo /v’ +LCo)* +(A+ BB Xoo/V*+ LCo)Y +Y FLFLY /7
+(B1 4+ LDo1)(By + LDy)" =0

Complete square w.r.t. L

(A+B1B; Xoo /7?) +(A+B1B; X oo /Y)Y +Y FX F. Y /Y4B B =Y C; CoY
+HL+YCH)(L+YC5) =0
Again, intuition suggests that we can take
L=-YC;
which gives
Y(A+ B1Bi Xy /v?) + (A4 B1Bi X /7)Y
Y FEFY /42 —YCO305Y + BB =0
[t is easy to verify that
Y =Yool =7 XooYoo) ™!
Since Y > 0, we must have
P XYoc) <77

Hence L = Z L+, and the controller is give by

T = (A+ BiB! Xoo /7)) + Bot + Zoo Loo(Cod — y))
u = Fox
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Chapter 14: 'H.,, Control

e H,, background

o H..: 1984 workshop approach

e Assumptions

e output feedback H., control

e a matrix fact

e inequality characterization

e connection between ARE and ARI (LMI)
e proof for necessity

e proof for sufficiency

e comments

e optimality and dependence on
e H . controller structure

e example

e an optimal controller

e H ., control: general case

e relaxing assumptions

e H, and H., integral control

o H . filtering
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H., Background

e Initial theory was SISO (Zames, Helton, Tannenbaum)
e Nevanlinna-Pick interpolation
e Operator-theoretic methods (Sarason, Adamjan et al, Ball-Helton)

e Initial work handled restricted problems

( “I-block” and “2-block” )

e Solution to “2 x 2-block” problem
(1984 Honeywell-ONR Workshop)
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Hs: 1984 H/ONR Workshop Approach

Solution approach:

e Parameterize all stabilizing controllers
via [Youla et al

e Obtain realizations of the closed-loop
transfer matrix

e Transform to "2 x 2-block”
general distance problem

e Reduce to the Nehari problem
and solve via Glover

Properties of the solution:

e State-space using standard operations

e Computationally intensive (many Ric. eqns.)
e Potentially high-order controllers

e Find solution < =y, iterate for optimal



187

Assumptions
i i z w
Al By By G
G(s)=|Ci| 0 Dy yF Wu
I CQ Dy 0O ] K

(i) (A, By) is Controllable and (C4, A) is observable
(ii) (A, Bs) is stabilizable and (C5, A) is detectable

(1) Tzlcl DlQ]:[O ]]
0

v D3, =
(iv) n =

Doy

(i) Together with (ii) guarantees that the two AREs have positive definite
stabilizing solution.

(ii) Necessary and sufficient for G to be internally stabilizable.

(iii) The penalty on z = Ciz + Diou includes a nonsingular, normalized
penalty on the control u. In the conventional Hs setting this means
that there is no cross weighting between the state and control input,
and that the control weight matrix is the identity.

(iv) w includes both plant disturbance and sensor noise, these are orthog-
onal, and the sensor noise weighting is normalized and nonsingular.

These assumptions simplify the theorem statements and proofs, and
can be relaxed.
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Output Feedback H.,, Control

JK such that ||T.y||ee < 7 iff
(i) 3 Xeo >0
XA+ A X+ Xoo(B1B} /7v* — BoB) X oo + C1CL =0
(i) 3 Y >0
AY o + Yoo A"+ Yo (CFC /7 — CiCo) Yoo + BB =0

(iil) p(XooYao) < 72

Ko(s) — A | ~Zoo Lo

where
Ay = A+~ BB Xo + BoFoo + Zoo Lo Cs

Fyo = —B;Xy, Ly =-YC;
Zoo = (I — 7Y X)L
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A Matrix Fact

[Packard, 1994] Suppose X, Y € " and X = X* > 0,Y =Y* > 0.

Let r be a positive integer. Then there exists matrices X9 € R™",

Xo € R such that Xy = X3, and

~1
X X12 X X12 Y %
> () —
Xy X X5 X x %
if and only if
X I, n
> () & rank <n+r.
L, Y I, Y

Proof. (<) By assumption, there is a matrix X5 € R"*" such that X —
Y1 = XX 1. Defining Xy := I, completes the construction.
(=) Using Schur complements,

V=X 1+ X1 XX — XX 1 X)X XL
Inverting, using the matrix inversion lemma, gives
Yl =X - XX, X5

Hence, X — Y ! = X5, X; ' X}, > 0, and indeed,
rank(X — Y1) =rank( X2 X5 1 X7,) <. O
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Inequality Characterization

Lemma IC: 3 r-th order K such that ||T. || < 7 only if
(i) 3Y; >0
AY) + Vi A* + Y1C5Ch Y1 /7% + B1Bf — v BeBs < 0
(i) 3X; > 0
X|A+ A X, + X B\ Bi X, /v + CiC, —y*C5C5 < 0

X1/7 ]n
I, Yi/y

X1/7 ]n

o I, Yi/v

> () and rank

Proof. Suppose that there exists an r-th order controller K(s) such
that ||T..]|,, <. Let K(s) have a state space realization

Al B
K(s) = |—/——
C|D
then
4l _ A+ BQﬁCQ BQO By + BQﬁDQl _
Tow = |—1—| = BC, A BDy;
C.| D, - - -
Denote

R=+~I-D'D,, R=~-D.D;.

X1 X2
Xiy Xy

By Bounded Real Lemma, 3X = { > () such that

X(A,+ B.R'D:C.) + (A, + B.R'D:C.)* X
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+XB.R'B'X +C'R7'C,. < 0
This gives after much algebraic manipulation
X1A+ A X, + X 1B\ B: X,/ + C;Cy — 4*C3 0,
+(X1B1D+ X1:B+~*CH) (43 — D*D) N X Bi D+ X1,B+~+2C3)* < 0
which implies that
XA+ A X+ X1 BB X, /y* 4+ C;Cy — v*C3Cy < 0.

Y1 Yo
Y Yo

Let Y = ~2X ! and partition Y as Y = > () then

(Ac + B.R'D!C.)Y +Y(A. + B.R'D:C,)*
+YC*R'CY + B.RT'BF <0
This gives
AY] + Y1A* + BB} — 4*ByB; + Y,CC Y1/~
+(YiC:D* 4+ Y120+~ Bo) (VI — DD*) " (YiCi D* 4+ Y120+~ By)* < 0
which implies that
AY) + VA" + BB — v*By,B} +Y,C;C Y, /7* < 0.

By the matrix fact, given X; > 0 and Y; > 0, there exists X9 and X5
such that Y =?X 1or Y /y = (X/y)™

Xify Xo/v| [Ny x
Xih/v Xo/v * ok
X 1, X 1,
1/ > (0 and rank 1/ <n-+r. O
I, Yi/vy I, Yi/y
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Connection between ARE and ARI (LMI)

Lemma ARE: [Ran and Vreugdenhil, 1988] Suppose (A, B) is con-
trollable and there is an X = X™ such that

QX)) =XA+AX+XBB'X+Q<0.
Then there exists a solution X, > X to the Riccati equation
XA+ A'X+XBB'X+Q=0 (0.7)
such that A + BB* X, is antistable.

Proof.  Let X be such that Q(X) < 0.
Choose Fj such that Ay := A — BFy is antistable.
Let Xy = X solve

XoAo + AE;XO — FJF() + Q@ =0.

Define FO = Fy+ B*X. Then
(Xo— X)Ag+ Ai(Xo — X) = FiFy — Q(X) > 0.
and Xy > X (by anti-stability of Ay)
Define a non-increasing sequence of hermitian matrices { X;}:
Xo2> X1 22Xy > X,
A, = A — BF;, isantistable, 1 =0,...,n — 1;
E:_B*Xi—17 ’1,21,7?7,—1,

By Induction: We show this sequence can indeed be defined:

Introduce
F,=-B*X,_1, A,=A— BF,.
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We show that A, is antistable. Using (0.8), with i =n — 1, we get
Xp 1Ay + AL Xy 1 +Q - FF, — (F, — F,1)"(F, — F,-1) = 0.
Let Fn = F,, + B*X: then
(Xn—1 = X) Ay + AL (X — X) = —Q(X)

+FE, + (F,— Fy1)"(Fy— Fp1) >0

= A, is antistable by Lyapunov theorem since X,,_1 — X > 0.
Let X,, be the unique solution of

X, Ay + A*X, = F'F, — Q. (0.9)

n

Then X,, is hermitian. Next, we have
(X, — X)A, + A(X, — X) = —Q(X) + F'F, > 0,

(Xn—l - Xn)An + A:(Xn—l — Xn) — (Fn — Fn—l)*(Fn — Fn—l) 2 0.

Since A, is antistable, we have X,_; > X, > X.
We have a non-increasing sequence {X;}.

Since the sequence is bounded below by X; > X. Hence the limit
X, = lim X,

n—oo

exists and is hermitian, and we have X, > X. Passing the limit n — oo
in (0.9), we get Q(X;) = 0. So X is a solution of (0.7).
Note that X, — X > 0 and

(X = X)AL + AL(X, — X) = —Q(X)

+(Xy —X)BB* (X, —X)>0 (0.10)
hence, X, — X > 0and A, = A+ BB*X is antistable.
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Proof for Necessary

There exists a controller such that ||T%,||cc < 7 only if the following
three conditions hold:

(i) there exists a stabilizing solution X, > 0 to

XooA + A X oo + Xoo(B1B /v* — BoB3)Xoo + C;C = 0
(ii) there exists a stabilizing solution Y5, > 0 to
AY o + Y A+ Y (CFC /7 — C5C) Yo + BB =0
(iii)
W I

; e >0 or p(XaoYao) <72
n VAo

Proof. Applying Lemma ARE to part (i) of Lemma IC, we conclude
that there exists a Y > Yj > 0 such that

AY +YA* +YCCY/v* + BiBf —v*ByB; =0
and A + C;C1Y /~?% is antistable. Let X, :=7?Y 1, we have
XA+ A* X oo + Xoo(B1B} /v* — ByB3) X oo + C1 01 = 0
and
A+ (BB} /y* — BoB)) Xoo = - X MA+ CFC1 XN X
= - X A+ CrCY/v) X

1s stable.
Similarly, applying Lemma ARE to part (ii) of Lemma IC, we conclude
that there exists an X > X; > 0 such that

XA+ A X + XBB{X/v* + C;C, —7*C5Cy = 0
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and A + BB} X /~? is antistable. Let Y, := 4?X !, we have
AY o + Y A + Y (CF O )y — C5Cy) Y + B1Bf =0 (0.11)

and A + (CFC1/v* — C3C5)Y,, is stable.
Finally, note that the rank condition in part (iii) of Lemma IC is auto-
matically satisfied by » > n, and

W I _ X/ I,
I, 7X0_01 I, Y//V
X I,
1/ > 0.
I, Yi/v

or p(XooYao) < 72 O
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Proof for Sufficiency

Show K, renders || 1., < 7.

The closed-loop transfer function with K,;:

A By F By
. A.| B,
TZUJ - _ZOOLOOCQ Aoo _ZooLooD21 =
C.|D.
C DioF 0
Define
,YQYOgl _,YQYOglzo—ol

= (Z5) Y Y2
Then P > 0 and

PA.+ A*P + PB.B'P/+* + CrC. = 0.
Moreover
A+ BB:YZ!  ByFy — BiBY 17!

A, + B.BfP/~* =
0 A+ BB X /v’ + ByF s

has no eigenvalues on the imaginary axis since
A+ BBiY_ ' s antistable

and
A+ B1Bi Xy /v’ + BoFy s stable

By Bounded Real Lemma, || 1%, ||, < 7
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Comments

The conditions in Lemma IC are in fact necessary and sufficient.

But the three conditions have to be checked simultaneously. This is
because if one finds an X7 > 0 and a Y7 > 0 satisfying conditions (i) and
(47) but not condition (i77), this does not imply that there is no admissible
'Hso controller since there might be other X7 > 0 and Y; > 0 that satisfy
all three conditions.

For example, consider v = 1 and

well o T

Llot] o

It is easy to check that X7 = Y7 = 0.5 satisfy (¢) and (é¢) but not (i77).
Nevertheless, we can show that v,,; = 0.7321 and thus a suboptimal con-
troller exists for v = 1. In fact, we can check that 1 < X7 <2, 1 <Y; <2
also satisfy (7), (74) and (#4¢). For this reason, Riccati equation approach
is usually preferred over the Riccati inequality and LMI approaches when-
ever possible.
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Example

Consider the feedback system shown in Figure 0.4 with

50(s + 1.4) 2 s+1
P = W, = , W, = :
(s+1)(s+2) s+0.2 s+ 10
. L d e
Design a K to minimize the Hs, norm from w = ; toz=|
7 Uu
e W.(I+ PK)™! W.(I+PK)'P d| T d
i ~W,K(I + PK)™" —W,K(I+PK)'P||d| ~ |d

LFT framework:

W, W.P|—W,P 0 0 —2 0 |030 —30
Gs)=| 0 0 | —W, |=| 0 0 0 —10/0 0 —3
7 P -P 1 0 0 01000

0 0 0 —3[00: -1

> [K> TZW7 ’Ysubopt] — hinfsyn(Ga Ily, Ny, Yminy Ymaxs tOl)

where n, = dimensions of y, n,, = dimensions of u; Y, = a lower bound,
Ymax = an upper bound for v.p; and tol is a tolerance to the optimal
value. Set ny, = 1,1y = 1, Ymin = 0, Ymax = 10, tol = 0.0001; we get
Ysubopt = 0.7849 and a suboptimal controller

12.82(s/10 + 1)(s/7.27 + 1)(s/1.4 + 1)
(5/32449447.67 + 1)(s/22.19 + 1)(s/1.4 + 1)(s /0.2 + 1)’
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If we set tol = 0.01, we would get Ysupopt = 0.7875 and a suboptimal
controller

12.78(s/10 + 1)(s/7.27 + 1)(s /1.4 + 1)

K= (5/2335.59 + 1)(s/21.97 + 1)(s/1.4 +1)(s/0.2 + 1)

The only significant difference between K and K is the exact location of
the far-away stable controller pole. Figure 0.25 shows the closed-loop fre-
quency response of @ (7T%,,) and Figure 0.26 shows the frequency responses

of S,T,KS, and SP.

10°

107 —2 —1 o
10 10 10

10* 107 10° 10"
frequency (rad/sec)

Figure 0.25: The closed-loop frequency responses of
7(T,,) with K (solid line) and K (dashed line)

10" ¢

10° |

= 7 N
107 s . . L N
s
~
1072; [EEE : H N B N
3 N
-3
10 Il Il Il
1072 10" 10° 10° 10"

10"
frequency (rad/sec)

Figure 0.26: The frequency responses of S, T, KS, and SP
with K
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Consider again the two-mass/spring /damper system shown in Figure 0.1.
Assume that F} is the control force, Fy is the disturbance force, and the
measurements of xy and xo are corrupted by measurement noise:

0.01(8 + 10)
Y1 T ny 100
Yy = = + W, . W, = s+
n Lo Ny 0 0.01(8 + 10)

s + 100

Our objective is to design a control law so that the effect of the disturbance
force F5 on the positions of the two masses, x1 and x5, are reduced in a
frequency range 0 < w < 2.

The problem can be set up as shown in Figure 0.27, where W, =
Wiy 0

0 Wi

order to limit the control force, we shall choose

is the performance weight and W, is the control weight. In

S+5
u .
s + 50
22
’LU1:F2
I
Y 2 W Z1
K o Plant e
ni
Wy =
O W,

Figure 0.27: Rejecting the disturbance force F, by a feedback control
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] 5 _
Let u=Fi, w=|mn
L n2
woe o] [wp ]
G(S) = 0 0 Wu
l P1 Wn 1 P2
x
where P; and P> denote the transfer matrices from F} and F5 to ! :
95p)

respectively.

o V) = ﬁ, Wy = 0: only reject the effect of the disturbance force

F5 on the position ;.

| Fe(G, Ka)l|y = 2.6584

| Fi(G, K3)|| o = 2.6079
|F/(G, K)o = 1.6101.

This means that the effect of the disturbance force F5 in the desired
frequency rang 0 < w < 2 will be effectively reduced with the H.,
controller K, by 5/1.6101 = 3.1054 times at x;.

o W1 =0, W)= 5/2%: only reject the effect of the disturbance force
5 on the position xo.
| Fe(G, Ka)||, = 0.1659
| Fe(G, K2)||,, = 0.5202
| Fe(G, K)o, = 0.5189.

This means that the effect of the disturbance force F5 in the desired
frequency rang 0 < w < 2 will be effectively reduced with the H.,
controller K, by 5/0.5189 = 9.6358 times at xs.
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10" ¢

Hoo Control

H, Sontrol

[y
Q
()

The largest singular value

i

S

8»—-
[

frequency (rad)lgec) o

Figure 0.28: The largest singular value plot of the closed-loop system 7, with an Hy controller
and an H., controller

o W, =Wy =—2—: want to reject the effect of the disturbance force

s/2+1°
F5 on both 7 and z5.

| Fu(G, Ka)l|, = 4.087
| Fe(G, K2l = 6.0921
| Fe(Gs Koo) || oo = 4-3611.

This means that the effect of the disturbance force F5 in the desired
frequency rang 0 < w < 2 will only be effectively reduced with the
Hoo controller K, by 5/4.3611 = 1.1465 times at both 1 and xs.

This result shows clearly that it is very hard to reject the disturbance
effect on both positions at the same time. The largest singular value
Bode plots of the closed-loop system are shown in Figure 0.28. We
note that the H., controller typically gives a relatively flat frequency
response since it tries to minimize the peak of the frequency response.
On the other hand, the Hy controller would typically produce a fre-
quency response that rolls off fast in the high-frequency range but
with a large peak in the low-frequency range.
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Optimality and dependence on 7y

There exists an admissible controller such that || 7%/« < 7 iff the follow-
ing three conditions hold:

(i) 3 a stabilizing Xo, > 0
(ii) 3 a stabilizing Yo > 0
(ili) p(XooVoo) < '72

e Denote by 7, the infimum over all « such that conditions (i)-(iii) are
satisfied.

e Descriptor formulae can be obtained for v = ,.

e Asy — o0, Hyy — Hy, Xoo — X, ete., and Ky — K.

o If o > 1 > 7o then Xoo(v1) > Xoo(72) and Yoo (1) > Yoo(72).
e Thus X, and Y, are decreasing functions of 7, as is p(X Yoo ).
e At v =1,, any one of the 3 conditions can fail.

e It is most likely that condition (iii) will fail first.

e To understand this, consider (i) and let y; be the largest ~ for which
H fails to be in dom(Ric), because it fails to have either the stability
property or the complementarity property. The same remarks will
apply to (ii) by duality.

e If the stability property fails at v = 71, then Hy, & dom(Ric) but
Ric can be extended to obtain X, and the controller u = —B5 X o«
is stabilizing and makes || 7.y ||cc = 71. The stability property will also
not hold for any v < 71, and no controller whatsoever exists which
makes ||T%w||00 < 71
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e [n other words, if stability breaks down first then the infimum over sta-
bilizing controllers equals the infimum over all controllers, stabilizing
or otherwise.

e In view of this, we would expect that typically complementarity would
fail first.

e Complementarity failing at v = v means p(Xy) — 00 as vy — 7
so condition (iii) would fail at even larger values of 7y, unless the

eigenvectors associated with p(X) as v — 7 are in the null space
of Y.

e Thus condition (iii) is the most likely of all to fail first.
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H., Controller Structure

A | ~Zoo Lo

Ksub<8) = P ‘ 0

A = A+~72B\Bi Xoo + BoFso + Zoo L Cs

Fo = —B;Xy, Lo i=-YC5, Zoo:=I =7 *YouXoo) "

T = A% + BiWyorst + Bott + Zoo Loo(Coi — 3)

A A _2 *k A
U = Fooxa Wyorst = 7 Bl)(ooaj

2) ZooLoo is the filter gain for the OE problem of estimating F.ox in the
presence of the “worst-case” w, Wyorst

3) The H, controller has a separation interpretation

Optimal Controller:

= Ad — Loy (0.12

(I — Yot Yoo Xoo)
u = Fox

AS = A+BQFOO+LOOCQ

Yot Yoo A" Xog + Yot B1 B Xoo + Vs Yoo O O
See the example below.
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a {1 Ow 1
1 0
G(s) = 0
Llot] o
Then all assumptions for output feedback problem are satisfied and

a 1—?2 1—2
HOO — T N JOO f— 7
—1 —a —1 —a

The eigenvalues of Hy, and J, are given, respectively, by

24 142 —1 2412 -1
o(H.) — iﬂa )Y () = iﬂa )Y |
gl gl
1
Ify> T then X_(Hy) and A (J) exist and
V@
X (Hy) =Tm 7
1
(a24+1)y2—1—ay
X_(Js) = Im Y
1
Note that if v > 1, then Hy, € dom(Ric), J € dom(Ric), and
Xo = 7 > 0
\/(a2 + 1)y —1—ay
Y, — 7 > 0.

\/(a2 +1)v2 —1—ay
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[t can be shown that

72 2

@ —1-arp

P(XooYoo) =

is satisfied if and only if
v >Va*+2+a.

So condition (iii) will fail before either (i) or (ii) fails.
The optimal ~ for the output feedback is given by

Yopt = Va2 +2+a

and the optimal controller given by the descriptor formula in equations (0.12)
and (0.13) is a constant. In fact,
Uopt = — T Y
v \/(0,2 + 1)/Vgpt —1- A%opt

For instance, let a = —1 then v, = V3 =1 = 0.7321 and
Uyt = —0.7321 y. Further,

[ _1.7321|1 —0.7321 |
T.., = 1 0 0
| —0.7321|0 —0.7321 |

It is easy to check that || 1%, ||, = 0.7321.
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An Optimal Controller

There exists an admissible controller such that [T, < v iff the
following three conditions hold:

(i) there exists a full column rank matrix XOO1 € rRZ"" such that
002
X ool Xool .
Hoo = Tx, Re )\Z<TX) S 0 V2
X002 X002

and
X:olXOOQ - X:OQXOOI;

Yoo
(ii) there exists a full column rank matrix y | € k2 guch that
002
Yool Yool .
JOO = Ty, Re )\Z(Ty) S 0 Ve
Y002 Y002

and
YOZ1Y002 — Y;QYool;
o | X Xeer YT X oY o0
(iii) )
VT Yoa X2 YioaYoar
Moreover, when these conditions hold, one such controller is

Kopt(s) = CK(SEK — AK)+BK

>

where
By = Y5 X1 — v Y5, X0
Bx = Y.,C5
Cxg = —B5 X
Ag = ExTx — BgCyXoo1 = Ty Ex + Y2 BoCk.
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" A| B, By |

Al B

G(s)=|C1| Dy Dyo| = %
_CQ Dy 0 ]

Assumptions:

(A1) (A, By) is stabilizable and (Cy, A) is detectable;

0
(AQ) D12 = and D21 = [O I ]7
A jwl B, |
(A3) has full column rank for all w;
Ci Dig
A—jwl B |
(A4) - " | has full row rank for all w.
Cy  Dan
A2
* ,y ]ml O
R = D1.D10_ 0 0 , where Dl. = [DH D12
) 21, 0 D
R = D¢ D, — T ,  where D, = H
0 0 Dy
A 0 B L
Hy = _ R D0y B
—CiC A —C7 D,
A0 oL
T = _ R DuB; C|
“B\Bf —A| | —BDx,

Xoo = Ric(Hy) Yo := Ric(Jx)
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Floo -1 * *

F = = —R'[D},Cy + B X,
F2oo

L= | Lix Lo | = =[BiD} + YuC'JR!

D, Fi, and Ly, are Partitioned as follows:

oo Flose o
Lo | D1111 Di112 O
Lo | D121 Di1oe 1
120 B S

F/
L'\ D

There exists a stabilizing controller K (s) such that

|FeG K)o <
if and only if

K = Fi(Mx,Q), Q€ RHs, [|Qllcc <7

where ]
Al By B»

My = 01 1511 D12

_OQ 1521 0 |

ﬁll — _D1121D>1k111(’72] — D1111DT111)_1D1112 - D11227
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D1y € R™272 and Doy € RP2Z¥P2 gre any matrices satisfying

D1yDiy = I — Dua(v*I — Dy D) D,
D;1D21 = I - DTnz(”YQ] - D1111DT111)_1D11127

and
By, = Zoo(Bs + leoo)f)u,
Cy = —Doy(Cy+ Flon),
By = —ZyLys + BoDi3 Doy,
Ch = Foy +D11D2_11027
A = A+ BF + B, D;'C,
where

Zoo= (I =7 Y Xoo) .

Some Special Cases:
e D15 = 1. Then (i) becomes 7 > &(D1121) and
Dii = —Duip, DiDjy=1—~7"2DiauDjy, Dy Do =1
e Dy = I. Then (i) becomes v > &(D1112) and
Dyi = —Diis, DiDjy =1, D3 Doy =1—~"2Djj Do
e D1y =1 & Dy = 1. Then (i) drops out and
Dyi = —Di1ss, DiyDj, =1, D3 Doy =1.
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Relaxing Assumptions

2 w | ]
p p Ap Bpl Bp2

Y, u, P(s) = Cp1 | Dpi1 Dpio
Op2 Dp21 Dp22_

Assume D19 has full column rank and Dy has full row rank:

Normalize D5 and Do

Perform SVD

Dy1o = U, Ry, Dy = Rp [ 0 ]] f]p

such that U, and Up are square and unitary. Now let

— — ~* — » —
zp=Upz, wy=U,w, y,= Ry, u,=Ryu

K(s) = RyK)y(s)R,

Us 0 U 0
G(s) = P | P(s)]| 7
0 R 0 R

A, B U BpR,!
= | UiCp | UDyiUr UiDpaR?
| R)'Cpo | R)'DypUr R'DyoRyY

A\ B, B, ne
C

= | C1| Dy Do | =
| O3 [ Dy Do |
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Then

0
Dm{ D21=[O I],
I

1Fe(P, K)o = 1Fe(G, K)o

o

Remove the Assumption Dy =0

Suppose K (s) is a controller for G with Dag set to zero. Then the controller
for Doy # 0is K(I + Dy K)™L.

Relaxing A3 and A4

Complicated. Suppose that

(00 1|
G=10l0
11

1
O .
which violates both A3 and A4 and corresponds to the robust stabilization
of an integrator. If the controller u = —ex where € > 0 is used, then
—€S ,
T, = p_t with || T,/ = €.

Hence the norm can be made arbitrarily small as € — 0, but € = 0 is not

stabilizing.

Relaxing A1l

Complicated.

Relaxing A2

Singular Problem: reduced ARE or LMI, ...
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H> and H,, Integral Control

Hs and H o design frameworks do not in general produce integral con-
trol.

29 w

21

T Y
ﬁ Kr—y P W

Ways to achieve the integral control:
1. introduce an integral in the performance weight W.:

21 = Wo(I + PK) 'Ww.

Now if the norm (2-norm or oo-norm) between w and z; is finite, then K
must have a pole at s = 0 which is the zero of the sensitivity function.
The standard Hs (or Hso) control theory can not be applied to this
problem formulation directly because the pole s = 0 of W, becomes an
uncontrollable pole of the feedback system (Al is violated).
Suppose W, can be factorized as follows

W, = W.(s)M(s)

where M (s) is proper, containing all the imaginary axis poles of W, and
M~(s) € RHs, We(s) is stable and minimum phase. Now suppose
there exists a controller K (s) which contains the same imaginary axis
poles that achieves the performance. Then without loss of generality, K
can be factorized as

K(s)=—K(s)M(s)

Now the problem can be reformulated as
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Z9 w
Wu Wd
K U P M M yl We Zl
ZL—E_We Wi i =
f ( M0+ P
oo DU
K
A simple numerical example:
, 0 1[0
S _
= =1 3 21|, Wi;=1,
(s+1)(s — 3) il !
-2 1]0
5410 [ —100]-90 1
54100 | g ‘ 1 s

Then we can choose without loss of generality that

S+ « ~
M = : We:
S S+ «

, a> 0.



216

This gives the following generalized system

a0 1 -2 1|1 0
0 —1000 0 00 —90
0 0 0 20 ala 0
Cls) = 0 0 0 0 1/0 0
0 0 0 3 20 1
1 0 0 0 0/0 0
0 1 0 0 0/l0 1
0 0 1 -2 1|1 0

suboptimal Hs, controller Km:

. —2060381.4(s + 1)(s + a)(s 4 100)(s — 0.1557)
F (54 a)?(s+32.17)(s + 262343)(s — 19.89)

which gives the closed-loop co norm 7.854.
. ~2060381.4(s + 1)(s + 100)(s — 0.1557)

Koo = —Koo(s)M(s) = s(s + 32.17)(s + 262343)(s — 19.89)

7.85(s + 1)(s + 100)(s — 0.1557)
T s(s+32.17)(s — 19.89)

An optimal Hs controller

. —43.487(s + 1)(s + a)(s + 100)(s — 0.069)
* 7 (s+ a)?(s? + 30.945 + 411.81)(s — 7.964)

and
B 43.487(s + 1)(s + 100)(s — 0.069)

Ks(s) = —Ks(s)M(s) = s(s2 + 30.94s + 411.81)(s — 7.964)

2. An approximate integral control:

1

W. = W. = :
‘ ‘ S+ €

M(s)=1
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for a sufficiently small € > 0. For example, a controller for e = 0.001 is

given by
316880(s + 1)(s + 100)(s — 0.1545)

7 (54 0.001)(s + 32)(s + 40370)(s — 20)
_1.85(s +1)(s+100)(s — 0.1545)
-~ s(s +32)(s — 20)
which gives the closed-loop H, norm of 7.85.
43.47(s + 1)(s + 100)(s — 0.0679)
(s +0.001)(s? 4 30.93s + 411.7)(s — 7.9718)

2:
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H., Filtering

t = Arx+ Byw(t), x(0)=0
y = Cyx + Dyw(t)

H Filtering: Given ay > 0, find a causal filter F'(s) € RH
if it exists such that

J = sup
weLslooo) w3

with 2 = F(s)y.

i AlB |l "
2A £ 3 (o) y gl §11
— | Co | Doy |

2A e A|B 0

yL P G(s)=|Cy| Dy —I

(s | Cy| Dy O

This can be regarded as a H,, problem without internal stability.

There exists a causal filter F(s) € RHs such that J < ~? if and only if
Joo € dom(Ric) and Yy, = Ric(Jy) >0

A~ Y C3C| Yo O3
i |0
where Y, is the stabilizing solution to

Y A* 4+ AV + Yoo (v 2050, — C5C5) Yo + B1 B} = 0.

Y
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Chapter 15: H,, Controller Reduction

e problem formulation
e additive reduction

e coprime factor reduction
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Problem Formulation

" A| B, By |
G(s) = | Cy| Dy Dy
| O3 [ Dy Do |
2 w
G(s)
y U
K(s)

All stabilizing controllers satisfying || Tsw| o, < 7:
K =Fi(Mx,Q), Q€ RHs, Q<7

where M is of the form

A

Mals) Mls)] | AP P
11\S 12\ S A = =

My = = | C1| D11 Dy
Mo1(s) Maa(s) .

| O3 | Dy Day |

such that A — Bgﬁﬁlé& and A — Blf)ilég are both stable, i.e., My
and My;! are both stable.

Find a controller & with a minimal order such that H]—}(G, K )HOO < 7.

0

Find a stable @ such that K = Fy(M, @) has minimal order and
1@l <



Additive Reduction

221

Consider the class of (reduced order) controllers:
K =Ko+ WoAW;, A€ RHy
Wi, Wi W, Wyt € RH
such that | Fy(G, Ko)|l, <

K and K have the same right half plane poles.
Then

[7iG B, <~

3 Q € RHy with ||Q]|, < 7 such that K = Fy(My, Q).
4

0 1
I 0

0 1
I 0

Q=F(K'K), K,'-= =

a

Q. <7 < |FUKK)| <~
= |FUK, Y Ko+ WhAWh)| <y
— |F(RA)|_<1

where
_ Y20 Ry Ry ||y Y2 0
0 Wil | Ra R 0 Ws
Ry R _ K, I
R BTN )
Ro1 Ro I 0

Redheffer’s Lemma: H}?HOO <Tland ||A]l,<1= H}"g(fw?, A)HOO < 1.
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Suppose Wi and W5 are stable, minimum phase and invertible transfer
matrices such that R is a contraction. Let K be a stabilizing controller
such that | Fy(G, Ko)|| 4
that |Fi(G, K)| < if

< ~. Then K is also a stabilizing controller such

IAL, = Wy (& - KW < 1.

R can always be made contractive for sufficiently small W7 and Ws.
We would like to select the “largest” Wi and W,
Assume || Rl < v and define

L L
Ly Ls

L= = Fo(|— i ).

Then R is a contraction if W, and W satisfy

L, Ly
Ly Ls

(Wrwhy)~! 0 -
0 (WoWs )=t |

An algorithm that maximizes det(W7 W7)det(WoWs') has been devel-
oped by Goddard and Glover [1993].
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Coprime Factor Reduction

All controllers such that || 7., ||s < v can also be written as

K(s) = Fi(My, Q) = (@1~1Q + (?12)(@2168 + @2%)—1 - ({V_Nl
= (Q@H + @22)_1(Q@11 + @21) =V U

where Q € RHuo, |Q|l. < v, and UV ™! and VU are respectively
right and left coprime factorizations over R'H~,, and

©11 O12 | fi_l?lD?_llé? ?2_1?115?_1115?2 ?11?2_11 |
O = O On = | C) — 1?11122_1102 Dys — P111?2_11D22 D1}D2_11
—D3'Cy — D3 ' Doy Dyt
6y 6] | ATDPECL| Bi-BuDulDu —BhDy
= &y On = 02—}7221?1_2101 Doy —AD22AD1_21D11 —D?2Df21
DtCy D3 Dy Dy

A — B,Dy'Cy | BoDi! By — ByDi Dy |
! = —15{21@1 151_21 —151_211511
| Cy — Dy D13 Cy | Dy D1yt Doy — Do Dyt Dyy |

A -— B1D;*Cy | =BiD;! By — B1Dy'Dyy |
0= D31C, Dy} D3 Dys
| C1 — D11 D3'Cy | =D D3t Dig — D11D3' Doy
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Let Ky = 01905, be the central Ho, controller: || Fy(G, Ky)loo < 7
Let U,V € RHs with det V(oo) # 0 be such that

U

A

0

T 0
0 I

612
622

@—1

< 1/V2.

o0

Then K = UV~ is also a stabilizing controller and || Fy(G, K)o < 7.

Note that K is a stabilizing controller such that |7, < 7 if and
only if there exists a ) € RHy with ||@Q||,, < v such that

U © + 06
_ 1@ 12| o Q (0.14)
V @21@ + Oy 1
and
K=Uv"l
Define
-7 0 ) U
A = v 0! Sl I g
0 I O99 Vv
and partition A as
A
A = v
Ay
Then )
U © I 0 —~vA
- 12 | o 8 A =0 TAU
V ©99 0 I I — Ay
and )
U([ — Av) 1 _6 —’yAU(] — Av)_l
V(I —Ay)™? I
Define
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Q = —"yAU(I — Av)_l
Then K = UV~ = UV~ and

Q= —vdull =)t = —[10]a(r=[o 1]a)”

S IR
- I/NZ |0 1/v2

Again by Redheffer’s Lemma, |Ay(I — Ay) ™, < 1 since

1]’“

0 |10]
INV2 o 1vel|

is a contraction and HﬂAHOO < 1.

= [|Qlloe = [yA0(I = Av) 7Y <

Therefore || Fo(G, K)o < 7.

Let Ky = 6560y be the central He, controller: || Fo(G, Ko)|lso <
Let U,V € RHo with det V(c0) # 0 be such that
-1
~ ~ 22 ~ Y I 0
(64 8] [0 ¥])o-

.S 1/V2.

o

A —

A L2 ~
Then K =V U is also a stabilizing controller and || F/(G, K)||e < 7.

sufficient conditions:
H o controller reduction = frequency weighted H,, model reduction.
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Chapter 16: H., Loop Shaping

e Robust Stabilization of Coprime factors

e Robust Stabilization of Normalized Coprime Factors
e H., Loop Shaping Design

e Weighted H., Control Interpretation

e Further Guidelines for Loop Shaping



Robust Stabilization of Coprime Factors
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Robust Stabilization Condition:
Let P = M~*N be the nominal model and

P = (M+ AM)_l(N—FAN)

“mhmmﬁaAMggM;RHmamWHANz&www<e.

21 )

Ay A
w
=

r

T K N O M1

The perturbed system is robustly stable iff

.

(I+PK)'M™Y <1/e

o0

I

State Space Coprime Factorization:

Let
A|lB
C|D

and let L be such that A + LC' is stable. Then

A+uﬂB+LDL

p:Mwm[NAﬂ:

c | D I

Denote

S —
.
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LFT framework:

A | -L B
! ! 0 0 I
. C I D
M1 P
_ C I D
A| B, B, |
- C1| D11 Do
| O3 [ Dy Dy |
21 w
29 ‘
MO N
Y U
K

Controller for a Special Case: D = 0.

; (I+PK)'MY <y
iff v > 1 and there exists a stabilizing solution X, > 0 solving
LC LC LL* 2CC
Xoo(A— )4-(A— )* X oo—Xoo(BB*— )Xot =
-1 v -1 v -1 7: -1

a central controller:
A~ BB'Xo+ LC|L
~B*Xe |0

0.
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Suppose M and N are normalized coprime factors
M (jw)M*(jw) + N(jw)N*(jw) = 1
Then M and N can be obtained as
A-YC'C|B —YC"
c |0 I
where L = =Y C* and Y > 0 is the stabilizing solution to
AY +YA*-YC*CY + BB* =0

N |-

e : —1a7—1
“Ymin - K stgzrbli{l:izmg <] * PK) M

I

V@) = || 1]
where () is the solution to
QA-YCC)+(A-YC'C)YQ+C*C =

Moreover, for any v > 7,in a controller achieving

(I+PK)'M™Y <»v

] (0.0}
is given by
A~ BB'X, —YC*C|-YC"

— B*X.. 0

) 2 -1
v4—1

K(s) =

where
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e Let P = M~!N be a normalized left coprime factorization and
PAr = (M + AM)_l(N + AN)
with
8y Bull <e

Then there is a robustly stabilizing controller for P if and only if

T2
< T A =1 - || ¥ ]
e Let X > 0 be the stabilizing solution to
XA+ A'X - XBB*'X+C'C=0

then
Q=(+XY)'X
and
1 2\ L2
= = (- W) - T

e Let P = M N be a normalized left coprime factorization. Then

K

(I + PK) M (I1+PK)" |1 P]

I I

o0

;

o Let P = M'N = NM~! be respectively the normalized left and
right coprime factorizations. Then

K

o0

(1+PK)[1 P] (1+KP 1 K]

(I+PE)NY =M+ kP 1 K|

0

I

0
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‘H. Loop Shaping Design

T

T b

Loop Shaping Design Procedure
(1) Loop Shaping: Using a precompensator W; and/or a postcompen-

sator W5, the singular values of the nominal plant are shaped to give
a desired open-loop shape.

P, = WyPW;
Assume that Wy and W5 are such that P, contains no hidden modes.
W1 P WQ

(2) Robust Stabilization: a) Calculate €,,4,, where

-1
1 .
€mar = ( inf { (I+PK)'M* )
K stabilizing K
- - 2
SR
H
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P, = Ms_le and
Ms(jw)M:(jw) + Ns(jw)N;(jw) = 1.
If €4 < 1 return to (1) and adjust Wi and Wa.

b) Select € < €42, then synthesize a stabilizing controller K, which

satisfies

(3) The final controller K

(I +PK ) "M <€l

o0

K = Wi K Ws.

A typical design works as follows: the designer inspects the open-loop
singular values of the nominal plant, and shapes these by pre- and/or
postcompensation until nominal performance (and possibly robust stabil-
ity) specifications are met. (Recall that the open-loop shape is related to
closed-loop objectives.) A feedback controller K, with associated stabil-
ity margin (for the shaped plant) € < €,,4,, is then synthesized. If €,,4, is
small, then the specified loop shape is incompatible with robust stability
requirements, and should be adjusted accordingly, then K, is reevaluated.
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Weighted H,, Control Interpretation

1 ~1
(I + P.K,) (I + PK) [I PS]
Ky .
4% Wyt
o | ME (I + PK)” [1 Pl
Wit K Wil
_ ~1
p | T+ KR I K|
Wt W
_ || ™ (1+KP 1P|
W2 P W2_1 0o
This shows how all the closed-loop objective are incorporated.
z W I Wyt w
=t (1+pPE) 1P| 1
29 W K Wi || we
29 w- \ un \
Wit W Wy
<1

T K T A P A Wyt
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Define
1

if K stabilizes P

[E

0 otherwise

(1+PK)[1 P]

0

and
Dopt, := sup bp .
K

Then bp’[( == b[(’p and

2

b =1~ D7) = 1 - | & 3t ][,

i
SISO P:
. . 1+ bpk
galn margin >
—bp i
and
phase margin > 2 arcsin(bp ).
Proof. Note that for SISO system
1+ Piw)K (g
1+ Pjw)K(jw)| Yo

bpr < , —

YL+ [PGw) 21+ | K (jw)?

So, at frequencies where k == —P(jw)K (jw) € RT,
11— k| 11— k|

bpr <

IA

2 | 2 :‘
J(H PR+ o) Jmﬁn{(l—k P )(H\PQ)}

which implies that
<1—bp7K >1+bP,K
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from which the gain margin result follows. Similarly, at frequencies where
P(jw) K (jw) = -

by < 11— e 2sin £ _ [2sin ]
) —_ 1 — 1 2 J
1+ P21+ s - 2 L
VPRI o) 1+ )
which implies 6 > 2 arcsin bp . O

For example, bpx = 1/2 guarantees a gain margin of 3 and a phase
margin of 60°.

> bpx = emargin(P, K); % given P and K, compute bp .
> [Kopt, bpx] = nefsyn(P, 1); % find the optimal controller K.
> K, bpx] = ncfsyn(P, 2); % find a suboptimal controller K.



236

Further Guidelines for Loop Shaping

P = NM™!: normalized right coprime factorization.

) |

bopt(P) < A(P) := y%gog

small A(P) = small by (P).
open right-half plane zeros and poles of P:

R15 %2y« vy Zms P1,P2,---, Dk

21— 829 — S Zm — S
N.(s) = ., Ny(s
z() 21+S829+ s Zm + S p()

_h=Sp2—S5 Pr—S
pL+sSprt+s  ppt+s
Then
P(s) = Po(s)N.(s)/Ny(s)

where FPy(s) has no open right-half plane poles or zeros.
Let No(s) and My(s) be stable and minimum phase spectral factors:

1
P(s)P~

No(s)Ny'(s) = (1 + (s)) , My(s)M{(s) = (14+P(s)P~(s)) "

Then Py = Ny/M, is a normalized coprime factorization and (INyN.) and
(MyN,) form a pair of normalized coprime factorizations of P. Thus

bopt(P) < /[ No(s) N (s)|? + | Mo(s) Ny(5)[2, ¥R(s) > 0.

J6 = > 1 ! w/r nw
In [No(re’’)] = [ 1 \/1+1/\P(jw)2) Ky(w/r) d(Inw)
In[My(re®)| = [ In ¢1+|11’(jw>2) Kylw/r) d(Inw)
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1.5F-

Kg (clr)

10°

Figure 0.29: Ky(w/r) vs. normalized frequency w/r

where r > 0, —71/2 < 6 < w/2, and

1 2w/r)[1 4 (w/r)*] cosf
K@(w/T) = W[l—(w/T)Q] _|_4(w/7“) cos? 6
)

Ky(w/r) large near w = r: |Ny(re/?)| will be small if | P(jw)]| is small
near w = r and |My(re’?)| will be small if | P(jw)] is large near w = r.

Large 6. Kpy(w/r) very near w = r and small otherwise. Hence
|No(re??)| and | My(re’?)| will essentially be determined by |P(jw)| in
a very narrow frequency range near w = r when 6 is large. On the other
hand, when @ is small, a larger range of frequency response | P(jw)| around
w = r will have affect on the value |Ny(re??)| and [My(re?®)|. (This, in
fact, will imply that a right-plane zero (pole) with a much larger real part
than the imaginary part will have much worse effect on the performance
than a right-plane zero (pole) with a much larger imaginary part than the
real part.)
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When can by, (P) be small

Let s = re/’ and note that N,(z;) = 0 and N,(p;) = 0. Then the
bound can be small if

> |N.(s)| and |N,(s)| are both small for some s. That is, |N.(s)| =~ 0
(i.e., s is close to a right-half plane zero of P) and |N,(s)| = 0 (i.e.,
s is close to a right-half plane pole of P). This is only possible if
P(s) has a right-half plane zero near a right-half plane pole. (See
Example 0.1.)

> |N.(s)| and |My(s)| are both small for some s. That is, | N.(s)| = 0
(i.e., s is close to a right-half plane zero of P) and |My(s)| = 0 (i.e.,
| P(jw)]| is large around w = |s| = r). This is only possible if | P(jw)|
is large around w = r, where r is the modulus of a right-half plane
zero of P. (See Example 0.2.)

> |N,y(s)| and |Ny(s)| are both small for some s. That is, |[N,(s)| = 0
(i.e., s is close to a right-half plane pole of P) and |Ny(s)| = 0 (i.e.,
| P(jw)| is small around w = |s| = r). This is only possible if | P(jw)|
is small around w = r, where 7 is the modulus of a right-half plane
pole of P. (See Example 0.3.)

> |No(s)| and |My(s)| are both small for some s. That is, | Ny(s)| = 0
(i.e., |P(jw)| is small around w = |s| = r) and |My(s)| = 0 (i.e.,
| P(jw)| is large around w = |s| = r). The only way in which |P(jw)|
can be both small and large at frequencies near w = r is that | P(jw)]
is approximately equal to 1 and the absolute value of the slope of
|P(jw)| is large. (See Example 0.4.)
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RHP Poles/Zeros are close

Example 0.1
K(s—r)
(s+1)(s—1)

bopt(P1) will be very small for all K whenever r is close to 1 (i.e.,
whenever there is an unstable pole close to an unstable zero).

P1<S) =

r 0.5 0.7 0.9 1.1 1.3 1.5
K =0.1|bopt(P1) | 0.0125 0.0075 0.0025 0.0025 0.0074 0.0124
0.5 0.7 0.9 1.1 1.3 1.5
)10.1036 0.0579 0.0179 0.0165 0.0457 0.0706
r 0.5 0.7 0.9 1.1 1.3 1.5
K =10 | bopt(F1) | 0.0658 0.0312 0.0088 0.0077 0.0208 0.0318

r
K =1 |Dbop(

e

10° |

107

10_2 -2 ‘*1 ‘ 0 ‘ 1 2
10 10 10 10 10

Figure 0.30: Frequency responses of P, for r = 0.9 and K =0.1,1, and 10
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Nonminimum Phase

Example 0.2

K(s—1)

Py(s) = ————=.
2(5) s(s+1)

bopt(P2) will be small if |P(jw)]| is large around w = 1, the modulus of
the right-half plane zero.

K 0.01 0.1 1 10 100
bopt(FP2) | 0.7001 0.6451 0.3827 0.0841 0.0098

10°

10°

10"

10° &

107k

1072E

-3
10 L L L
107 107" 10° 10" 10°

Figure 0.31: Frequency responses of P, and P; for K = 0.1,1, and 10

Note that bop(L/s) = 0.707 for any L and bopt(FPo) — 0.707 as
K — 0. This is because |P,(jw)| around the frequency of the right-half
plane zero is very small as K — 0.



Complex Nonminimum Phase Zeros
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K[(s — cos0)? +sin? §]

Byls) = s[(s + cos )2+ sin® 0]
0 (degree) | 0 45 60 80 85
K =0.1] bopt(Ps) |0.5952 0.6230 0.6447 0.6835 0.6950
0 (degree) | 0 45 60 80 85
K =1 1| bop(Ps) |0.2588 0.3078 0.3568 0.4881 0.5512
6 (degree)| 0 45 60 80 85
K =101 bopt(F3) [0.0391 0.0488 0.0584 0.0813 0.0897

® b, (P3) will be small if | P5(jw)| is large around the frequency of w = 1
(the modulus of the right-half plane zero).

e for zeros with the same modulus, bop(F3) will be smaller for a plant
with relatively larger real part zeros than for a plant with relatively
larger imaginary part zeros (i.e., a pair of real right-half plane zeros
has a much worse effect on the performance than a pair of almost pure
imaginary axis right-half plane zeros of the same modulus).
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Unstable Poles

Example 0.3

K(s+1)

Fils) = s(s—1)

bopt(Py) will be small if | Pj(jw)| is small around w = 1 (the modulus of
the right-half plane pole).

K 0.01 0.1 1 10 100
bopt(P) | 0.0098 0.0841 0.3827 0.6451 0.7001

Note that bept(FPy) — 0.707 as K — oo. This is because | Py(jw)|
is very large around the frequency of the modulus of the right-half plane
pole as K — o0.

K[(s + cos 6)? 4 sin’ 6]
s[(s — cos0)2 +sin* 0]

P5(S) =

The optimal bop(FP5) for various 8’s are listed in the following table:

6 (degree) | 0 45 60 80 85
K =01 bop(FP5) |0.0391 0.0488 0.0584 0.0813 0.0897

0 (degree) | 0 45 60 80 85
K =11 by(P5) |0.2583 0.3078 0.3568 0.4881 0.5512
6 (degree) | 0 45 60 80 85
K =10 bopt(F5) [0.5952 0.6230 0.6447 0.6835 0.6950

® bopi(P5) will be small if | P5(jw)| is small around the frequency of the
modulus of the right-half plane pole.
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e for poles with the same modulus, by (F5) will be smaller for a plant
with relatively larger real part poles than for a plant with relatively
larger imaginary part poles (i.e., a pair of real right-half plane poles
has a much worse effect on the performance than a pair of almost pure
imaginary axis right-half plane poles of the same modulus).
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Large Slope near Crossover

Example 0.4

K(0.25 + 1)
s(s+ 1)+

P6(S) =

10%

K=10000

0% [

10° -

10° |

K=0.00001

10°

10700

10_15 i i i i i
10° 107 10" 10° 10 10° 10°

Figure 0.32: Frequency response of Py for K = 107° 10! and 10*

e K = 107" slope near crossover is not too large = by,i(Ps) not too
small.

e K = 10* Similar.

e K = (0.1: slope near crossover is quite large == bop(Fs) quite small.

K 107> 1073 0.1 1 10 102 10%
bopt(Ps) | 0.3566  0.0938 0.0569 0.0597 0.0765 0.1226 0.4933
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Guidelines

Based on the preceding discussion, we can give some guidelines for the
loop-shaping design.

O The loop transfer function should be shaped in such a way that it has
low gain around the frequency of the modulus of any right-half plane
zero z. Typically, it requires that the crossover frequency be much
smaller than the modulus of the right-half plane zero; say, w. < |z|/2
for any real zero and w, < |z| for any complex zero with a much larger
imaginary part than the real part (see Figure 0.29).

@ The loop transfer function should have a large gain around the fre-
quency of the modulus of any right-half plane pole.

O The loop transfer function should not have a large slope near the
crossover frequencies.

These guidelines are consistent with the rules used in classical control
theory (see Bode [1945] and Horowitz [1963]).
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Chapter 17: Gap metric and v-Gap Metric

e Gap metric

e v-Gap metric

e Geometric interpretation of v-gap metric
e [Extended loop-shaping design

e controller order reduction
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Measure of Distance:

Closed-loop:
|Pi(I+ P) ™ = Py + Py) Y| = 0.0909,

Open-loop:
||P1 _P2||oo = 0.

Need new measure.
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Gap Metric

normalized right and left stable coprime factorizations:
P=NM"'=M'N.
MM+ N~N=1 MM~+ NN~ =1.

The graph of the operator P is the subspace of Hs consisting of all pairs
(u,y) such that y = Pu. This is given by

M
N

Ho

and is a closed subspace of Ho. The gap between two systems P, and Py
is defined by

5.(Py. Py) = |II
o(P1, ) M,

Ni

Mo
N

Ho Ho

where IIx; denotes the orthogonal projection onto K and P, = Ny M
and Py = NoMy ! are normalized right coprime factorizations.

Theorem 0.1 Let P, = N1]\41_1 and Py = ]\72]\42_1 be normalized right
coprime factorizations. Then

—

59(P1, PQ) = IMax {S(Pl, PQ), (PQ, Pl)}
where gg(Pl, Py) is the directed gap and can be computed by

M, M, ] 0

Ny

—

69<P17P2> - Qlerr}ioo

Ny

o
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> 0g(P1,P2) = gap(P1, P2, tol)

1 1
dg (—, ) = 0.0995,
s ' s+0.1
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Lower Bound of Gap

Let
@ p—

M3 Ny
Ny M, |
Then &P = &P~ = [ and

B} o My N | ] M,
0g(P1, P2) = inf -~ - @
Q€Hoo —N2 MQ N1 NQ

(0. 9]

MM NN - Q
= in N -
Q€M _N2M1 + M2N1
> W (P, Pl
where
8 - - 0 I]|]|M
(P, Py) = —NoM, + My, = [MQ NQ] .
-7 0| ™My
|U(Py, P)||,, is related to the v-gap metric.
k k
T p o
s+1 s+1
Then it is easy to verify that P, = N;/M;, i = 1,2, with
ki 1
N, = M= 5T

Y (4 Y
s+ 41+ k7 s+ 1+ k7

are normalized coprime factorizations and it can be further shown, as in
Georgiou and Smith [1990], that

k1 — ko .
m, if |k1k2| > 1,
O0g(P1, P2) = ||V (P, )| =
ki — k
LSl i k| < 1.
JL+ R (L + &3)
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Connection with Coprime Factor Uncertainty

Corollary 0.2 Let P have a normalized coprime factorization P =
NM™Y. Then for all0 < b <1,
<%.

{Pi: 5,(P,P) <0
Proof. Suppose gg(P, Py) < bandlet P, = NyM;! be a normalized right
coprime factorization. Then there exists a () € Ho, such that

Ay

Pr: Pr=(N+An)(M+Ay)"" Ay, Ay € H,

M

M M,
— Q| <b.
N Ny .
Define
A M M
M= ! Q — € Heoo.
Ay Ny N
AM -1 -1
Then A <band P, = (N1Q)(M1Q)™ = (N+AN)(M+Ay)~"
N

To show the converse, note that P; = (N +Ayx)(M +Ay;)~! and there
exists a Q7! € H, such that P = {(N + AN)Q} {(M + AM)Q}_l is a

normalized right coprime factorization. Hence by definition, d,( P, P) can

M
<

where the first inequality follows by taking Q = Q! € H... O

be computed as

M
QQ

N

M+ Ay
N + Ay

M+ Ay
N+ Ay

0,(P, P)) = inf

< b

0
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Properties

o If 6,(Py, P,) < 1, then 0,(Py, Py) = 6,(Py, Py) = 0,(Ps, Py).

) . then

[P : (P, P) <bl={Pi: 6(P,P)<b}.

o [f b < A\(P):= inf 0(
Js>0

Recall that
1

K stabilizing I+ PK)_l l P ]

bt (P) = inf
b (F) { "

o0

2

H

- V) = 1~ || ¥ ]|
and

~1
1
K oo oo

Theorem 0.3 Suppose the feedback system with the pair (P, Koy) is

stable. Let P == {P: 0,(P,Fy) <m} and K :={K : 0,(K, Ky) < ro}.
Then

—1

(I1+PK)[1 P] (I+KP) 1 K|

P

(a) The feedback system with the pair (P, K) is also stable for all
P e P and K € K if and only if

arcsin bp, , > arcsinry + arcsin ra.

(b) The worst possible performance resulting from these sets of plants
and controllers is given by
inf arcsinbpy = arcsinb — arcsinry — arcsin ro.
Pep. Kek P K Py, Ky 1 2

one can take either r; = 0 or ro = 0.
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Example
Consider
P = : 1 — N\/M,, P,= 288;11 — Ny/Ms.
i :%217 M :%’ = ﬁllﬂ b= \/Bssilﬂ
] 1

59(P17P2):1/3>H\IJ(PMP?)HOOZSBP\/M:\/Ea

> 5g(P1, Pg) = gap(Pl, Pz, tOl)
Next, note that by (P;) = 1/4/2 and the optimal controller achieving
bobt (P1) is Kopt = 0. There must be a plant P with 0, (Py, P) = bowt(P1) =
1/ V/2 that can not be stabilized by Ko = 0; that is, there must be an
unstable plant P such that 6,(P;, P) = by (P1) = 1/+v/2. A such P can
be found using Corollary 0.2:

{PI (Sg(Pl,P) < bobt(Pl)}

Nl—l—AN AN
—lp. p="1""N ALy Ay € He, < b (P
Ml—I-AM N M bt( 1)

0

M

Ay

that is, there must be Ay, Ay € Hoo, = bobt(P1) such that

o0

M

B Ny + Ay
M+ Ay

1s unstable. Let
1 s—1

Ay =—2—2
M= 2s+1

Then

Nl—l—AN s—1
— — 5V P7P prm— bO P :1 2
Ml‘l_AM 9 ) ( 1 ) bt( 1) /\/_
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Example

Question: Given an uncertain plant

k
P(S):S_l, kE[kl,kQL

(a) Find the best nominal design model Py = in the sense

S _
inf sup 0,(P, Fpy).
ko€lk1,k2] /{76[/{11,3/{2] g< 0)
(b) Let k; be fixed and ko be variable. Find the ky so that the largest
family of the plant P can be guaranteed to be stabilized a priori by
any controller satisfying bp, x = bont(Fp).

For simplicity, suppose k; > 1. It can be shown that 6,(P, P) = ‘28—;?

Then the optimal ky for question (a) satisfies
ko—Fki ko — ko
ko + k1 B ko + ko'

that is, ky = /k1ks and

inf sup 0,(P, Ry) = Vha - \/]?1
ko€lkka] kelky kol Vs + Vi
To answer question (b), we note that by Theorem 0.3, a family of plants
satisfying 6,(P, Py) < r with Py = ko/(s + 1) is stabilizable a priori by
any controller satisfying bp, x = bopt(Fp) if, and only if, r < bp, k. Since
PO = No/Mo with

]{0 s—1

N: M:
" s T+ kT s+ VIR

is a normalized coprime factorization, it is easy to show that

No || B+ (1T +R)
M, . 271 + k3
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and

bowt (Py) = J; (1 n 1 2).

1+ kg
Hence we need to find a kg such that
ko — k1 ko — ko
ko+ ki’ l<;2+/<;0}

)

bobt (Fo) > max{

that is,

\ll <1+71 ) > max{ko — ki ke o ko}

2 VI+ k)~ ko+ k1’ ko + ko

for a largest possible ky. The optimal &y is given by the solution of the
equation:

J1<1+ 1 ):ko—ksl
2 v1+ k}g ko + k1
and the largest ky = k3/k;. For example, if k; = 1, then kg = 7.147 and
ko = 51.0793.

In general, given a family of plant P, it is not easy to see how to choose
a best nominal model Py such that (a) or (b) is true. This is still a very
important open question.
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v-Gap Metric

Definition 0.2 The the winding number of g(s) with respect to this
contour, denoted by wno(g), is the number of counterclockwise encir-
clements around the origin by g(s) evaluated on the Nyquist contour
[. (A clockwise encirclement counts as a negative encirclement.)

Figure 0.33: The Nyquist contour

Lemma 0.4 (The Argument Principle) Let I' be a closed con-
tour in the complex plane. Let f(s) be a function analytic along the
contour; that is, f(s) has no poles onT'. Assume f(s) has Z zeros and
P poles inside I'. Then f(s) evaluated along the contour I’ once in an

anti-clockwise direction will make Z — P anti-clockwise encirclements
of the origin.
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Properties of wno

Denote n(G) and ng(G), respectively, the number of open right-half
plane and imaginary axis poles of G(s).

Lemma 0.5 Let g and h be biproper rational scalar transfer functions
and let F' be a square transfer matriz. Then

(a) wio(gh) = wno(g)+wno(h);

(b) wnolg) = (g ™) - n(g);

(c) wno(g™) = —wno(g) — mo(g™") + no(9);

(d) wno(1+¢g) =0 if g € RL and ||g||

(e) wno det(I + F) =0 if F € RLy and HF||OO <1

Proof.

(a) obvious.

(b) the number of right-half plane zeros of ¢ is the number of right-half
plane poles of g~

(c) Suppose the order of g is n. Then n(g~) = n —n(g) — n(g) and
n[(g™)7"] =n-nlg~")—no(g"), which gives wno(g™) = n [(g7) '] -
n(g™) =n(g)—nlg™")—mlg")+mlg) = —WHO(Q)—no(g H+m(9).

(d) follows from the fact that 1 4+ Rg(jw) > 0, Vw since ||g||,, <1

(e) follows from part (d) and det(I+F') = 172 (1+X;(F)) with [ \(F)| <
1.
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Example
Let
~1.2(s+3) s—1 ~2(s—=1)(s—2) (s=1)(s+3)
N=T5 75 0 P BT+ 4) P (s—2)—4)

Figure 0.34 shows the functions, g1, g9, g3, and g4, evaluated on the Nyquist
contour I'. Clearly, we have

wno(gy) = —1, wno(gs) =0, wno(gs) =2, wno(gy) =—1

and they are consistent with the results computed from using Lemma 0.5.

2

1.5F

1V

o
[Sa)
T

imaginary
o

il
-1 -0.5 0 0.5 1 15 2
real

Figure 0.34: ¢1, g2, g3, and g4 evaluated on I’
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v-Gap Metric

Definition 0.3 The v-gap metric is defined as

[W(PL, P2l i det O(jw) # 0 Vw

and wno det O(s) = 0,

o0 ?

5V(P17 PQ) —

1, otherwise

where O(s) := NNy + M5 My and V(Py, P) := — Ny M, + MyNy.

5,(P, Py) = 6,(Py, P) = 6,(PL, Pl

> 0,(P1,P3) = nugap(P;, P2, tol)
where tol is the computational tolerance.

1
Consider, for example, P, = 1 and P, = —. Then

S
1 S 1
! WO 2T s 1 2T s 11
Hence |1 ! ! !
O(s) = (P, Py) =

T Ll —s5 V2 T V2s+ 1]

and 0, (P, P5) = % (Note that © has no poles or zeros!)
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Theorem 0.6 The v-gap metric can be defined as

|V (P, P)||,, if det(l + Py"P) # 0 Vw and
wno det(I + Py Py) + n(Py)
—n(P2) — () =0,

otherwise

o0 ?

5I/(P17 PQ) -

1

)

where V(Py, Py) can be written as

U(P, Py) = (I + PPy) VAP — P)(I + PP~ Y2

Proof. Since the number of unstable zeros of M; (Ms) is equal to the
number of unstable poles of P; (P,), and

Ny Ny + My My = M (I + Py P)M,
we have
wno det(Ng” Ny + M5" M) = wnodet { My (I + P;"Py) M, }
= wnodet M35" + wnodet(I + Py P;) 4+ wno det M.

Note that wno det My = n(P;), wno det My = —wnodet Mo—ng(My ') =
—1(P,) — no(F), and

wno det( Ny N1+ My My) = —n(Py)—no(Ps)+wno det(I+ Py Py)+n(Py).
Furthermore,
det(Ng' Ny + M3 M) # 0, YVw <= det(I + Py Py) # 0, Yw.
The theorem follows by noting that
U(Py, Py) = (I + PPy V2P — P)(I + Py Py) 12
since V(Py, Py) = — NoM; + MyN; = Mg(Pl — Py)M; and
My My = (I+ PPy, MMy =(I+PrP)" "
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Theorem 0.7 Let P, = N1]\41_1 and P, = ]\72]\42_1 be normalized right
coprime factorizations. Then

0,(Py, Py) = inf Mt 1M g
Q,Q_l c »Coo N1 NQ

wno det(Q) =0
MOT’@O’UGT, 5g(P1, Pg)bobt(Pl) S 5V(P1, P2> S 59(P1, PQ)

o

It is now easy to see that

{P: 0,(Py,P)<r}

_ Ay Ay
D) PZ(NO-I—AN)(MO—FAM)lI A € Hoo, <T’}.
Define h
1 _ . 1 ,
ek ( iy | 0 PUIEG™ [ PG |
and

Y(P(jw), R(jw)) =7 (V(P(jw), P(jw))) -

The following theorem states that robust stability can be checked using
the frequency-by-frequency test.

Theorem 0.8 Suppose (Py, K) is stable and 6,(Py, P,) < 1. Then
(P, K) is stable if

pr’K<W) > ¢(P0(]W), Pl(jw)), Yw.
Moreover,
arcsinbp, x(w) > arcsinbp, x(w) — arcsin(Fy(jw), Pi(jw)), Vw

and
arcsin bp, g > arcsinbp, x — arcsind,(Fy, Py).
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Proof. Let P, = M{'Ny, Py = NgM;' = My'Ny and K = UV ™! be
normalized coprime factorizations, respectively. Then

1 (v
=0
bPLK(w) U

] (MV + N U)™ [ M, N ]) =7 ((MV + NU)™).

That is,
bp, (W) = Q(Z\%V + ]\~/1U) =0 (l M, N; ] o
Similarly,
~ ~ - V
bp (W) = a(MyV + NoU) = o ([ My Ny 1 { . D :
Note that

¢(P0(jw>>P1(jw))0(lM1 le Mo D

N Myl N M
— My N§ —My N§
To simplify the derivation, define

G = _]XZO o= W], G- m ] =]
Then
W(Py, P1) = 0(G1Go), bp.x(w) = a(GoF), bpx(w) =a(GiF)
and
[GO GON]N[GO Gg]:]:[c;o GgHGO Ggr:].
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That is,
G()GE)V + GE)VGO =1.
Note that

I = GGy = G1(GoGr+G5Go)GT = (G1Go)(G1Go)~+(G1GH) (GG ™.

Hence

d?(G1GY) =1 —4(G1Gy).
Similarly,
[ =F"F =F~(G\Gy +GyGy)F = (GyF) (G F) + (GoF)~(GoF)
— 7(GYF) =1 — a*(GyF).
By the assumption, ¥(Fy, P1) < bp, k(w); that is,

5(@1G0) < Q(G()F), Yw

and
o(GF) =1 — 02(GoF) < |1 — 0%(G1Go) = a(G1GY).

Hence

5(G1G0)5(G8F> < Q(GlGa)Q<GOF);
that is,

7(G1GGy F) < o(G1GyGoF), Y w

— |(G1GFGoF) N (G1GyGRF)| < 1.
Now

élF = él(égéo + G()GBJ)F = (élégéoF) + (élGoGgF)
= (G1GyGoF) (I + (GiGy GoF) H(GhGyGH F)) .
By Lemma 0.5,
wno det(G1F) = wno det(G 1G5 GoF) = wno det(G1GY)+wno det(GoF).
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Since (P, K) is stable => (GoF) ™' € Hoo = n((GoF)™1) =0
= wno det(GoF) = n((GoF)™") = n(GoF) = 0.
Next, note that
Pl = (NDY(ID), PP = (W)
and 0, (PL, PI) = 6,(Py, P1) < 1; then, by definition of 6, (P}, P),
wno det((ND)~(ND+(MI)~ (M) = wno det(G,G7)T = wno det(G1GF) =

Hence wno det(G1F ) = 0, but wno det(G1F) = n((G1F) ) —n(GF) =
n((G1F)™) since n(G1F) = 0, so n((G1F)™') = 0; that is, (P}, K) is sta-
ble.
Finally, note that

GlF = Gl<éaéo + G()GE)V)F = (Gléa)(éoF) + (GlG0)<GONF)
and
a(G\F) 2 o(G\GF)a(GoF) — a(G1Go)a Gy F)
= /1 = 0%(G1Go)a(GoF) — o(G1Go)\1 — 02(Go F)
— sin(arcsin ¢(GoF) — arcsing(G1G)))
= sin(arcsin bp, x(w) — arcsin Y(Fy(jw), Pi(jw)))

and, consequently;,

arcsinbp, j(w) > arcsinbp, x(w) — arcsin (F(jw), Pi(jw))
and
inf arcsinbp, i (w) > infarcsinbp, x(w) — sup arcsin (Fy(jw), Pi(jw)).

That is, arcsinbp, r > arcsinbp, - — arcsin d,(Fy, Pp). O
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The significance of the preceding theorem can be illustrated using Fig-
ure 0.35. It is clear from the figure that d,(Fy, P1) > bp, k. Thus a
frequency-independent stability test cannot conclude that a stabilizing
controller K for P, will stabilize P,. However, the frequency-dependent
test in the preceding theorem shows that K stabilizes both Py and P;
since bp, k(w) > Y(Fy(jw), Pi(jw)) for all w. Furthermore,

bp, i > infsin (arcsin bp, ;e (w) — arcsin (P, Pr)) > 0.

D@

WR(w,R(w)

Figure 0.35: K stabilizes both Fy and P; since bp, x(w) > (P, P1) for all w
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Theorem 0.9 Let Py be a nominal plant and § < a < bop(F).
(i) For a given controller K,
arcsin bp r > arcsin o — arcsin 3
for all P satisfying 6,(FPy, P) < B if and only if bp, k > .
(ii) For a given plant P,
arcsin bp r > arcsin o — arcsin 3

for all K satisfying bp, x > « if and only if 6,(Fy, P) < S.

Theorem 0.10 Suppose the feedback system with the pair (Py, Ky) is
stable. Then

arcsin bp i > arcsin bp, x, — arcsin d,(F, P) — arcsin 6, (Ko, K)

for any P and K.

Proof. Use the fact that bp i = bk p and apply Theorem 0.8 to get
arcsin bp i > arcsin bp, g — arcsin 0, (Fp, P).
Dually, we have
arcsinbp, i > arcsinbp, g, — arcsin 9, (K, K).

Hence the result follows. O
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Example

Consider again the following example, studied in Vinnicombe [1993b], with

—1 2s — 1
p=""2, p="
s+ 1 s+ 1
and note that
—2s—1s—1 3 2
L PP =1 ST T

—s+1s+1 s+1°
Then
1+ Py (jw)P(jw) # 0, VYw, wno det(I+ Py P)+n(P)—n(P) =0
and
[P — P
JI+|P2 1+ | P2
] 1

TP VR4 VIO
This implies that any controller K that stabilizes P, and achieves only
bp x> 1/ V10 will actually stabilize Py. This result is clearly less con-
servative than that of using the gap metric. Furthermore, there exists a
controller such that bp, g =1/ V10 that destabilizes Py. Such a controller
is K = —1/2, which results in a closed-loop system with P ill-posed.

0,(P1, Po) = [|U( Py, Pyl = sup
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Example
100 100 100
P os+1 T 25— T s+ 1)

5,(P1, Py) = 0,(Py, Py) = 0.02, 6,(Py, P3) = 0,(Py, Ps) = 0.8988,
8,( Py, Py) = 6,( Py, Ps) = 0.8941,

which show that P, and P, are very close while P, and P3 (or P, and P3)
are quite far away. It is not surprising that any reasonable controller for
P, will do well for P, but not necessarily for Ps.

1.8

1.6

1.4r

—P1
-- P2 ||
P3

Figure 0.36: Closed-loop step responses with K; =1

The corresponding stability margins for the closed-loop systems with
P, and P, are

bpl,Kl = 0.7071, and bPQ,Kl = 0.7,
respectively, which are very close to their maximally possible margins,
bopt(Py) = 0.7106, and b (FP2) = 0.7036

(in fact, the optimal controllers for Py and P, are K = 0.99 and K = 1.01,
respectively). While the stability margin for the closed-loop system with
P3 1S

bp, k, = 0.0995,
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which is far away from its optimal value, bon(P3) = 0.4307, and results
in poor performance of the closed loop. In fact, it is not hard to find a
controller that will perform well for both P, and P, but will destabilize
P. 3.

Of course, this does not necessarily mean that all controllers performing
reasonably well with P; and P, will do badly with P, merely that some
do — the unit feedback being an example. It may be harder to find
a controller that will perform reasonably well with all three plants; the
maximally stabilizing controller of P,

~2.0954s + 10.8184
T 5492392649

K3
is a such controller, which gives
bp, iy = 04307, bp, gy = 0.4126, and bp, gy = 0.4307.
The step responses under this control law are shown in Figure 0.37.

1.2

1+

0.8

0.6

I I I I I I I I I
[0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.0954s + 10.8184
s +23.2649

Figure 0.37: Closed-loop step responses with K3 =
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Geometric Interpretation of v-Gap Metric

57/<P17 P2> — Sgp ¢(P1(JW)7 PQ(]WD
In particular, for a single-input single-output system,
, , P (jw) — P(jw
P(P(jw), P(jw)) = |1< L A )‘. 2
VL PGw)? |1+ | Py(jw))

This function has the interpretation of being the chordal distance between
P (jw) and Py(jw).

(0.15)

Figure 0.38: Projection onto the Riemann sphere

Now consider a circle of chordal radius r centered at FPy(jwy) on the
Riemann sphere for some frequency wy; that is,

| P(jwo) — Po(jiwo) _
1+ PGl 1+ [Pl

Let P(jwy) = R+ jI and Py(jwy) = Ro+ jlp. Then it is easy to show
that

Ry 2 1y 2 &(1 + ‘P()P — CY) ,
_ J — — f 1
(R 1—oz>+( 1—oz) (1—a) 7’ ita7
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0.8

0.6

0.4

0.2

0.
-0.5

0.5 05

1 o]

1.5
real axis imaginary axis

Figure 0.39: Projection of a disk on the Nyquist diagram onto the Riemann sphere

where o = r2(1 + | By|?).

For example, an uncertainty of 0.2 at |pg(jwy)| = 1 for some wy (i.e.,
d,(po, p) < 0.2) implies that 0.661 < |p(jwp)| < 1.513 and the phase
difference between py and p is no more than 23.0739° at wy.

real axis imaginary axis

Figure 0.40: Uncertainty on the Riemann sphere and the corresponding uncertainty on the Nyquist
diagram
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051
23.0739

Imaginary Axis

-0.5

p=1.5
=11 s ! I L |

1 . 15 2
Real Axis

Figure 0.41: Uncertainty on the Nyquist diagram corresponding to the balls of uncertainty on the
Riemann sphere centered at py with chordal radius 0.2
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The Necessity of WNO

|U(Py, P)||,, on its own without the winding number condition is use-
less for the study of feedback systems.
Consider 1
P=1 Pp=>"""°
s—1

It is clear that P, becomes increasingly difficult to stabilize as e — 0 due to

the near unstable pole/zero cancellation. In fact, any stabilizing controller

for P, will destabilize all P, for e sufficiently small. This is confirmed by

noting that bopt(Py) = 1, bont(FP2) ~ €/2, and
59(P1,P2):5,/(P1,P2):1, 62 —2.

However, ||V(Py, B)|,, = \/ﬁ ~ 5 in itself fails to indicate the

difficulty of the problem.
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Extended Loop-Shaping Design

Let P be a family of parametric uncertainty systems and let Py € P be
a nominal design model. We are interested in finding a controller so that
we have the largest possible robust stability margin; that is,

o e
Note that by Theorem 0.8, for any P; € P, we have
arcsinbp, i(w) > arcsinbp, x(w) — arcsiny(Fy(jw), Pi(jw)), Vw.

Now suppose we need infpep bp g > . Then it is sufficient to have

arcsin bp, x(w) — arcsin (Py(jw), P1(jw)) > arcsina, Vw, P € P;
that is,

bp, x(w) > sin (arcsin (P (jw), P (jw)) + arcsine),  Vw, P € P.
Let W (s) € Hs be such that

(W (jw)| > sin (arcsin (Py(jw), P(jw)) + arcsina),  Vw, P, € P.

Then it is sufficient to guarantee
(W(jw)|

< 1.
bPO,K(w)

Let Py = Mo_ I Ny be a normalized left coprime factorization and note that

it ( (I + Pje)K (jw) ™ Molow) .

Then it is sufficient to find a controller so that

B

K(jw)

(I+ PK) " M;y'W| < 1.

o0
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The process can be iterated to find the largest possible a.
Design Procedure:

Let P be a family of parametric uncertain systems and let F, be a
nominal model.

(a) Loop-Shaping: The singular values of the nominal plant are shaped,
using a precompensator Wi and/or a postcompensator Ws, to give
a desired open-loop shape. The nominal plant Py and the shaping
functions W7, Wy are combined to form the shaped plant, P,, where
P, = W5 PyWy. We assume that W, and W5 are such that P, contains
no hidden modes.

(b) Compute frequency-by-frequency:
Jw) = sup Y(Ps(jw), Wa(jw) P(jw)Wi(jw)).
Set o = 0.

(b) Fit a stable and minimum phase rational transfer function W (s) so
that
W (jw)| > sin(arcsin f(w) + arcsin ) Vw.

(c) Find a K such that

0 = int

Koo (I + PyKoo) ™ My'W

o

o0

(d) If B ~ 1, stop and the final controller is K = W1 K Ws. If § < 1,
increase o and go back to (b). If B > 1, decrease o and go back to

(b).
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Controller Order Reduction

Theorem 0.11 Let Py be a nominal plant and K, be a stabilizing
controller such that bp, k, < bont(Py). Let Ky = UV ! be a normalized
coprime factorization and let U,V € R'Hs be such that

Then K := UV~ stabilizes Py if € < bp, K, Furthermore,

U
V

U

e

o0

arcsinbp i > arcsinbp, g, — arcsine — arcsin 3

for all {P :9,(P, Fy) < B}.

Hence to reduce the controller order one only needs to approximate the
normalized coprime factors of the controller.

Chapter 18: Miscellaneous Topics

e Model Validation

o Mixed p
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Model Validation

Question: how one can decide if a model description is appropriate (i.e.,
how to validate a model).
Consider a set of uncertain discrete-time dynamical systems:

A={A: AecHy, JA], <1}

where [|A(2)]|,, = supj.»1 7 (A(2)).
experimental data:

u = (u07u17"'7ul—1>7 Yy = (y07y17"'7yl—1>

Question: are these data consistent with our modeling assumption?
Does there exist a model A € A such that y = (yo, y1, ..., y—1) with
the input u = (ug, U1, ..., u_1)?

e No, the model is invalidated.

e Yes, the model is not invalidated.

Let A be a stable, causal, LTI system with

A(z) =ho+hiz '+ hoz 2 4 -

where h;,2 = 0,1, ... are the matrix Markov parameters.
Suppose input sequence u = (ug,uq,...,u;_1) generates the output
vy = (Yo, Y1, - - -, yi—1) for the period t =0,1,...,0 — 1,
Then ] o o ]
Yo ho 0 o 0 U
vi | | b he - 0 U
0
-1 | [P g oo ho | | Wi
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o if ug # 0 and A is SISO, hy, ..., hy_q are uniquely determined by w;
and ;.

e The model is not invalidated if the remaining Markov parameters can

be chosen so that A(z) € A.

e Answer: classical tangential Carathéodory-Fejér interpolation prob-
lem

Let 7, denote the truncation operator such that

7Tg(’U(),’Ul, ey U1, 00, Upt 1, - ) — (/007/017 s 7/Uf—1) —. V.
Denote ) ]
w 0 -0
vy, vy - 0
T, =
0
| Vi-1 V-2 - U |

Theorem 0.12 Givenu = (ug, uy, ..., u—1) andy = (Yo, Y1, - - - » Yi—1),
there exists a A € Hoo, ||A|l <1 such that

y = mAu
if and only if T;T, < T, T, or o (T,(T;T,)"2) < 1 if ug # 0.
Note that the output of A after time t = £ — 1 is irrelevant to the test.
The condition T)/T, < T,'T,, is equivalent to
>yl < 3wl i=0,1,...,0-1
7=1 7=1

or
||7sz||2 < ||7TZuH2 7i - 07 17 R 7€ - 17

which is obviously necessary.
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Model Validation: Additive Example

D(z) PA(Z) W(z)

O+—0 P(z)

y u

Figure 0.42: Model validation for additive uncertainty

y=(P+AW)u+Dd, ||A|, <1

d E DCODVQX
Assume W (o0) is of full column rank. Let

D(z)=Dy+ D1z '+ Doz 4 -
Theorem 0.13 Given data Uegpt = (Ug, U, ..., u—1) with ug # 0,
Yexpt = (Y0s Y1, - - -, Ye—1) with d € Deonyex, let
U = (Ug, U, - -y Up—1) = Te(W lhexpt)
U= (Y0, Y1s - -, Yr—1) = Yexpt — TePUexpt.-
Then there exists a A € Hy, ||All, < 1 such that
Yospt = ¢ (P + AW eyt + Dd)

for some d € Deonvex iff there exists a d = (dy, dy, ..., di—1) € TyDeonvex
such that
7 |(T; — TpTy)(T;T,) % < 1

where
Dy 0 0
D D 0
T, — 1 0
0
D,y Dy D
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Proof.
(y — Pu) — Dd = A(Wu).

Since P,W, D, and A are causal, linear, and time invariant, we have
7'('ng = WgD?ng, 7Tg(y — PU) = Yexpt — 7T€P7Tgu = Yexpt — WgPueXpt and
TWu = W = myWtlexpe. Denote

CZ = (CZ(), CZl, . ,CZg_l) = Wg(Dd)

Then it is easy to show that

dy dp

d d

Vg, | @
do—1 | do—1

and T; = TpT,;. Now note that

T, (y—Pu—nd) = Lryy—Pu) — Lrypay = Ty — ITpTy, Trwe =Ty

and mAWu = mpAme(Wu) since A is causal. Applying Theorem 0.12,
there exists a A € Hoo, ||A||,, < 1 such that

e |(y — Pu) — Dd] = mA(Wu) = miAm(Wu)

if and only if
(T — TpTy) (T; — TpTy) < T: T,
<1

— ﬁl(Tg—TDTd)(T* )—ﬂ

Note that Tj is of full column rank since W (oo) is of full column rank and
ug # 0, which implies 4 # 0. O
Note that

inf o [(T@ _ TDTd)(TgT@)—ﬂ <1

dEDCOHVeX
is a convex problem and can be checked numerically.
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Mixed i Analysis and Synthesis

uncertainties A C ¢™*" is defined as

A ={diag |¢1]ky, .. G5 Dry 0Ly, 05 I
Av,...,Ap] ¢ €R, 0; €, Ay e MY

Then
ua (M) = (min {o(A) : A € A, det (I — MA) =0})""

unless no A € A makes I — MA singular, in which case pa (M) := 0.

Or, equivalently,
1

i (M)
Let pr(M) be the real spectral radius (i.e., the largest magnitude of
the real eigenvalues of M). Then

pa (M) = max pr(MA)
AeBA

=inf{a: det(l —aMA)=0,7(A) <1, Ae A}.

where BA :={A: A€ A, 7(A) <1}
Define

Q ={AcA: ¢ el-1,1], |6 =1, NAI =1}
diag [Dy, ..., Dy, Dy, ..., Dyydidyy, .. dp il Iy
D;ecki D;=Df >0, D;e " D;=Df >0, dj €R,d; >0
g :{diag[Gl,...,GST,O,...,O] . G =G ECkiin}.

Then
ua (M) = miax pr(QM)

e not necessarily achieved on the vertices for the real parameters

e may not be a continuous function of the data

e NP hard problem
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Upper Bound of Mixed u

pa (M) < inf a(DMD™).
LMI form:
d(DMD ' <p <= (DMD DMD™ ' < B*I
<= M*D*DM — 3*°D*D < 0.
Since D*D = D? € D, we have
pa (M) < inf min {8: M*DM — 3°D < 0}.
Theorem 0.14 Let M € ¢ and A € A. Then

: . . * . . * Y
MA(M)SDE%}EEQmﬂln{ﬁ. M*DM + j(GM — M*G) ﬁDSO}.

Proof. Suppose we have a () € Q such that QM has a real eigenvalue
A € R. Then there is a vector x € ¢” such that

QMzx = Ax.
Let D € D. Then D? € D, DQ = QD? and
D*QMzx = QD2 Mz = \D?z.
Since 7(Q) < 1, it follows that

N

2 2
AQHD%x ‘QD%MxH gHD%MxH |

Hence
*(M*DM — N\°D)z > 0.

Next, let G € G and note that Q = Q* and Q*G = QG = GQ; then

1 * 1 1
' GMx = (XQMx> GMax = Xaz*M*Q*GMa; = Xaz*M*QGM:E
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1 1
_ Xg;*M*GQ]Wa: — Xaz*M*G(QMa:) = 2" M*Gzx.

That is,
r*(GM — M*G)x = 0.
Note that j(GM — M*G) is a Hermitian matrix, so it follows that for
such x
o*(M*DM + j(GM — M*G) — \*D)z > 0.

It is now easy to see that if we have D € D, G € G and 0 < 3 € R such
that
M*DM + j(GM — M*G) — 3*D <0

then |\| < 3, and hence ua (M) < 3. O
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Interpretation of the Bound

Interpretation: covering the uncertainties on the real axis using possibly
off-axis disks.
Example: M € c and A € [—1, 1]. The off-axis disk is

A

G G\?2 . ~
i~ 4 1+<—> A, Acc, |Al<1.
3 3

1N
A e 1

Centered Disk Off-Axis Disk

Figure 0.43: Covering real parameters with disks

Hence 1 — A% # 0 for all A € [—1,1] is guaranteed if

G G\? .|\ M . 5
P P y+@) A2 2o Aecc |Al<1
(]@ 5 )ﬁ# |

c\? m
Ji+(8) % ] ]
= 1- — A#0, Aec, |[Al<1
L=J5%
AN N Q)QM
5) @ i) 5o
— 1— GM 1— GM —
T8 T8
= M*M+'(€%—M*g)—1<0
R N A I L

— MM+ j(GM — M*G) - 3* <0.
The scaling G allows one to exploit the phase information about the

real parameters so that a better upper bound can be obtained. We shall
demonstrate this further using a simple example.
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Example

s2+2s+1

G(s) = .
(s) s34+ 52 +2s+1

051

-0.5r

— Nyquist diagram 1/G
— — disk centeredat (0,0)
— - disk centered at (0,-0.2j)
disk centered at (0, -j)

-15r

1 1 1 1 1
-15 -1 -0.5 0 0.5 1 15

Figure 0.44: Computing the real stability margin by covering with disks

Find the largest k& such that 1 + AG(s) has no zero in the right-half
plane for all A € [k, k.

1
G(jw)]

Now we use the complex covering idea to find the best possible k: find the
smallest |A| so that 1 + AG(jwy) = 0 for some wy <= A+ 1/G(jwy) = 0.
disks covering an interval [—k, k]
a centered disk: k =1/ |G|, = 0.2970
an off-axis disk centered at (0, —0.2j): k = 0.3984
an off-axis disk centered at (0, —7): k = 0.5.

Kmax = (sgp ,LLA(G(jw))>_1 = iral)f{ . SG(jw) = O} = 0.5.
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Alternative characterization of the upper bound

Theorem 0.15 Given 8 > 0, there exist D € D and G € G such that
M*DM + §(GM — M*G) — 3*D < 0

iof and only if there are D1 € D and G1 € G such that

[

o)
p
M*DM + §(GM — M*G) — 3*D < 0

DNl

- le) (I+GY)”

Proof. Let D = D% and G = 5D1G1D1. Then

— M*D?M + j(3D:G1D\M — BM*D,G,D;) — 3>°D? <0
— (DM DN (DM D;Y45(BGDiM D' —B(Di MDY Gy)—p%1 <0
DM D7! " (DM D!
(25 e) (25
b b

<~ O

—jG1)—(]—|—G%)§O

(DlMDll
b
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Corollary 0.16 us (M) < rf3 if there are Dy € D and Gy € G such

that

—1
7 ((DlMﬁDl —jcl) I+ G%)é) <r<i,

Proof. This follows by noting that
B ((DlMDl1
o | it B
4
(DlMDll ,Gl)*<D1MD11 G

Gq\?
<]J 2T+ (—) .
r0 ]7“ r0 ]7")_ TG s +<T)

G
Let Gy = —% € G. Then
T

DO

—jG1)(]—|—G%))ST§1
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D, G-K Iteration

Find K so that
minsup pa (Fu(P, K)) < 5.

z w

=i

Figure 0.45: Synthesis framework

Note that 4 D, € D and G, € G such that
(Dw (Fe (P(jw), K(jw))) D'
b

—jGw) (1+G3)%] <1, Vw.

sup o
w

4
pa (Fe (P(jw), K(jw))) < 6, Yw

D, G — K Iteration:

(1) Let K be a stabilizing controller. Find initial estimates of the scaling
matrices D, € D, G, € G and a scalar 31 > 0 such that

(Dw (Fe (P(jw), K (jw))) DS
b
Obviously, one may start with D, = I, G, = 0, and a large 31 > 0.

- jGw) (I+ Gf,)%] <1, VYw.

sup o
w

(2) Fit the frequency response matrices D, and jG,, with D(s) and G(s)
so that
D(jw) = Dy, G(jw) = jG,, Vw.
Then for s = jw

ape (=P P i) D;' je.) )

w




289

DNl

A Sup o
w

(D(S) (Fe(P(s), K(s))) D~'(s)
)
(3) Let D(s) be factorized as

D(s) = Dp(s)Duin(s), D%(S)Dap(s) =1, Duin(s), Dr_niln(s) € Heo-

. G<s>) (I 1 G(s)C(s))”

That is, D, is an all-pass and Dy, is a stable and minimum phase
transfer matrix. Find a normalized right coprime factorization

Dy (s)G(s)Dayls) = GNGyf, Gy, G € Hoo
such that
GyGu+ GGy =1.

Then
Gy Dy (I + G G) ' Dyy(Gyf)~ =1

and, for each frequency s = jw, we have

o |[PAUELPOKONDN) 1) 11 eyt

B

| {Duin (F2 (P, K)) Dty N P

— 7 ( (51 ) — DapGDap) Dy (I +G™G) ?}

| Doin (Fo (P, K D;uln B N ]

—7 ( ( g(ﬁl ) —GNGMl) Dy (I+G~G) z]
Dy (F4 (P, K)) DG e ol
=0 ( ( E( ﬁl )) M—GN)G]WlDap(I—i_G G) 2]

D.. —
_ 5 mm(FE(PaK))DmmGM_GN .
b
(4) Define
Dinin Dr;uln G G
I I 0

and find a controller K, minimizing || Fo( Py, K)|| .-
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(5) Compute a new [3; as

Br=sup inf {Bw): I'<1}
W D, eD,G,eG

where

(Dwfgu;(f)new)l?wl c )( ~ )él.

(6) Find D,, and G,, such that

D ]:ﬁ( neW)f)J B A2\~ 3
( ) G ) (I +G) 2.

[''=07

inf @
D,eD,G,eg

(7) Compare the new scaling matrices D,, and G, with the previous es-
timates D, and G,,. Stop if they are close, else replace D, G, and
K with D, G, and Ky, respectively, and go back to step (2).



