
1

Essentials of Robust Control

These slides will be updated when I have time.

Last updated on August 28, 2000



2

Introduction

This introduction is adopted from some of John Doyle’s lectures.
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Classical control in the 1930’s and 1940’s

Bode, Nyquist, Nichols, . . .

• Feedback amplifier design

• Single input, single output (SISO)

• Frequency domain

• Graphical techniques

• Emphasized design tradeoffs

– Effects of uncertainty

– Nonminimum phase systems

– Performance vs. robustness

Problems with classical control

Overwhelmed by complex systems:

• Highly coupled multiple input, multiple output systems

• Nonlinear systems

• Time-domain performance specifications
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The origins of modern control theory

Early years

• Wiener (1930’s - 1950’s) Generalized harmonic analysis, cybernetics,

filtering, prediction, smoothing

• Kolmogorov (1940’s) Stochastic processes

• Linear and nonlinear programming (1940’s - )

Optimal control

• Bellman’s Dynamic Programming (1950’s)

• Pontryagin’s Maximum Principle (1950’s)

• Linear optimal control (late 1950’s and 1960’s)

– Kalman Filtering

– Linear-Quadratic (LQ) regulator problem

– Stochastic optimal control (LQG)
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The diversification of modern control

in the 1960’s and 1970’s

• Applications of Maximum Principle and Optimization

– Zoom maneuver for time-to-climb

– Spacecraft guidance (e.g. Apollo)

– Scheduling, resource management, etc.

• Linear optimal control

• Linear systems theory

– Controllability, observability, realization theory

– Geometric theory, disturbance decoupling

– Pole assignment

– Algebraic systems theory

• Nonlinear extensions

– Nonlinear stability theory, small gain, Lyapunov

– Geometric theory

– Nonlinear filtering

• Extension of LQ theory to infinite-dimensional systems

• Adaptive control
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Modern control application: Shuttle reentry

The problem is to control the reentry of the shuttle, from orbit to

landing. The modern control approach is to break the problem into two

pieces:

• Trajectory optimization

• Flight control

• Trajectory optimization: tremendous use of modern control principles

– State estimation (filtering) for navigation

– Bang-bang control of thrusters

– Digital autopilot

– Nonlinear optimal trajectory selection

• Flight control: primarily used classical methods with lots of simulation

– Gain scheduled linear designs

– Uncertainty studied with ad-hoc methods

Modern control has had little impact on feedback design because it

neglects fundamental feedback tradeoffs and the role of plant uncertainty.
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The 1970’s and the return of the frequency domain

Motivated by the inadequacies of modern control, many researchers

returned to the frequency domain for methods for MIMO feedback control.

• British school

– Inverse Nyquist Array

– Characteristic Loci

• Singular values

– MIMO generalization of Bode gain plots

– MIMO generalization of Bode design

– Crude MIMO representations of uncertainty

• Multivariable loopshaping and LQG/LTR

– Attempt to reconcile modern and classical methods

– Popular, but hopelessly flawed

– Too crude a representation of uncertainty

While these methods allowed modern and classical methods to be blended

to handle many MIMO design problems, it became clear that fundamen-

tally new methods needed to be developed to handle complex, uncertain,

interconnected MIMO systems.
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Postmodern Control

• Mostly for fun. Sick of “modern control,” but wanted a name equally

pretentious and self-absorbed.

• Other possible names are inadequate:

– Robust ( too narrow, sounds too macho)

– Neoclassical (boring, sounds vaguely fascist )

– Cyberpunk ( too nihilistic )

• Analogy with postmodern movement in art, architecture, literature,

social criticism, philosophy of science, feminism, etc. ( talk about

pretentious ).

The tenets of postmodern control theory

• Theories don’t design control systems, engineers do.

• The application of any methodology to real problems will require some

leap of faith on the part of the engineer (and some ad hoc fixes).

• The goal of the theoretician should be to make this leap smaller and

the ad hoc fixes less dominant.



9

Issues in postmodern control theory

• More connection with data

• Modeling

– Flexible signal representation and performance objectives

– Flexible uncertainty representations

– Nonlinear nominal models

– Uncertainty modeling in specific domains

• Analysis

• System Identification

– Nonprobabilistic theory

– System ID with plant uncertainty

– Resolving ambiguity; “uncertainty about uncertainty”

– Attributing residuals to perturbations, not just noise

– Interaction with modeling and system design

• Optimal control and filtering

– H∞ optimal control

– More general optimal control with mixed norms

– Robust performance for complex systems with structured uncer-

tainty
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Chapter 2: Linear Algebra

• linear subspaces

• eigenvalues and eigenvectors

• matrix inversion formulas

• invariant subspaces

• vector norms and matrix norms

• singular value decomposition

• generalized inverses

• semidefinite matrices
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Linear Subspaces

• linear combination:

α1x1 + . . . + αkxk, xi ∈ Fn, α ∈ F

span{x1, x2, . . . , xk} := {x = α1x1 + . . . + αkxk : αi ∈ F}.

• x1, x2, . . . , xk ∈ Fn linearly dependent if there exists α1, . . . , αk ∈ F

not all zero such that α1x2 + . . . + αkxk = 0; otherwise they are

linearly independent.

• {x1, x2, . . . , xk} ∈ S is a basis for S if x1, x2, . . . , xk are linearly

independent and S = span{x1, x2, . . . , xk}.

• {x1, x2, . . . , xk} in Fn are mutually orthogonal if x∗i xj = 0 for all

i 6= j and orthonormal if x∗i xj = δij.

• orthogonal complement of a subspace S ⊂ Fn:

S⊥ := {y ∈ Fn : y∗x = 0 for all x ∈ S}.

• linear transformation

A : Fn 7−→ Fm.

• kernel or null space

KerA = N(A) := {x ∈ Fn : Ax = 0},

and the image or range of A is

ImA = R(A) := {y ∈ Fm : y = Ax, x ∈ Fn}.

Let ai, i = 1, 2, . . . , n denote the columns of a matrix A ∈ Fm×n,

then

ImA = span{a1, a2, . . . , an}.
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• The rank of a matrix A is defined by

rank(A) = dim(ImA).

rank(A) = rank(A∗). A ∈ Fm×n is full row rank if m ≤ n and

rank(A) = m. A is full column rank if n ≤ m and rank(A) = n.

• unitary matrix U∗U = I = UU∗.

• Let D ∈ Fn×k (n > k) be such that D∗D = I. Then there exists a

matrix D⊥ ∈ Fn×(n−k) such that
[
D D⊥

]
is a unitary matrix.

• Sylvester equation

AX + XB = C

with A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fn×m has a unique solution

X ∈ Fn×m if and only if λi(A) + λj(B) 6= 0, ∀i = 1, 2, . . . , n and

j = 1, 2, . . . ,m.

“Lyapunov Equation”: B = A∗.

• Let A ∈ Fm×n and B ∈ Fn×k. Then

rank (A) + rank(B)− n ≤ rank(AB) ≤ min{rank (A), rank(B)}.

• the trace of A = [aij] ∈ Cn×n

Trace(A) :=
n∑

i=1
aii.

Trace has the following properties:

Trace(αA) = α Trace(A), ∀α ∈ C, A ∈ Cn×n

Trace(A + B) = Trace(A) + Trace(B), ∀A, B ∈ Cn×n

Trace(AB) = Trace(BA), ∀A ∈ Cn×m, B ∈ Cm×n.
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Eigenvalues and Eigenvectors

• The eigenvalues and eigenvectors of A ∈ Cn×n: λ, x ∈ Cn

Ax = λx

x is a right eigenvector

y is a left eigenvector:

y∗A = λy∗.

• eigenvalues: the roots of det(λI −A).

• the spectral radius: ρ(A) := max1≤i≤n |λi|

• Jordan canonical form: A ∈ Cn×n, ∃ T

A = TJT−1

where

J = diag{J1, J2, . . . , Jl}
Ji = diag{Ji1, Ji2, . . . , Jimi

}

Jij =



λi 1

λi 1
. . . . . .

λi 1

λi


∈ Cnij×nij

The transformation T has the following form:

T =
[
T1 T2 . . . Tl

]

Ti =
[
Ti1 Ti2 . . . Timi

]

Tij =
[
tij1 tij2 . . . tijnij

]
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where tij1 are the eigenvectors of A,

Atij1 = λitij1,

and tijk 6= 0 defined by the following linear equations for k ≥ 2

(A− λiI)tijk = tij(k−1)

are called the generalized eigenvectors of A.

A ∈ Rn×n with distinct eigenvalues can be diagonalized:

A
[
x1 x2 · · · xn

]
=

[
x1 x2 · · · xn

]


λ1

λ2
. . .

λn


.

and has the following spectral decomposition:

A =
n∑

i=1
λixiy

∗
i

where yi ∈ Cn is given by


y∗1
y∗2
...

y∗n


=

[
x1 x2 · · · xn

]−1
.

• A ∈ Rn×n with real eigenvalue λ ∈ R ⇒ real eigenvector x ∈ Rn.

• A is Hermitian, i.e., A = A∗ ⇒ ∃ unitary U such that A = UΛU∗

and Λ = diag{λ1, λ2, . . . , λn} is real.
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Matrix Inversion Formulas

•
 A11 A12

A21 A22

 =

 I 0

A21A
−1
11 I


 A11 0

0 ∆


 I A−1

11 A12

0 I


∆ := A22 − A21A

−1
11 A12

•
 A11 A12

A21 A22

 =

 I A12A
−1
22

0 I


 ∆̂ 0

0 A22


 I 0

A−1
22 A21 I


∆̂ := A11 − A12A

−1
22 A21

•
 A11 A12

A21 A22


−1

=

 A−1
11 + A−1

11 A12∆
−1A21A

−1
11 −A−1

11 A12∆
−1

−∆−1A21A
−1
11 ∆−1


and A11 A12

A21 A22


−1

=

 ∆̂−1 −∆̂−1A12A
−1
22

−A−1
22 A21∆̂

−1 A−1
22 + A−1

22 A21∆̂
−1A12A

−1
22

 .

 A11 0

A21 A22


−1

=

 A−1
11 0

−A−1
22 A21A

−1
11 A−1

22


 A11 A12

0 A22


−1

=

 A−1
11 −A−1

11 A12A
−1
22

0 A−1
22

 .

• det A = det A11 det(A22−A21A
−1
11 A12) = det A22 det(A11−A12A

−1
22 A21).

In particular, for any B ∈ Cm×n and C ∈ Cn×m, we have

det

 Im B

−C In

 = det(In + CB) = det(Im + BC)

and for x, y ∈ Cn det(In + xy∗) = 1 + y∗x.

• matrix inversion lemma:

(A11−A12A
−1
22 A21)

−1 = A−1
11 +A−1

11 A12(A22−A21A
−1
11 A12)

−1A21A
−1
11 .
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Invariant Subspaces

• a subspace S ⊂ Cn is an A-invariant subspace if Ax ∈ S for every

x ∈ S.

For example, {0}, Cn, and KerA are all A-invariant subspaces.

Let λ and x be an eigenvalue and a corresponding eigenvector of

A ∈ Cn×n. Then S := span{x} is an A-invariant subspace since

Ax = λx ∈ S.

In general, let λ1, . . . , λk (not necessarily distinct) and xi be a set of

eigenvalues and a set of corresponding eigenvectors and the generalized

eigenvectors. Then S = span{x1, . . . , xk} is an A-invariant subspace

provided that all the lower rank generalized eigenvectors are included.

• An A-invariant subspace S ⊂ Cn is called a stable invariant subspace

if all the eigenvalues of A constrained to S have negative real parts.

Stable invariant subspaces are used to compute the stabilizing solu-

tions of the algebraic Riccati equations

• Example

A
[
x1 x2 x3 x4

]
=

[
x1 x2 x3 x4

]


λ1 1

λ1

λ3

λ4


with Reλ1 < 0, λ3 < 0, and λ4 > 0. Then it is easy to verify that

S1 = span{x1} S12 = span{x1, x2} S123 = span{x1, x2, x3}
S3 = span{x3} S13 = span{x1, x3} S124 = span{x1, x2, x4}
S4 = span{x4} S14 = span{x1, x4} S34 = span{x3, x4}
are all A-invariant subspaces. Moreover, S1, S3, S12, S13, and S123 are

stable A-invariant subspaces.
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However, the subspaces

S2 = span{x2}, S23 = span{x2, x3}

S24 = span{x2, x4}, S234 = span{x2, x3, x4}
are not A-invariant subspaces since the lower rank generalized eigen-

vector x1 of x2 is not in these subspaces.

To illustrate, consider the subspace S23. It is an A-invariant subspace

if Ax2 ∈ S23. Since

Ax2 = λx2 + x1,

Ax2 ∈ S23 would require that x1 be a linear combination of x2 and

x3, but this is impossible since x1 is independent of x2 and x3.
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Vector Norms and Matrix Norms

X a vector space. ‖·‖ is a norm if

(i) ‖x‖ ≥ 0 (positivity);

(ii) ‖x‖ = 0 if and only if x = 0 (positive definiteness);

(iii) ‖αx‖ = |α| ‖x‖, for any scalar α (homogeneity);

(iv) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

for any x ∈ X and y ∈ X .

Let x ∈ Cn. Then we define the vector p-norm of x as

‖x‖p :=

 n∑
i=1
|xi|p

1/p

, for 1 ≤ p ≤ ∞.

In particular, when p = 1, 2,∞ we have

‖x‖1 :=
n∑

i=1
|xi|;

‖x‖2 :=

√√√√√ n∑
i=1
|xi|2;

‖x‖∞ := max
1≤i≤n

|xi|.

the matrix norm induced by a vector p-norm is defined as

‖A‖p := sup
x6=0

‖Ax‖p
‖x‖p

.

In particular, for p = 1, 2,∞, the corresponding induced matrix norm can

be computed as

‖A‖1 = max
1≤j≤n

m∑
i=1
|aij| (column sum) ;

‖A‖2 =
√
λmax(A∗A) ;
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‖A‖∞ = max
1≤i≤m

n∑
j=1
|aij| (row sum) .

The Euclidean 2-norm has some very nice properties:

Let x ∈ Fn and y ∈ Fm.

1. Suppose n ≥ m. Then ‖x‖ = ‖y‖ iff there is a matrix U ∈ Fn×m

such that x = Uy and U∗U = I.

2. Suppose n = m. Then |x∗y| ≤ ‖x‖ ‖y‖. Moreover, the equality

holds iff x = αy for some α ∈ F or y = 0.

3. ‖x‖ ≤ ‖y‖ iff there is a matrix ∆ ∈ Fn×m with ‖∆‖ ≤ 1 such that

x = ∆y. Furthermore, ‖x‖ < ‖y‖ iff ‖∆‖ < 1.

4. ‖Ux‖ = ‖x‖ for any appropriately dimensioned unitary matrices U .

Frobenius norm

‖A‖F :=
√
Trace(A∗A) =

√√√√√ m∑
i=1

n∑
j=1
|aij|2 .

Let A and B be any matrices with appropriate dimensions. Then

1. ρ(A) ≤ ‖A‖ (This is also true for F norm and any induced matrix

norm).

2. ‖AB‖ ≤ ‖A‖ ‖B‖. In particular, this gives
∥∥∥A−1

∥∥∥ ≥ ‖A‖−1 if A is

invertible. (This is also true for any induced matrix norm.)

3. ‖UAV ‖ = ‖A‖, and ‖UAV ‖F = ‖A‖F , for any appropriately di-

mensioned unitary matrices U and V .

4. ‖AB‖F ≤ ‖A‖ ‖B‖F and ‖AB‖F ≤ ‖B‖ ‖A‖F .
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Singular Value Decomposition

Let A ∈ Fm×n. There exist unitary matrices

U = [u1, u2, . . . , um] ∈ Fm×m

V = [v1, v2, . . . , vn] ∈ Fn×n

such that

A = UΣV ∗, Σ =

 Σ1 0

0 0


where

Σ1 =



σ1 0 · · · 0

0 σ2 · · · 0
... ... . . . ...

0 0 · · · σp


and

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min{m,n}.
Singular values are good measures of the “size” of a matrix

Singular vectors are good indications of strong/weak input or output

directions.

Note that

Avi = σiui

A∗ui = σivi.

A∗Avi = σ2
i vi

AA∗ui = σ2
i ui.

σ(A) = σmax(A) = σ1 = the largest singular value of A;

and

σ(A) = σmin(A) = σp = the smallest singular value of A .



21

Geometrically, the singular values of a matrix A are precisely the lengths

of the semi-axes of the hyper-ellipsoid E defined by

E = {y : y = Ax, x ∈ Cn, ‖x‖ = 1}.

Thus v1 is the direction in which ‖y‖ is the largest for all ‖x‖ = 1; while

vn is the direction in which ‖y‖ is the smallest for all ‖x‖ = 1.

v1 (vn) is the highest (lowest) gain input direction

u1 (um) is the highest (lowest) gain observing direction

e.g.,

A =

 cos θ1 − sin θ1

sin θ1 cos θ1


 σ1

σ2


 cos θ2 − sin θ2

sin θ2 cos θ2

 .

A maps a unit disk to an ellipsoid with semi-axes of σ1 and σ2.

alternative definitions:

σ(A) := max
‖x‖=1

‖Ax‖

and for the smallest singular value σ of a tall matrix:

σ(A) := min
‖x‖=1

‖Ax‖ .

Suppose A and ∆ are square matrices. Then

(i) |σ(A + ∆)− σ(A)| ≤ σ(∆);

(ii) σ(A∆) ≥ σ(A)σ(∆);

(iii) σ(A−1) =
1

σ(A)
if A is invertible.
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Some useful properties

Let A ∈ Fm×n and

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = 0, r ≤ min{m,n}.

Then

1. rank(A) = r;

2. KerA = span{vr+1, . . . , vn} and (KerA)⊥ = span{v1, . . . , vr};

3. ImA = span{u1, . . . , ur} and (ImA)⊥ = span{ur+1, . . . , um};

4. A ∈ Fm×n has a dyadic expansion:

A =
r∑

i=1
σiuiv

∗
i = UrΣrV

∗
r

where Ur = [u1, . . . , ur], Vr = [v1, . . . , vr], and Σr = diag (σ1, . . . , σr);

5. ‖A‖2F = σ2
1 + σ2

2 + · · · + σ2
r ;

6. ‖A‖ = σ1;

7. σi(U0AV0) = σi(A), i = 1, . . . , p for any appropriately dimensioned

unitary matrices U0 and V0;

8. Let k < r = rank(A) and Ak :=
∑k

i=1 σiuiv
∗
i , then

min
rank(B)≤k

‖A−B‖ = ‖A− Ak‖ = σk+1.
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Generalized Inverses

Let A ∈ Cm×n. X ∈ Cn×m is a right inverse if AX = I. one of the

right inverses is given by X = A∗(AA∗)−1.

Y A = I then Y is a left inverse of A.

pseudo-inverseor Moore-Penrose inverse A+:

(i) AA+A = A;

(ii) A+AA+ = A+;

(iii) (AA+)∗ = AA+;

(iv) (A+A)∗ = A+A.

pseudo-inverse is unique.

A = BC

B has full column rank and C has full row rank. Then

A+ = C∗(CC∗)−1(B∗B)−1B∗.

or

A = UΣV ∗

with

Σ =

 Σr 0

0 0

 , Σr > 0.

Then A+ = V Σ+U∗ with

Σ+ =

 Σ−1
r 0

0 0

 .
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Semidefinite Matrices

• A = A∗ is positive definite (semi-definite) denoted by A > 0 (≥ 0),

if x∗Ax > 0 (≥ 0) for all x 6= 0.

• A ∈ Fn×n and A = A∗ ≥ 0, ∃ B ∈ Fn×r with r ≥ rank(A) such that

A = BB∗.

• Let B ∈ Fm×n and C ∈ Fk×n. Suppose m ≥ k and B∗B = C∗C.

∃ U ∈ Fm×k such that U∗U = I and B = UC.

• square root for a positive semi-definite matrix A, A1/2 = (A1/2)∗ ≥ 0,

by

A = A1/2A1/2.

Clearly, A1/2 can be computed by using spectral decomposition or

SVD: let A = UΛU∗, then

A1/2 = UΛ1/2U∗

where

Λ = diag{λ1, . . . , λn}, Λ1/2 = diag{
√

λ1, . . . ,
√

λn}.

• A = A∗ > 0 and B = B∗ ≥ 0. Then A > B iff ρ(BA−1) < 1.

• Let X = X∗ ≥ 0 be partitioned as

X =

 X11 X12

X∗12 X22

 .

Then KerX22 ⊂ KerX12. Consequently, if X+
22 is the pseudo-inverse

of X22, then Y = X12X
+
22 solves

Y X22 = X12

and X11 X12

X∗12 X22

 =

 I X12X
+
22

0 I


 X11 −X12X

+
22X

∗
12 0

0 X22


 I 0

X+
22X

∗
12 I

 .
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Chapter 3: Linear Systems

• dynamical systems

• controllability and stabilizability

• observability and detectability

• observer theory

• system interconnections

• realizations

• poles and zeros
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Dynamical Systems

• Linear equations:

ẋ = Ax + Bu, x(t0) = x0

y = Cx + Du

• transfer matrix:

Y (s) = G(s)U(s)

G(s) = C(sI −A)−1B + D.

• notation  A B

C D

 := C(sI − A)−1B + D

• solution:

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−τ)Bu(τ )dτ

y(t) = Cx(t) + Du(t).

• impulse matrix

g(t) = L−1 {G(s)} = CeAtB1+(t) + Dδ(t)

• input/output relationship:

y(t) = (g ∗ u)(t) :=
∫ t

−∞ g(t− τ )u(τ )dτ.
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Matlab

� G=pck(A, B, C, D) % pack the realization in partitioned form

� seesys(G) % display G in partitioned format

� [A, B, C, D]=unpck(G) % unpack the system matrix

� G=pck([], [], [], 10) % create a constant system matrix

� [y, x, t]=step(A, B, C, D, Iu) % Iu=i (step response of the ith

channel)

� [y, x, t]=initial(A, B, C, D, x0) % initial response with initial

condition x0

� [y, x, t]=impulse(A, B, C, D, Iu) % impulse response of the

Iuth channel

� [y,x]=lsim(A,B,C,D,U,T) % U is a length(T ) × column(B) ma-

trix input; T is the sampling points.
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Controllability

• Controllability: (A,B) is controllable if, for any initial state x(0) =

x0, t1 > 0 and final state x1, there exists a (piecewise continuous)

input u(·) such that satisfies x(t1) = x1.

• The matrix

Wc(t) :=
∫ t

0
eAτBB∗eA∗τdτ

is positive definite for any t > 0.

• The controllability matrix

C =
[
B AB A2B . . . An−1B

]

has full row rank, i.e., 〈A |ImB〉 :=
∑n

i=1 Im(Ai−1B) = Rn.

• The eigenvalues of A + BF can be freely assigned by a suitable F .

PBH test:

• The matrix [A− λI, B] has full row rank for all λ in C.

• Let λ and x be any eigenvalue and any corresponding left eigenvector

of A, i.e., x∗A = x∗λ, then x∗B 6= 0.
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Stability and Stabilizability

A is stable if Reλ(A) < 0.

• (A, B) is stabilizable.

• A + BF is stable for some F .

PBH test:

• The matrix [A− λI, B] has full row rank for all Reλ ≥ 0.

• For all λ and x such that x∗A = x∗λ and Reλ ≥ 0, x∗B 6= 0.
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Observability

• (C,A) is observable if, for any t1 > 0, the initial state x(0) = x0 can

be determined from the time history of the input u(t) and the output

y(t) in the interval of [0, t1].

• The matrix

Wo(t) :=
∫ t

0
eA∗τC∗CeAτdτ

is positive definite for any t > 0.

• The observability matrix

O =



C

CA

CA2

...

CAn−1


has full column rank, i.e.,

⋂n
i=1 Ker(CAi−1) = 0.

• The eigenvalues of A + LC can be freely assigned by a suitable L.

• (A∗, C∗) is controllable.

PBH test:

• The matrix

 A− λI

C

 has full column rank for all λ in C.

• Let λ and y be any eigenvalue and any corresponding right eigenvector

of A, i.e., Ay = λy, then Cy 6= 0.



31

Detectability

The following are equivalent:

• (C,A) is detectable.

• A + LC is stable for a suitable L.

• (A∗, C∗) is stabilizable.

PBH test:

• The matrix

 A− λI

C

 has full column rank for all Reλ ≥ 0.

• For all λ and x such that Ax = λx and Reλ ≥ 0, Cx 6= 0.

an example:

 A B

C D

 =



λ1 1 0 0 0

0 λ1 1 0 1

0 0 λ1 0 α

0 0 0 λ2 1

1 0 0 β 0


� C= ctrb(A, B); O= obsv(A, C);

�Wc(∞)=gram(A, B); % if A is stable.

� F=-place(A, B, P) % P is a vector of desired eigenvalues.
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Observers and Observer-Based Controllers

An observer is a dynamical system with input of (u, y) and output of,

say x̂, which asymptotically estimates the state x, i.e., x̂(t)−x(t)→ 0 as

t→∞ for all initial states and for every input.

An observer exists iff (C,A) is detectable. Further, if (C,A) is de-

tectable, then a full order Luenberger observer is given by

q̇ = Aq + Bu + L(Cq + Du− y) (0.1)

x̂ = q (0.2)

where L is any matrix such that A + LC is stable.

Observer-based controller:

˙̂x = (A + LC)x̂ + Bu + LDu− Ly

u = Fx̂.

u = K(s)y

and

K(s) =

 A + BF + LC + LDF −L

F 0

 .
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Example

Let A =

 1 2

1 0

, B =

 1

0

, and C =
[
1 0

]
.

Design u = Fx such that the closed-loop poles are at {−2,−3}
F =

[
−6 −8

]

� F = −place(A,B, [−2,−3]).

Suppose observer poles are at {−10,−10}

Then L =

 −21

−51

 can be obtained by using

� L = −acker(A′, C ′, [−10,−10])′

and the observer-based controller is given by

K(s) =
−534(s + 0.6966)

(s + 34.6564)(s− 8.6564)
.

stabilizing controller itself is unstable: this may not be desirable in prac-

tice.
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Operations on Systems

G1 =

 A1 B1

C1 D1

 G2 =

 A2 B2

C2 D2

 .

• cascade:
� � �G2G1

G1G2 =

 A1 B1

C1 D1


 A2 B2

C2 D2



=


A1 B1C2

0 A2

B1D2

B2

C1 D1C2 D1D2

 =


A2 0

B1C2 A1

B2

B1D2

D1C2 C1 D1D2

 .

• addition:

G1 + G2 =

 A1 B1

C1 D1

 +

 A2 B2

C2 D2

 =


A1 0

0 A2

B1

B2

C1 C2 D1 + D2

 .

• feedback: fy r

−
�
6

-

� �

G2

G1

T =


A1 −B1D2R

−1
12 C1 −B1R

−1
21 C2 B1R

−1
21

B2R
−1
12 C1 A2 −B2D1R

−1
21 C2 B2D1R

−1
21

R−1
12 C1 −R−1

12 D1C2 D1R
−1
21


where R12 = I + D1D2 and R21 = I + D2D1.
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• transpose or dual system

G 7−→ GT (s) = B∗(sI −A∗)−1C∗ + D∗

or equivalently  A B

C D

 7−→
 A∗ C∗

B∗ D∗

 .

• conjugate system

G 7−→ G∼(s) := GT (−s) = B∗(−sI −A∗)−1C∗ + D∗

or equivalently  A B

C D

 7−→
 −A∗ −C∗

B∗ D∗

 .

In particular, we have G∗(jω) := [G(jω)]∗ = G∼(jω).

• Let D† denote a right (left) inverse of D if D has full row (column)

rank. Then

G† =

 A−BD†C −BD†

D†C D†


is a right (left) inverse of G.

G1G2 ⇐⇒ mmult(G1,G2),
[
G1 G2

]
⇐⇒ sbs(G1,G2)

G1 + G2 ⇐⇒ madd(G1,G2), G1 −G2 ⇐⇒ msub(G1,G2) G1

G2

 ⇐⇒ abv(G1,G2),

 G1

G2

 ⇐⇒ daug(G1,G2),

GT (s) ⇐⇒ transp(G), G∼(s) ⇐⇒ cjt(G), G−1(s) ⇐⇒ minv(G)

α G(s) ⇐⇒ mscl(G, α), α is a scalar.
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State Space Realizations

Given G(s), find (A,B,C,D) such that

G(s) =

 A B

C D


which is a state space realization of G(s).

• A state space realization (A,B,C,D) of G(s) is minimal if and only

if (A,B) is controllable and (C,A) is observable.

• Let (A1, B1, C1, D) and (A2, B2, C2, D) be two minimal realizations

of G(s). Then there exists a unique nonsingular T such that

A2 = TA1T
−1, B2 = TB1, C2 = C1T

−1.

Furthermore, T can be specified as

T = (O∗2O2)
−1O∗2O1

or

T−1 = C1C∗2(C2C∗2)−1.

where C1, C2, O1, and O2 are e the corresponding controllability and

observability matrices, respectively.
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SIMO and MISO

SIMO Case: Let

G(s) =



g1(s)

g2(s)
...

gm(s)


=

β1s
n−1 + β2s

n−2 + · · ·+ βn−1s + βn

sn + a1sn−1 + · · ·+ an−1s + an
+ d,

where βi ∈ Rm and d ∈ Rm. Then

G(s) =

 A b

C d

 , b ∈ Rn, C ∈ Rm×n, d ∈ Rm

where

A :=



−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0

0 1 · · · 0 0
... ... ... ...

0 0 · · · 1 0


b :=



1

0

0
...

0


C =

[
β1 β2 · · · βn−1 βn

]
MISO Case: Let

G(s) = ( g1(s) g2(s) . . . gp(s) )

=
η1s

n−1 + η2s
n−2 + · · ·+ ηn−1s + ηn

sn + a1sn−1 + · · ·+ an−1s + an
+ d

with η∗i , d
∗ ∈ Rp. Then

G(s) =



−a1 1 0 · · · 0 η1

−a2 0 1 · · · 0 η2
... ... ... ... ...

−an−1 0 0 · · · 1 ηn−1

−an 0 0 · · · 0 ηn

1 0 0 · · · 0 d


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Realizing Each Elements

To illustrate, consider a 2× 2 (block) matrix

G(s) =

 G1(s) G2(s)

G3(s) G4(s)


and assume that Gi(s) has a state space realization of

Gi(s) =

 Ai Bi

Ci Di

 , i = 1, . . . , 4.

Note that Gi(s) may itself be a MIMO transfer matrix.

Then a realization for G(s) can be given by

G(s) =



A1 0 0 0 B1 0

0 A2 0 0 0 B2

0 0 A3 0 B3 0

0 0 0 A4 0 B4

C1 C2 0 0 D1 D2

0 0 C3 C4 D3 D4


.

Problem: minimality.

� G=nd2sys(num, den, gain); G=zp2sys(zeros, poles, gain);
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Gilbert’s Realization

Let G(s) be a p×m transfer matrix

G(s) =
N(s)

d(s)

with d(s) a scalar polynomial. For simplicity, we shall assume that d(s)

has only real and distinct roots λi 6= λj if i 6= j and

d(s) = (s− λ1)(s− λ2) · · · (s− λr).

Then G(s) has the following partial fractional expansion:

G(s) = D +
r∑

i=1

Wi

s− λi
.

Suppose

rank Wi = ki

and let Bi ∈ Rki×m and Ci ∈ Rp×ki be two constant matrices such that

Wi = CiBi.

Then a realization for G(s) is given by

G(s) =



λ1Ik1 B1
. . . ...

λrIkr Br

C1 · · · Cr D


.

This realization is controllable and observable (minimal) by PBH tests.
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Repeated Poles

Note that

G(s) =


λ 1 b1

0 λ b2

c1 c2 0



=
c1[b2 + (s− λ)b1]

(s− λ)2
+

c2b2

s− λ

=
c1b2

(s− λ)2
+

c1b1 + c2b2

s− λ

A realization procedure:

• Let G(s) be a p× q matrix and have the following partial fractional

expansion:

G(s) =
R1

(s− λ)2
+

R2

s− λ

• Suppose rank(R1) = 1 and write

R1 = c1b1, c1 ∈ Rp, b1 ∈ Rq

• Find c2 and b1 if possible such that

c1b1 + c2b2 = R2

Otherwise find also matrices C3 and B3 such that

c1b1 + c2b2 + C3B3 = R2

and [c1 C3] full column rank and

 b2

B3

 full row rank.

• if rank(R1) > 1 then write

R1 = c1b1 + c̃1b̃1 + . . .

and repeated the above process.
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Consider a 3× 3 transfer matrix:

G(s) =



1
(s+ 1)(s+ 2)

2s+ 1
(s+ 1)(s+ 2)

s

(s+ 1)(s+ 2)

1
(s+ 1)2

s2 + 5s+ 3
(s+ 1)2

s

(s+ 1)2

1
(s+ 1)2(s+ 2)

2s+ 1
(s+ 1)2(s+ 2)

s

(s+ 1)2(s+ 2)


.

G(s) =


0 0 0

0 1 0

0 0 0

 +
1

(s + 1)2

c1︷ ︸︸ ︷
0

1

1


b2︷ ︸︸ ︷[

1 −1 −1
]

+
1

s + 1



c1︷ ︸︸ ︷
0

1

1


b1︷ ︸︸ ︷[

0 3 1
]
+

c2︷ ︸︸ ︷
1

0

0


b2︷ ︸︸ ︷[

1 −1 −1
]


+
1

s + 1


0

0

1


[
−1 0 1

]
+

1

s + 2


−1

0

1


[
1 −3 −2

]

So a 4-th order minimal state space realization is given by

G(s) =



−1 1 0 0 0 3 1

0 −1 0 0 1 −1 −1

0 0 −1 0 −1 0 1

0 0 0 −2 1 −3 −2

0 1 0 −1 0 0 0

1 0 0 0 0 1 0

1 0 1 1 0 0 0



.
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Let

G3(s) =



λ 1 0 b1

0 λ 1 b2

0 0 λ b3

c1 c2 c3 0



=
c1[b3 + (s− λ)b2 + (s− λ)2b1]

(s− λ)3

+
c2[b3 + (s− λ)b2]

(s− λ)2
+

c3b3

s− λ

=
c1b3

(s− λ)3
+

c1b2 + c2b3

(s− λ)2
+

c1b1 + c2b2 + c3b3

s− λ

Example: Let

G(s) =


1

(s+2)3(s+5)
1

s+5
1

s+2 0



=
1

(s + 2)3

c1︷ ︸︸ ︷ 1
3

0


b3︷ ︸︸ ︷[

1 0
]
+

1

(s + 2)2

c2︷ ︸︸ ︷ −1
9

0


b3︷ ︸︸ ︷[

1 0
]

+
1

s + 2

c3︷ ︸︸ ︷ 1
27

1


b3︷ ︸︸ ︷[

1 0
]
+

1

s + 5

 1

0

 [
− 1

27 1
]

Take b1 = 0 and b2 = 0, we get

G(s) =



−2 1 0 0 0 0

0 −2 1 0 0 0

0 0 −2 0 1 0

0 0 0 −5 − 1
27 1

1
3 −1

9
1
27 1 0 0

0 0 1 0 0 0


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Example: Let

G(s) =

c1︷ ︸︸ ︷
1

1

1


b3︷ ︸︸ ︷[

1 0 0
]

(s + p)3
+

c̃1︷ ︸︸ ︷
0

1

0


b̃3︷ ︸︸ ︷[

0 1 0
]

(s + p)3

+

c2︷ ︸︸ ︷
1

0

1


b3︷ ︸︸ ︷[

1 0 0
]

(s + p)2
+

2c1+3c̃1︷ ︸︸ ︷
2

5

2


1
2b2 or 1

3 c̃1︷ ︸︸ ︷[
0 0 1

]

(s + p)2

+

−c3 or −c̃3︷ ︸︸ ︷
2

2

3


−b3−b̃3︷ ︸︸ ︷[
−1 −1 0

]

s + p

Hence

G(s) =



−p 1 0 0 0 0 0 0 0

0 −p 1 0 0 0 0 0 2

0 0 −p 0 0 0 1 0 0

0 0 0 −p 1 0 0 0 0

0 0 0 0 −p 1 0 0 3

0 0 0 0 0 −p 0 1 0

1 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0


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System Poles and Zeros

An example:

G(s) =


1

s + 1

1

s + 2
2

s + 2

1

s + 1


which is stable and each element of G(s) has no finite zeros. Let

K =


s + 2

s−
√

2
− s + 1

s−
√

2
0 1


which is unstable. However,

KG =


− s +

√
2

(s + 1)(s + 2)
0

2

s + 2

1

s + 1


is stable. This implies that G(s) must have an unstable zero at

√
2 that

cancels the unstable pole of K.
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Smith Form

• a square polynomial matrix Q(s) is unimodular if and only if det Q(s)

is a constant.

• Let Q(s) be a (p×m) polynomial matrix. Then the normal rank of

Q(s), denoted normalrank (Q(s)), is the maximally possible rank

of Q(s) for at least one s ∈ C.

an example:

Q(s) =


s 1

s2 1

s 1

 .

Q(s) has normal rank 2 since rank Q(2) = 2. However, Q(0) has rank

1.

• Smith form: Let P (s) be any polynomial matrix, then there exist

unimodular matrices U(s), V (s) ∈ R[s] such that

U(s)P (s)V (s) = S(s) :=



γ1(s) 0 · · · 0 0

0 γ2(s) · · · 0 0
... ... . . . ... ...

0 0 · · · γr(s) 0

0 0 · · · 0 0


and γi(s) divides γi+1(s).

S(s) is called the Smith form of P (s). r is the normal rank of P (s).
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an example:

P (s) =


s + 1 (s + 1)(2s + 1) s(s + 1)

s + 2 (s + 2)(s2 + 5s + 3) s(s + 2)

1 2s + 1 s

 .

P (s) has normal rank 2 since det(P (s)) ≡ 0 and

det

 s + 1 (s + 1)(2s + 1)

s + 2 (s + 2)(s2 + 5s + 3)

 = (s + 1)2(s + 2)2 6≡ 0.

Let

U =


0 0 1

0 1 −(s + 2)

1 0 −(s + 1)

 .

V (s) =


1 −(2s + 1) −s

0 1 0

0 0 1


Then

S(s) = U(s)P (s)V (s) =


1 0 0

0 (s + 1)(s + 2)2 0

0 0 0

 .
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Smith-McMillan Form

• Let G(s) be any proper real rational transfer matrix, then there exist

unimodular matrices U(s), V (s) ∈ R[s] such that

U(s)G(s)V (s) = M(s) :=



α1(s)
β1(s)

0 · · · 0 0

0 α2(s)
β2(s)

· · · 0 0
... ... . . . ... ...

0 0 · · · αr(s)
βr(s)

0

0 0 · · · 0 0


and αi(s) divides αi+1(s) and βi+1(s) divides βi(s).

• Write G(s) as G(s) = N(s)/d(s) such that d(s) is a scalar polynomial

and N(s) is a p×m polynomial matrix.

Let the Smith form of N(s) be S(s) = U(s)N(s)V (s).

Then M(s) = S(s)/d(s).

• McMillan degree of G(s) =
∑

i deg(βi(s)) where deg(βi(s)) denotes

the degree of the polynomial βi(s).

• McMillan degree of G(s) = the dimension of a minimal realization of

G(s).

• poles of G = roots of βi(s)

• transmission zeros of G(s) = the roots of αi(s)

z0 ∈ C is a blocking zero of G(s) if G(z0) = 0.
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An example:

G(s) =



1
(s+ 1)(s+ 2)

2s+ 1
(s+ 1)(s+ 2)

s

(s+ 1)(s+ 2)

1
(s+ 1)2

s2 + 5s+ 3
(s+ 1)2

s

(s+ 1)2

1
(s+ 1)2(s+ 2)

2s+ 1
(s+ 1)2(s+ 2)

s

(s+ 1)2(s+ 2)


.

Then G(s) can be written as

G(s) =
1

(s+ 1)2(s+ 2)

 s+ 1 (s+ 1)(2s+ 1) s(s+ 1)
s+ 2 (s+ 2)(s2 + 5s+ 3) s(s+ 2)

1 2s+ 1 s

 .
G(s) has the McMillan form

M(s) =



1

(s + 1)2(s + 2)
0 0

0
s + 2

s + 1
0

0 0 0


McMillan degree of G(s) = 4.

poles of the transfer matrix: {−1,−1,−1,−2}.
transmission zero: {−2}.
The transfer matrix has pole and zero at the same location {−2};

this is the unique feature of multivariable systems.
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Alternative Characterizations

• Let G(s) have full column normal rank. Then z0 ∈ C is a transmission

zero of G(s) if and only if there exists a vector 0 6= u0 such that

G(z0)u0 = 0.

not true if G(s) does not have full column normal rank.

an example

G(s) =
1

s + 1

 1 1

1 1

 , u0 =

 1

−1

 .

G has no transmission zero but G(s)u0 = 0 for all s.

z0 can be a pole of G(s) although G(z0) is not defined. (however

G(z0)u0 may be well defined.) For example,

G(s) =

 s−1
s+1 0

0 s+2
s−1

 , u0 =

 1

0

 .

Then G(1)u0 = 0. Therefore, 1 is a transmission zero.

• Let G(s) have full row normal rank. Then z0 ∈ C is a transmission

zero of G(s) if and only if there exists a vector η0 6= 0 such that

η∗0G(z0) = 0.

• Suppose z0 ∈ C is not a pole of G(s). Then z0 is a transmission zero

if and only if rank(G(z0)) < normalrank(G(s)).

• Let G(s) be a square m × m matrix and det G(s) 6≡ 0. Suppose

zo ∈ C is not a pole of G(s). Then z0 ∈ C is a transmission zero of

G(s) if and only if det G(z0) = 0.

det


1

s + 1

1

s + 2
2

s + 2

1

s + 1

 =
2− s2

(s + 1)2(s + 2)2
.
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Invariant Zeros

The poles and zeros of a transfer matrix can also be characterized in

terms of its state space realizations:

G(s) =

 A B

C D


consider the following system matrix

Q(s) =

 A− sI B

C D

 .

z0 ∈ C is an invariant zero of the realization if it satisfies

rank

 A− z0I B

C D

 < normalrank

 A− sI B

C D

 .

• Suppose

 A− sI B

C D

 has full column normal rank. Then z0 ∈ C is

an invariant zero iff there exist 0 6= x ∈ Cn and u ∈ Cm such that A− z0I B

C D


 x

u

 = 0.

Moreover, if u = 0, then z0 is also a non-observable mode.

• Suppose

 A− sI B

C D

 has full row normal rank. Then z0 ∈ C is an

invariant zero iff there exist 0 6= y ∈ Cn and v ∈ Cp such that

[
y∗ v∗

]  A− z0I B

C D

 = 0.

Moreover, if v = 0, then z0 is also a non-controllable mode.

• G(s) has full column (row) normal rank if and only if

 A− sI B

C D


has full column (row) normal rank.
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This follows by noting that A− sI B

C D

 =

 I 0

C(A− sI)−1 I


 A− sI B

0 G(s)


and

normalrank

 A− sI B

C D

 = n + normalrank(G(s)).

• Let G(s) =

 A B

C D

 be a minimal realization. Then z0 is a transmis-

sion zero of G(s) iff it is an invariant zero of the minimal realization.

• Let G(s) be a p×m transfer matrix and let (A,B,C,D) be a min-

imal realization. Let the input be u(t) = u0e
λt, where λ ∈ C is

not a pole of G(s) and u0 ∈ Cm is an arbitrary constant vector,

then the output with the initial state x(0) = (λI − A)−1Bu0 is

y(t) = G(λ)u0e
λt, ∀t ≥ 0.

• Let G(s) be a p×m transfer matrix and let (A,B,C,D) be a minimal

realization. Suppose that z0 ∈ C is a transmission zero of G(s) and

is not a pole of G(s). Then for any nonzero vector u0 ∈ Cm such

that G(z0)u0 = 0, the output of the system due to the initial state

x(0) = (z0I − A)−1Bu0 and the input u = u0e
z0t is identically zero:

y(t) = G(z0)u0e
z0t = 0.

 A B

C D


︸ ︷︷ ︸

M

 x

u

 = z0

 I 0

0 0


︸ ︷︷ ︸

N

 x

u



Matlab command: eig(M, N).
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Example

Let

G(s) =

 A B

C D

 =



−1 −2 1 1 2 3

0 2 −1 3 2 1

−4 −3 −2 1 1 1

1 1 1 0 0 0

2 3 4 0 0 0


.

Then the invariant zeros of the system can be found using the Matlab

command

� G=pck(A, B, C, D), z0 = szeros(G), % or

� z0 = tzero(A,B,C,D)

which gives z0 = 0.2. Since G(s) is full-row rank, we can find y and v

such that [
y∗ v∗

]  A− z0I B

C D

 = 0,

which can again be computed using a Matlab command:

� null([A− z0 ∗ eye(3),B;C,D]′) =⇒
 y

v

 =



0.0466

0.0466

−0.1866

−0.9702

0.1399


.
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Chapter 4: H2 and H∞ Spaces

• Hilbert space

• H2 and H∞ Functions

• State Space Computation of H2 and H∞ norms
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Hilbert Spaces

Inner product on Cn:

〈x, y〉 := x∗y =
n∑

i=1
x̄iyi ∀x =


x1
...

xn

 , y =


y1
...

yn

 ∈ Cn.

‖x‖ :=
√
〈x, x〉,

cos ∠(x, y) =
〈x, y〉
‖x‖ ‖y‖, ∠(x, y) ∈ [0, π].

orthogonal if ∠(x, y) = π
2 .

Definition 0.1 Let V be a vector space over C. An inner product on V

is a complex valued function,

〈·, ·〉 : V × V 7−→ C

such that for any x, y, z ∈ V and α, β ∈ C

(i) 〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉

(ii) 〈x, y〉 = 〈y, x〉

(iii) 〈x, x〉 > 0 if x 6= 0.

A vector space V with an inner product is called an inner product space.

inner product induced norm ‖x‖ :=
√
〈x, x〉

distance between vectors x and y: d(x, y) = ‖x− y‖.
Two vectors x and y orthogonal if 〈x, y〉 = 0, denoted x ⊥ y.
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• |〈x, y〉| ≤ ‖x‖ ‖y‖ (Cauchy-Schwarz inequality). Equality holds iff

x = αy for some constant α or y = 0.

• ‖x + y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 (Parallelogram law) .

• ‖x + y‖2 = ‖x‖2 + ‖y‖2 if x ⊥ y.

Hilbert space: a complete inner product space.

Examples:

• Cn with the usual inner product.

• Cn×m with the inner product

〈A,B〉 := Trace A∗B =
n∑

i=1

m∑
j=1

āijbij ∀A,B ∈ Cn×m

• L2[a, b]: all square integrable and Lebesgue measurable functions de-

fined on an interval [a, b] with the inner product

〈f, g〉 :=
∫ b

a
f(t)∗g(t)dt

Matrix form: 〈f, g〉 :=
∫ b
a Trace [f(t)∗g(t)] dt.

• L2 = L2(−∞,∞): 〈f, g〉 :=
∫∞
−∞ Trace [f(t)∗g(t)] dt.

• L2+ = L2[0,∞): subspace of L2(−∞,∞).

• L2− = L2(−∞, 0]: subspace of L2(−∞,∞).
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Analytic Functions

Let S ⊂ C be an open set, and let f(s) be a complex valued function

defined on S:

f(s) : S 7−→ C.

Then f(s) is analytic at a point z0 in S if it is differentiable at z0 and

also at each point in some neighborhood of z0.

It is a fact that if f(s) is analytic at z0 then f has continuous derivatives

of all orders at z0. Hence, a function analytic at z0 has a power series

representation at z0.

A function f(s) is said to be analytic in S if it has a derivative or is

analytic at each point of S.

Maximum Modulus Theorem: If f(s) is defined and continuous on a

closed-bounded set S and analytic on the interior of S, then

max
s∈S
|f(s)| = max

s∈∂S
|f(s)|

where ∂S denotes the boundary of S.
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L2 and H2 Spaces

L2(jR) Space: all complex matrix functions F such that the integral

below is bounded:∫ ∞
−∞Trace [F ∗(jω)F (jω)] dω <∞

with the inner product

〈F,G〉 :=
1

2π

∫ ∞
−∞Trace [F ∗(jω)G(jω)] dω

and the inner product induced norm is given by

‖F‖2 :=
√
〈F, F 〉.

RL2(jR) or simply RL2: all real rational strictly proper transfer

matrices with no poles on the imaginary axis.

H2 Space: a (closed) subspace of L2(jR) with functions F (s) analytic

in Re(s) > 0.

‖F‖22 := sup
σ>0

 1

2π

∫ ∞
−∞ Trace [F ∗(σ + jω)F (σ + jω)] dω


=

1

2π

∫ ∞
−∞Trace [F ∗(jω)F (jω)] dω.

RH2 (real rational subspace of H2): all strictly proper and real ra-

tional stable transfer matrices.

H⊥2 Space: the orthogonal complement of H2 in L2, i.e., the (closed)

subspace of functions in L2 that are analytic in Re(s) < 0. .

RH⊥2 (the real rational subspace of H⊥2 ): all strictly proper rational

antistable transfer matrices.

Parseval’s relations:

L2(−∞,∞) ∼= L2(jR) L2[0,∞) ∼= H2 L2(−∞, 0] ∼= H⊥2 .

‖G‖2 = ‖g‖2 where G(s) = L[g(t)] ∈ L2(jR)
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L∞ and H∞ Spaces

L∞(jR) Space

L∞(jR) or simply L∞ is a Banach space of matrix-valued (or scalar-

valued) functions that are (essentially) bounded on jR, with norm

‖F‖∞ := ess sup
ω∈R

σ [F (jω)] .

RL∞(jR) or simply RL∞: all proper and real rational transfer ma-

trices with no poles on the imaginary axis.

H∞ Space

H∞ is a (closed) subspace of L∞ with functions that are analytic and

bounded in the open right-half plane. The H∞ norm is defined as

‖F‖∞ := sup
Re(s)>0

σ [F (s)] = sup
ω∈R

σ [F (jω)] .

The second equality can be regarded as a generalization of the max-

imum modulus theorem for matrix functions. See Boyd and Desoer

[1985] for a proof.

RH∞: all proper and real rational stable transfer matrices.

H−∞ Space

H−∞ is a (closed) subspace of L∞ with functions that are analytic and

bounded in the open left-half plane. The H−∞ norm is defined as

‖F‖∞ := sup
Re(s)<0

σ [F (s)] = sup
ω∈R

σ [F (jω)] .

RH−∞: all proper real rational antistable transfer matrices.
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H∞ Norm as Induced H2 Norm

Let G(s) ∈ L∞ be a p × q transfer matrix. Then a multiplication

operator is defined as

MG : L2 7−→ L2

MGf := Gf.

Then ‖MG‖ = sup
f∈L2

‖Gf‖2
‖f‖2

= ‖G‖∞.

‖Gf‖22 =
1

2π

∫ ∞
−∞ f∗(jω)G∗(jω)G(jω)f(jω) dω

≤ ‖G‖2∞
1

2π

∫ ∞
−∞ ‖f(jω)‖2 dω

= ‖G‖2∞‖f‖22.

To show that ‖G‖∞ is the least upper bound, first choose a frequency ω0

where σ [G(jω)] is maximum, i.e.,

σ [G(jω0)] = ‖G‖∞

and denote the singular value decomposition of G(jω0) by

G(jω0) = σu1(jω0)v
∗
1(jω0) +

r∑
i=2

σiui(jω0)v
∗
i (jω0)

where r is the rank of G(jω0) and ui, vi have unit length.

If ω0 <∞, write v1(jω0) as

v1(jω0) =



α1e
jθ1

α2e
jθ2

...

αqe
jθq


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where αi ∈ R is such that θi ∈ (−π, 0]. Now let 0 ≤ βi ≤ ∞ be such that

θi = ∠
βi − jω0

βi + jω0


(with βi =∞ if θi = 0) and let f be given by

f(s) =



α1
β1−s
β1+s

α2
β2−s
β2+s
...

αq
βq−s
βq+s


f̂ (s)

(with 1 replacing βi−s
βi+s if θi = 0) where a scalar function f̂ is chosen so

that

|f̂(jω)| =
 c if |ω − ω0| < ε or |ω + ω0| < ε

0 otherwise

where ε is a small positive number and c is chosen so that f̂ has unit

2-norm, i.e., c =
√
π/2ε. This in turn implies that f has unit 2-norm.

Then

‖Gf‖22 ≈
1

2π

[
σ [G(−jω0)]

2 π + σ [G(jω0)]
2 π

]

= σ [G(jω0)]
2 = ‖G‖2∞.

Similarly, if ω0 = ∞, the conclusion follows by letting ω0 → ∞ in the

above.
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Computing L2 and H2 Norms

Let G(s) ∈ L2 and g(t) = L−1[G(s)]. Then

‖G‖22 =
1

2π

∫ ∞
−∞Trace{G∗(jω)G(jω)} dω =

1

2πj

∮
Trace{G∼(s)G(s)} ds.

=
∑ the residues of Trace{G∼(s)G(s)}

at its poles in the left half plane.

=
∫ ∞
−∞Trace{g∗(t)g(t)} dt = ‖g‖22

Consider G(s) =

 A B

C 0

 ∈ RH2. Then we have

‖G‖22 = trace(B∗LoB) = trace(CLcC
∗)

where Lo and Lc are observability and controllability Gramians:

ALc + LcA
∗ + BB∗ = 0 A∗Lo + LoA + C∗C = 0.

Note that g(t) = L−1(G) =

 CeAtB, t ≥ 0

0, t < 0

Lo =
∫ ∞
0

eA∗tC∗CeAt dt, Lc =
∫ ∞
0

eAtBB∗eA∗t dt,

‖G‖22 =
∫ ∞
0

Trace{g∗(t)g(t)} dt =
∫ ∞
0

Trace{B∗eA∗tC∗CeAtB} dt

= Trace{B∗
∫ ∞
0

eA∗tC∗CeAtdtB} = trace(B∗LoB)

=
∫ ∞
0

Trace{g(t)g∗(t)} dt =
∫ ∞
0

Trace{CeAtBB∗eA∗tC∗} dt.

hypothetical input-output experiments: Apply the impulsive input δ(t)ei

(δ(t) is the unit impulse and ei is the ith standard basis vector) and denote

the output by zi(t)(= g(t)ei). Then zi ∈ L2+ (assuming D = 0) and

‖G‖22 =
m∑

i=1
‖zi‖22.

Can be used for nonlinear time varying systems.
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Example

Consider a transfer matrix

G =



3(s + 3)

(s− 1)(s + 2)

2

s− 1
s + 1

(s + 2)(s + 3)

1

s− 4

 = Gs + Gu

with

Gs =



−2 0 −1 0

0 −3 2 0

1 0 0 0

1 1 0 0


, Gu =



1 0 4 2

0 4 0 1

1 0 0 0

0 1 0 0


.

Then the command h2norm(Gs) gives ‖Gs‖2 = 0.6055 and h2norm(cjt(Gu))

gives ‖Gu‖2 = 3.182. Hence ‖G‖2 =
√
‖Gs‖22 + ‖Gu‖22 = 3.2393.

� P = gram(A,B); Q = gram(A′,C′); or P = lyap(A,B ∗B′);

� [Gs,Gu] = sdecomp(G); % decompose into stable and antistable

parts.
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Computing L∞ and H∞ Norms

Let G(s) ∈ L∞

‖G‖∞ := ess sup
ω

σ{G(jω)}.

• the farthest distance the Nyquist plot of G from the origin

• the peak on the Bode magnitude plot

• estimation: set up a fine grid of frequency points, {ω1, · · · , ωN}.

‖G‖∞ ≈ max
1≤k≤N

σ{G(jωk)}.

Let γ > 0 and G(s) =

 A B

C D

 ∈ RL∞.

‖G‖∞ < γ ⇐⇒ σ(D) < γ & H has no jω eigenvalues

where H :=

 A + BR−1D∗C BR−1B∗

−C∗(I + DR−1D∗)C −(A + BR−1D∗C)∗


and R = γ2I −D∗D.

Let Φ(s) = γ2I −G∼(s)G(s).

‖G‖∞ < γ

⇐⇒ Φ(jω) > 0, ∀ω ∈ R.

⇐⇒ det Φ(jω) 6= 0 since Φ(∞) = R > 0 and Φ(jω) is continuous

⇐⇒ Φ(s) has no imaginary axis zero.

⇐⇒ Φ−1(s) has no imaginary axis pole.

Φ−1(s) =


H

 BR−1

−C∗DR−1


[
R−1D∗C R−1B∗

]
R−1

 .
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⇐⇒ H has no jω axis eigenvalues if the above realization has neither

uncontrollable modes nor unobservable modes on the imaginary axis.

Assume that jω0 is an eigenvalue of H but not a pole of Φ−1(s). Then

jω0 must be either an unobservable mode of (
[
R−1D∗C R−1B∗

]
, H)

or an uncontrollable mode of (H,

 BR−1

−C∗DR−1

). Suppose jω0 is an

unobservable mode of (
[
R−1D∗C R−1B∗

]
, H). Then there exists an

x0 =

 x1

x2

 6= 0 such that

Hx0 = jω0x0,
[
R−1D∗C R−1B∗

]
x0 = 0.

m
(jω0I −A)x1 = 0

(jω0I + A∗)x2 = −C∗Cx1

D∗Cx1 + B∗x2 = 0.

Since A has no imaginary axis eigenvalues, we have x1 = 0 and x2 = 0.

Contradiction!!!

Similarly, a contradiction will also be arrived if jω0 is assumed to be an

uncontrollable mode of (H,

 BR−1

−C∗DR−1

).
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Bisection Algorithm

(a) select an upper bound γu and a lower bound γl such that γl ≤
‖G‖∞ ≤ γu;

(b) if (γu − γl)/γl ≤specified level, stop; ‖G‖ ≈ (γu + γl)/2. Otherwise

go to next step;

(c) set γ = (γl + γu)/2;

(d) test if ‖G‖∞ < γ by calculating the eigenvalues of H for the given γ;

(e) if H has an eigenvalue on jR set γl = γ; otherwise set γu = γ; go

back to step (b).

WLOG assume γ = 1 since ‖G‖∞ < γ iff
∥∥∥γ−1G

∥∥∥∞ < 1
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Estimating the H∞ norm

Estimating the H∞ norm experimentally: the maximum magnitude of

the steady-state response to all possible unit amplitude sinusoidal input

signals.

G(s)
z = |G(jω)| sin(ωt+ < G(jω)) u = sinωt

� �

Let the sinusoidal inputs be

u(t) =



u1 sin(ω0t + φ1)

u2 sin(ω0t + φ2)
...

uq sin(ω0t + φq)


, û =



u1

u2
...

uq


.

Then the steady-state response of the system can be written as

y(t) =



y1 sin(ω0t + θ1)

y2 sin(ω0t + θ2)
...

yp sin(ω0t + θp)


, ŷ =



y1

y2
...

yp


for some yi, θi, i = 1, 2, . . . , p, and furthermore,

‖G‖∞ = sup
φi,ωo,û

‖ŷ‖
‖û‖

where ‖·‖ is the Euclidean norm.
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Examples

Consider a mass/spring/damper system as shown in Figure 0.1.
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Figure 0.1: A two-mass/spring/damper system
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Figure 0.2: ‖G‖∞ is the peak of the largest singular value of G(jω)

The dynamical system can be described by the following differential

equations: 

ẋ1

ẋ2

ẋ3

ẋ4


= A



x1

x2

x3

x4


+ B

 F1

F2


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with

A =



0 0 1 0

0 0 0 1

− k1

m1

k1

m1
− b1

m1

b1

m1
k1

m2
−k1 + k2

m2

b1

m2
−b1 + b2

m2


, B =



0 0

0 0
1

m1
0

0
1

m2


.

Suppose that G(s) is the transfer matrix from (F1, F2) to (x1, x2); that is,

C =

 1 0 0 0

0 1 0 0

 , D = 0,

and suppose k1 = 1, k2 = 4, b1 = 0.2, b2 = 0.1, m1 = 1, and m2 = 2 with

appropriate units.

� G=pck(A,B,C,D);

� hinfnorm(G,0.0001) or linfnorm(G,0.0001) % relative error

≤ 0.0001

� w=logspace(-1,1,200); % 200 points between 1 = 10−1 and 10 =

101;

� Gf=frsp(G,w); % computing frequency response;

� [u,s,v]=vsvd(Gf); % SVD at each frequency;

� vplot(′liv, lm′, s), grid % plot both singular values and grid.

‖G(s)‖∞ = 11.47 = the peak of the largest singular value Bode plot in

Figure 0.2.

Since the peak is achieved at ωmax = 0.8483, exciting the system using

the following sinusoidal input F1

F2

 =

 0.9614 sin(0.8483t)

0.2753 sin(0.8483t− 0.12)


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gives the steady-state response of the system as x1

x2

 =

 11.47× 0.9614 sin(0.8483t− 1.5483)

11.47× 0.2753 sin(0.8483t− 1.4283)

 .

This shows that the system response will be amplified 11.47 times for an

input signal at the frequency ωmax, which could be undesirable if F1 and

F2 are disturbance force and x1 and x2 are the positions to be kept steady.

Consider a two-by-two transfer matrix

G(s) =



10(s + 1)

s2 + 0.2s + 100

1

s + 1
s + 2

s2 + 0.1s + 10

5(s + 1)

(s + 2)(s + 3)

 .

A state-space realization of G can be obtained using the following Matlab

commands:

� G11=nd2sys([10,10],[1,0.2,100]);

� G12=nd2sys(1,[1,1]);

� G21=nd2sys([1,2],[1,0.1,10]);

� G22=nd2sys([5,5],[1,5,6]);

� G=sbs(abv(G11,G21),abv(G12,G22));

Next, we set up a frequency grid to compute the frequency response of G

and the singular values of G(jω) over a suitable range of frequency.

� w=logspace(0,2,200); % 200 points between 1 = 100 and 100 =

102;

� Gf=frsp(G,w); % computing frequency response;

� [u,s,v]=vsvd(Gf); % SVD at each frequency;
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� vplot(′liv, lm′, s), grid % plot both singular values and grid;

� pkvnorm(s) % find the norm from the frequency response of the

singular values.

The singular values of G(jω) are plotted in Figure 0.3, which gives an es-

timate of ‖G‖∞ ≈ 32.861. The state-space bisection algorithm described

previously leads to ‖G‖∞ = 50.25±0.01 and the corresponding Matlab

command is

� hinfnorm(G,0.0001) or linfnorm(G,0.0001) % relative error

≤ 0.0001.
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Figure 0.3: The largest and the smallest singular values of G(jω)

The preceding computational results show clearly that the graphical

method can lead to a wrong answer for a lightly damped system if the

frequency grid is not sufficiently dense. Indeed, we would get ‖G‖∞ ≈
43.525, 48.286 and 49.737 from the graphical method if 400, 800, and 1600

frequency points are used, respectively.
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Chapter 5: Internal Stability

• internal stability

• coprime factorization over RH∞
• performance
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Internal Stability

Consider the following feedback system:

e
e

+
+

++e2

e1

w2

w1

� �

-
6

?

-

K̂

P

• well-posed if I − K̂(∞)P (∞) is invertible.

• Internal Stability: if
 I −K̂

−P I


−1

=

 (I − K̂P )−1 K̂(I − PK̂)−1

P (I − K̂P )−1 (I − PK̂)−1

 ∈ RH∞
• Need to check all Four transfer matrices. For example,

P =
s− 1

s + 1
, K̂ = − 1

s− 1
.

 I −K̂

−P I


−1

=


s + 1

s + 2
− s + 1

(s− 1)(s + 2)
s− 1

s + 2

s + 1

s + 2



• Suppose K̂ ∈ H∞. Internal stability⇐⇒ P (I − K̂P )−1 ∈ H∞.

• Suppose P ∈ H∞. Internal stability⇐⇒ K̂(I − PK̂)−1 ∈ H∞.

• Suppose P, K̂ ∈ H∞. Internal stability⇐⇒ (I − PK̂)−1 ∈ H∞.

• Suppose no unstable pole-zero cancellation in PK.

Internal stability⇐⇒ (I − P (s)K̂(s))−1 ∈ H∞
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Example

Let P and K̂ be two-by-two transfer matrices

P =


1

s− 1
0

0
1

s + 1

 , K̂ =


1− s

s + 1
−1

0 −1

 .

Then

PK̂ =


−1

s + 1

−1

s− 1

0
−1

s + 1

 , (I − PK̂)−1 =


s + 1

s + 2
− (s + 1)2

(s + 2)2(s− 1)

0
s + 1

s + 2

 .

So the closed-loop system is not stable even though

det(I − PK̂) =
(s + 2)2

(s + 1)2

has no zero in the closed right-half plane and the number of unstable poles

of PK̂ = nk + np = 1. Hence, in general, det(I − PK̂) having no zeros

in the closed right-half plane does not necessarily imply (I − PK̂)−1 ∈
RH∞.
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Coprime Factorization over RH∞

• two polynomials m(s) and n(s) are coprime if the only common factors

are constants.

• two transfer functions m(s) and n(s) in RH∞ are coprime over

RH∞ if the only common factors are stable and invertible transfer

functions (units):

h,mh−1, nh−1 ∈ RH∞ =⇒ h−1 ∈ RH∞.

Equivalent, there exists x, y ∈ RH∞ such that

xm + yn = 1.

• Matrices M and N in RH∞ are right coprime over RH∞ if there

exist matrices Xr and Yr in RH∞ such that

[
Xr Yr

]  M

N

 = XrM + YrN = I.

• Matrices M̃ and Ñ in RH∞ are left coprime over RH∞ if there

exist matrices Xl and Yl in RH∞ such that

[
M̃ Ñ

]  Xl

Yl

 = M̃Xl + ÑYl = I.
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Let P = NM−1 = M̃−1Ñ and K̂ = UV −1 = Ṽ −1Ũ be rcf and lcf,

respectively. Then the following conditions are equivalent:

1. The feedback system is internally stable.

2.

 M U

N V

 is invertible in RH∞.

3.

 Ṽ −Ũ

−Ñ M̃

 is invertible in RH∞.

4. M̃V − ÑU is invertible in RH∞.

5. Ṽ M − ŨN is invertible in RH∞.

Let P =

 A B

C D

 be a stabilizable and detectable realization, and let

F and L be such that A + BF and A + LC are both stable.

Define  M −Yl

N Xl

 =


A + BF B −L

F I 0

C + DF D I


 Xr Yr

−Ñ M̃

 =


A + LC −(B + LD) L

F I 0

C −D I

 .

Then  Xr Yr

−Ñ M̃


 M −Yl

N Xl

 = I.
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Example

Let P (s) =
s− 2

s(s + 3)
and α = (s + 1)(s + 3). Then P (s) = n(s)/m(s)

with n(s) =
s− 2

(s + 1)(s + 3)
and m(s) =

s

s + 1
forms a coprime factoriza-

tion. To find an x(s) ∈ H∞ and a y(s) ∈ H∞ such that x(s)n(s) +

y(s)m(s) = 1, consider a stabilizing controller for P : K̂ = − s− 1

s + 10
.

Then K̂ = u/v with u = K̂ and v = 1 is a coprime factorization and

m(s)v(s)− n(s)u(s) =
(s + 11.7085)(s + 2.214)(s + 0.077)

(s + 1)(s + 3)(s + 10)
=: β(s)

Then we can take

x(s) = −u(s)/β(s) =
(s− 1)(s + 1)(s + 3)

(s + 11.7085)(s + 2.214)(s + 0.077)

y(s) = v(s)/β(s) =
(s + 1)(s + 3)(s + 10)

(s + 11.7085)(s + 2.214)(s + 0.077)

Matlab programs can be used to find the appropriate F and L matri-

ces in state-space so that the desired coprime factorization can be obtained.

Let A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Then an F and an L can be

obtained from

� F=-lqr(A, B, eye(n), eye(m)); % or

� F=-place(A, B, Pf); % Pf= poles of A+BF

� L = −lqr(A′,C′, eye(n), eye(p)); % or

� L = −place(A′,C′,Pl); % Pl=poles of A+LC.
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Chapter 6: Performance Specifications and Limitations

• Feedback Properties

• Weighted H2 and H∞ Performance

• Selection of Weighting Performance

• Bode’s Gain and Phase Relation

• Bode’s Sensitivity Integral

• Analyticity Constraints
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Feedback Properties

e
eee

n

6

�?

yu
ddi

−
r ? --up P

? -K ---

Si = (I + KP )−1, So = (I + PK)−1.

Ti = I − Si = KP (I + KP )−1, To = I − So = PK(I + PK)−1

y = To(r − n) + SoPdi + Sod

up = KSo(r − n)−KSod + Sidi.

Disturbance rejection at the plant output (low frequency):

σ(So) = σ
(
(I + PK)−1

)
=

1

σ(I + PK)
(� 1)

σ(SoP ) = σ
(
(I + PK)−1P

)
= σ(PSi) (� 1)

Disturbance rejection at the plant input (low frequency):

σ(Si) = σ
(
(I + KP )−1

)
=

1

σ(I + KP )
(� 1)

σ(SiK) = σ
(
K(I + PK)−1

)
= σ(KSo) (� 1)

Sensor noise rejection and robust stability (high frequency) :

σ(To) = σ
(
PK(I + PK)−1

)
(� 1)
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Note that

σ(So)� 1 ⇐⇒ σ(PK)� 1

σ(Si)� 1 ⇐⇒ σ(KP )� 1

σ(To)� 1 ⇐⇒ σ(PK)� 1.

Now suppose P and K are invertible, then

σ(PK)� 1 or σ(KP )� 1

⇐⇒


σ(SoP ) = σ
(
(I + PK)−1P

)
≈ σ(K−1) = 1

σ(K)

σ(KSo) = σ
(
K(I + PK)−1

)
≈ σ(P−1) = 1

σ(P ).

Desired Loop Shape
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Weighted H2 and H∞ Performance
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Figure 0.4: Standard feedback configuration with weights

H2 Performance: Assume d̃(t) = ηδ(t) and E(ηη∗) = I

Minimize the expected energy of the error e:

E
{
‖e‖22

}
= E

{∫ ∞
0
‖e‖2 dt

}
= ‖WeSoWd‖22

Include the control signal u in the cost function:

E
{
‖e‖22 + ρ2 ‖ũ‖22

}
=

∥∥∥∥∥∥∥
 WeSoWd

ρWuKSoWd


∥∥∥∥∥∥∥
2

2

Robustness problem?????

H∞ Performance: under worst possible case

sup
‖d̃‖2

≤1

‖e‖2 = ‖WeSoWd‖∞

restrictions on the control energy or control bandwidth:

sup
‖d̃‖2

≤1

‖ũ‖2 = ‖WuKSoWd‖∞

Combined cost:

sup
‖d̃‖2

≤1

{
‖e‖22 + ρ2 ‖ũ‖22

}
=

∥∥∥∥∥∥∥
 WeSoWd

ρWuKSoWd


∥∥∥∥∥∥∥
2

∞
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Selection of Weighting Functions: SISO

Let L = PK be a standard second-order system

L =
ω2

n

s(s + 2ξωn)

tr ≈
0.6 + 2.16ξ

ωn
, 0.3 ≤ ξ ≤ 0.8; ts ≈

4

ξωn
; Mp = e

− πξ√
1−ξ2 , 0 < ξ < 1

10
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10
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10
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iti
vi

ty
 fu

nc
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Figure 0.5: Sensitivity function S for ξ = 0.05, 0.1, 0.2, 0.5, 0.8, and 1 with normalized frequency
(ω/ωn)

S =
1

1 + L
=

s(s + 2ξωn)

s2 + 2ξωns + ω2
n

|S(jωn/
√

2)| = 1

closed-loop bandwidth ωb ≈ ωn/
√

2 since |S(jω)| ≥ 1, ∀ω ≥ ωb
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A good control design: Ms := ‖S‖∞ not too large.
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Figure 0.6: Peak sensitivity Ms versus damping ratio ξ
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ω)|

  1/|We|

Figure 0.7: Performance weight We and desired S

We require

|S(s)| ≤
∣∣∣∣∣∣∣

s

s/Ms + ωb

∣∣∣∣∣∣∣ , s = jω, ∀ ω

⇐⇒ |WeS| ≤ 1, We =
s/Ms + ωb

s

Practical consideration: We = s/Ms+ωb
s+ωbε
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sM
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|S(jb
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 1/|We|

 ω)|

Figure 0.8: Practical performance weight We and desired S

Control weighting function Wu:

Wu =
s + ωbc/Mu

ε1s + ωbc

ε

bc

M

1

1

u

u

ω

 1/|W   |

|KS(j    ω)|

Figure 0.9: Control weight Wu and desired KS



84

Bode’s Gain and Phase Relation

L stable and minimum phase:

∠L(jω0) =
1

π

∫ ∞
−∞

d ln |L|
dν

ln coth
|ν|
2

dν ν := ln(ω/ω0)
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0.5

1

1.5

2

2.5

3

3.5
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4.5
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       ν

ln
 c

ot
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|ν 
|/ 

2 

Figure 0.10: The function ln coth
|ν|
2

vs ν

∠L(jω0) depends mostly on the behavior of
d ln |L(jω)|

dν
near ω0:

1

π

∫ α

−α
ln coth

|ν|
2

dν =


1.1406 (rad), α = ln 3

1.3146 (rad), α = ln 5

1.443 (rad), α = ln 10

=


65.3o, α = ln 3

75.3o, α = ln 5

82.7o, α = ln 10.

∠L(jω0) large if |L| attenuates slowly near ω0 and small if it attenuates

rapidly near ω0. For example, it is reasonable to expect

∠L(jω0) <



−`× 65.3o, if the slope of L = −` for 1
3 ≤

ω
ω0
≤ 3

−`× 75.3o, if the slope of L = −` for 1
5 ≤

ω
ω0
≤ 5

−`× 82.7o, if the slope of L = −` for 1
10 ≤

ω
ω0
≤ 10.

The behavior of ∠L(jω) is particularly important near the crossover fre-

quency ωc, where |L(jωc)| = 1 since π + ∠L(jωc) is the phase margin of
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the feedback system. Further, the return difference is given by

|1 + L(jωc)| = |1 + L−1(jωc)| = 2

∣∣∣∣∣∣∣sin
π + ∠L(jωc)

2

∣∣∣∣∣∣∣ ,
which must not be too small for good stability robustness.

It is important to keep the slope of L near ωc not much smaller than

−1 for a reasonably wide range of frequencies in order to guarantee some

reasonable performance.

L stable and nonminimum phase with RHP zeros: z1, z2, . . . , zk:

L(s) =
−s + z1

s + z1

−s + z2

s + z2
· · · −s + zk

s + zk
Lmp(s)

where Lmp is stable and minimum phase and |L(jω)| = |Lmp(jω)|. Hence

∠L(jω0) = ∠Lmp(jω0) + ∠
k∏

i=1

−jω0 + zi

jω0 + zi

=
1

π

∫ ∞
−∞

d ln |Lmp|
dν

ln coth
|ν|
2

dν +
k∑

i=1
∠
−jω0 + zi

jω0 + zi
,

which gives

∠L(jω0) =
1

π

∫ ∞
−∞

d ln |L|
dν

ln coth
|ν|
2

dν +
k∑

i=1
∠
−jω0 + zi

jω0 + zi
.

Since ∠
−jω0 + zi

jω0 + zi
≤ 0 for each i, a nonminimum phase zero contributes

an additional phase lag and imposes limitations on the rolloff rate of the

open-loop gain. For example, suppose L has a zero at z > 0; then

φ1(ω0/z) := ∠
−jω0 + z

jω0 + z

∣∣∣∣∣∣
ω0=z,z/2,z/4

= −90o,−53.13o,−28o,

Since the slope of |L| near the crossover frequency is, in general, no greater

than −1, which means that the phase due to the minimum phase part,

Lmp, of L will, in general, be no greater than−90o, the crossover frequency

(or the closed-loop bandwidth) must satisfy

ωc < z/2
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Figure 0.11: Phase φ1(ω0/z) due to a real zero z > 0
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Figure 0.12: Phase φ2(ω0/|z|) due to a pair of complex zeros: z = x± jy and x > 0
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for closed-loop stability and some reasonable closed-loop performance.

Next suppose L has a pair of complex right-half zeros at z = x ± jy

with x > 0; then

φ2(ω0/|z|) := ∠
−jω0 + z

jω0 + z

−jω0 + z̄

jω0 + z̄

∣∣∣∣∣∣
ω0=|z|,|z|/2,|z|/3,|z|/4

≈


−180o, −106.26o, −73.7o, −56o, <(z)� =(z)

−180o, −86.7o, −55.9o, −41.3o, <(z) ≈ =(z)

−360o, 0o, 0o, 0o, <(z)� =(z)

In this case we conclude that the crossover frequency must satisfy

ωc <


|z|/4, <(z)� =(z)

|z|/3, <(z) ≈ =(z)

|z|, <(z)� =(z)

in order to guarantee the closed-loop stability and some reasonable closed-

loop performance.



88

Bode’s Sensitivity Integral

Let p1, p2, . . . , pm be the open right-half plane poles of L
∫ ∞
0

ln |S(jω)|dω = π
m∑

i=1
<(pi) (0.3)

In the case where L is stable, the integral simplifies to∫ ∞
0

ln |S(jω)|dω = 0 (0.4)

water bed effect:

1

|S(j

ω

ω)|

−

+

Figure 0.13: Water bed effect of sensitivity function

Suppose

|S(jω)| ≤ ε < 1, ∀ω ∈ [0, ωl]

Bandwidth constraints and stability robustness:

|L(jω)| ≤ Mh

ω1+β
≤ ε̃ < 1, ∀ω ∈ [ωh, ∞)

max
ω∈[ωl,ωh]

|S(jω)| ≥ eα
1

ε


ωl

ωh−ωl
(1− ε̃)

ωh
β(ωh−ωl)

where

α =
π

∑m
i=1<(pi)

ωh − ωl
.

The above lower bound shows that the sensitivity can be very significant

in the transition band.
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Poisson integral relation: Suppose L has at least one more poles than

zeros and suppose z = x0 + jy0 with x0 > 0 is a right-half plane zero of

L. Then
∫ ∞
−∞ ln |S(jω)| x0

x2
0 + (ω − y0)2

dω = π ln
m∏

i=1

∣∣∣∣∣∣
z + pi

z − pi

∣∣∣∣∣∣ (0.5)

Define

θ(z) :=
∫ ωl

−ωl

x0

x2
0 + (ω − y0)2

dω

Then

π ln
m∏

i=1

∣∣∣∣∣∣
z + pi

z − pi

∣∣∣∣∣∣ =
∫ ∞
−∞ ln |S(jω)| x0

x2
0 + (ω − y0)2

dω

≤ (π − θ(z)) ln ‖S(jω)‖∞ + θ(z) ln(ε),

which gives

‖S(s)‖∞ ≥
1

ε


θ(z)

π−θ(z)
 m∏

i=1

∣∣∣∣∣∣
z + pi

z − pi

∣∣∣∣∣∣
 π
π−θ(z)



90

Analyticity Constraints

Let p1, p2, . . . , pm and z1, z2, . . . , zk be the open right-half plane poles

and zeros of L, respectively.

S(pi) = 0, T (pi) = 1, i = 1, 2, . . . ,m

and

S(zj) = 1, T (zj) = 0, j = 1, 2, . . . , k

Suppose S = (I+L)−1 and T = L(I+L)−1 are stable. Then p1, p2, . . . , pm

are the right-half plane zeros of S and z1, z2, . . . , zk are the right-half plane

zeros of T . Let

Bp(s) =
m∏

i=1

s− pi

s + pi
, Bz(s) =

k∏
j=1

s− zj

s + zj

Then |Bp(jω)| = 1 and |Bz(jω)| = 1 for all frequencies and, moreover,

B−1
p (s)S(s) ∈ H∞, B−1

z (s)T (s) ∈ H∞.

Hence, by the maximum modulus theorem, we have

‖S(s)‖∞ =
∥∥∥∥B−1

p (s)S(s)
∥∥∥∥∞ ≥ |B−1

p (z)S(z)| = |B−1
p (z)|

for any z with <(z) > 0. Let z be a right-half plane zero of L; then

‖S(s)‖∞ ≥ |B−1
p (z)| =

m∏
i=1

∣∣∣∣∣∣
z + pi

z − pi

∣∣∣∣∣∣
Similarly, one can obtain

‖T (s)‖∞ ≥ |B−1
z (p)| =

k∏
j=1

∣∣∣∣∣∣∣
p + zj

p− zj

∣∣∣∣∣∣∣
where p is a right-half plane pole of L.

The weighted problem can be considered in the same fashion. Let We

be a weight such that WeS is stable. Then

‖We(s)S(s)‖∞ ≥ |We(z)|
m∏

i=1

∣∣∣∣∣∣
z + pi

z − pi

∣∣∣∣∣∣
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Now suppose We(s) =
s/Ms + ωb

s + ωbε
, ‖WeS‖∞ ≤ 1, and z is a real right-half

plane zero. Then

z/Ms + ωb

z + ωbε
≤

m∏
i=1

∣∣∣∣∣∣
z − pi

z + pi

∣∣∣∣∣∣ =: α ≤ 1,

which gives

ωb ≤
z

1− αε
(α− 1

Ms
) ≈ z(α− 1

Ms
)

bandwidth must be much smaller than the right-half plane zero.
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Chapter 7: Balanced Model Reduction

• Balanced Realization

• Balanced Model Reduction

• Frequency Weighted Balanced Model Reduction

• Relative Reduction
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Balanced Realization

Consider the following Lyapunov equation

A∗X + XA + Q = 0

Assume that A is stable, then the following statements hold:

• X =
∫∞
0 eA∗tQeAtdt.

• X > 0 if Q > 0 and X ≥ 0 if Q ≥ 0.

• if Q ≥ 0, then (Q,A) is observable iff X > 0.

Suppose X is the solution of the Lyapunov equation, then

• Reλi(A) ≤ 0 if X > 0 and Q ≥ 0.

• A is stable if X > 0 and Q > 0.

• A is stable if X ≥ 0, Q ≥ 0 and (Q,A) is detectable.

Let A be stable. Then a pair (C,A) is observable iff the observability

Gramian Q > 0

A∗Q + QA + C∗C = 0.

Similarly, (A,B) is controllable iff the controllability Gramian P > 0

AP + PA∗ + BB∗ = 0

• Let

 A B

C D

 be a state space realization of a (not necessarily stable)

transfer matrix G(s). Suppose that there exists a symmetric matrix

P = P ∗ =

 P1 0

0 0


with P1 nonsingular such that

AP + PA∗ + BB∗ = 0.
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Now partition the realization (A,B,C,D) compatibly with P as
A11 A12 B1

A21 A22 B2

C1 C2 D

 .

Then  A11 B1

C1 D


is also a realization of G. Moreover, (A11, B1) is controllable if A11 is

stable.

Proof Using

0 = AP + PA∗ + BB∗

to get B2 = 0 and A21 = 0. Hence, part of the realization is not

controllable:
A11 A12 B1

A21 A22 B2

C1 C2 D

 =


A11 A12 B1

0 A22 0

C1 C2 D

 =

 A11 B1

C1 D

 .

• Let

 A B

C D

 be a state space realization of a (not necessarily stable)

transfer matrix G(s). Suppose that there exists a symmetric matrix

Q = Q∗ =

 Q1 0

0 0


with Q1 nonsingular such that

QA + A∗Q + C∗C = 0.

Now partition the realization (A,B,C,D) compatibly with Q as
A11 A12 B1

A21 A22 B2

C1 C2 D

 .
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Then  A11 B1

C1 D


is also a realization of G. Moreover, (C1, A11) is observable if A11 is

stable.

• Let P and Q be the controllability and observability Gramians,

AP + PA∗ + BB∗ = 0

A∗Q + QA + C∗C = 0.

Suppose

P = Q = Σ = diag(σ1, σ2, . . . , σn)

Then the state space realization is called internally balanced realiza-

tion and σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, are called the Hankel singular

values of the system.

Two other closely related realizations are called input normal real-

ization with P = I and Q = Σ2, and output normal realization

with P = Σ2 and Q = I. Both realizations can be obtained easily

from the balanced realization by a suitable scaling on the states.

• Let P and Q be two positive semidefinite matrices. Then there exists

a nonsingular matrix T such that

TPT ∗ =



Σ1

Σ2

0

0



(T−1)∗QT−1 =



Σ1

0

Σ3

0


respectively, with Σ1, Σ2, Σ3 diagonal and positive definite.
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In the special case where

 A B

C D

 is a minimal realization, a balanced

realization can be obtained through the following simplified procedure:

1. Compute P > 0 and Q > 0.

2. Find a matrix R such that P = R∗R.

3. Diagonalize RQR∗ to get RQR∗ = UΣ2U∗.

4. Let T−1 = R∗UΣ−1/2. Then TPT ∗ = (T ∗)−1QT−1 = Σ and TAT−1 TB

CT−1 D

 is balanced.

Suppose σr � σr+1 for some r then the balanced realization implies

that those states corresponding to the singular values of σr+1, . . . , σn

are less controllable and observable than those states corresponding

to σ1, . . . , σr. Therefore, truncating those less controllable and ob-

servable states will not lose much information about the system.

input normal realization: P = I and Q = Σ2

output normal realization: P = Σ2 and Q = I.
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Suppose

G(s) =

 A B

C 0

 ∈ RH∞
is a balanced realization; that is, there exists

Σ = diag(σ1Is1, σ2Is2, . . . , σNIsN ) ≥ 0

with σ1 > σ2 > . . . > σN ≥ 0, such that

AΣ + ΣA∗ + BB∗ = 0 A∗Σ + ΣA + C∗C = 0

Then

σ1 ≤ ‖G‖∞ ≤
∫ ∞
0
‖g(t)‖ dt ≤ 2

N∑
i=1

σi

where g(t) = CeAtB.

Proof.

ẋ = Ax + Bw

z = Cx.

(A,B) is controllable and (C,A) is observable.

d

dt
(x∗Σ−1x) = ẋ∗Σ−1x+x∗Σ−1ẋ = x∗(A∗Σ−1 +Σ−1A)x+2〈w,B∗Σ−1x〉

d

dt
(x∗Σ−1x) = ‖w‖2 − ‖w −B∗Σ−1x‖2

Integration from t = −∞ to t = 0 with x(−∞) = 0 and x(0) = x0 gives

x∗0Σ
−1x0 = ‖w‖22 − ‖w −B∗Σ−1x‖22 ≤ ‖w‖22
inf

w∈L2[−∞,0)

{
‖w‖22

∣∣∣∣ x(0) = x0

}
= x∗0Σ

−1x0.

Given x(0) = x0 and w = 0 for t ≥ 0, the norm of z(t) = CeAtx0 can be

found from ∫ ∞
0
‖z(t)‖2 dt =

∫ ∞
0

x∗0e
A∗tC∗CeAtx0dt = x∗0Σx0
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To show σ1 ≤ ‖G‖∞, note that

‖G‖∞ = sup
w∈L2(−∞,∞)

‖g ∗ w‖2
‖w‖2

= sup
w∈L2(−∞,∞)

√∫∞
−∞ ‖z(t)‖2 dt√∫∞
−∞ ‖w(t)‖2 dt

≥ sup
w∈L2(−∞,0]

√∫∞
0 ‖z(t)‖2 dt√∫ 0
−∞ ‖w(t)‖2 dt

= sup
x0 6=0

√√√√√ x∗0Σx0

x∗0Σ−1x0
= σ1

We shall now show the other inequalities. Since

G(s) :=
∫ ∞
0

g(t)e−stdt, Re(s) > 0,

by the definition of H∞ norm, we have

‖G‖∞ = sup
Re(s)>0

∥∥∥∥∫ ∞
0

g(t)e−stdt
∥∥∥∥

≤ sup
Re(s)>0

∫ ∞
0

∥∥∥∥g(t)e−st
∥∥∥∥ dt

≤
∫ ∞
0
‖g(t)‖ dt.

To prove the last inequality, let ei be the ith unit vector and define

E1 =
[
e1 · · · es1

]
, . . . ,

EN =
[
es1+···+sN−1+1 · · · es1+···+sN

]
.

Then
N∑

i=1
EiE

∗
i = I and

∫ ∞
0
‖g(t)‖ dt =

∫ ∞
0

∥∥∥∥∥∥CeAt/2
N∑

i=1
EiE

∗
i e

At/2B

∥∥∥∥∥∥ dt

≤
N∑

i=1

∫ ∞
0

∥∥∥∥CeAt/2EiE
∗
i e

At/2B
∥∥∥∥ dt

≤
N∑

i=1

∫ ∞
0

∥∥∥∥CeAt/2Ei

∥∥∥∥ ∥∥∥∥E∗i eAt/2B
∥∥∥∥ dt

≤
N∑

i=1

√∫ ∞
0

∥∥∥CeAt/2Ei

∥∥∥2 dt
√∫ ∞

0

∥∥∥E∗i eAt/2B
∥∥∥2 dt

≤ 2
N∑

i=1
σi
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where we have used Cauchy-Schwarz inequality and the following relations:
∫ ∞
0

∥∥∥∥CeAt/2Ei

∥∥∥∥2 dt =
∫ ∞
0

λmax

(
E∗i e

A∗t/2C∗CeAt/2Ei

)
dt

= 2λmax (E∗i ΣEi) = 2σi

=
∫ ∞
0

∥∥∥∥E∗i eAt/2B
∥∥∥∥2 dt =

∫ ∞
0

λmax

(
E∗i e

At/2BB∗eA∗t/2Ei

)
dt

2

� [Ab, Bb, Cb, sig, Tinv]=balreal(A, B, C); % sig is a vector

of Hankel singular values and Tinv = T−1;

� [Gb, sig] = sysbal(G);

� Gr = strunc(Gb,2); % truncate to the second-order.
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Balanced Model Reduction

G = Gr + ∆a, =⇒ inf
deg(Gr)≤r

‖G−Gr‖∞ .

• Suppose

G(s) =


A11 A12

A21 A22

B1

B2

C1 C2 D


is a balanced realization with Gramian Σ = diag(Σ1, Σ2)

AΣ + ΣA∗ + BB∗ = 0 A∗Σ + ΣA + C∗C = 0.

where

Σ1 = diag(σ1Is1, σ2Is2, . . . , σrIsr)

Σ2 = diag(σr+1Isr+1, σr+2Isr+2, . . . , σNIsN )

and

σ1 > σ2 > · · · > σr > σr+1 > σr+2 > · · · > σN

where σi has multiplicity si, i = 1, 2, . . . , N and s1+s2+· · ·+sN = n.

Then the truncated system

Gr(s) =

 A11 B1

C1 D


is balanced and asymptotically stable. Furthermore

‖G(s)−Gr(s)‖∞ ≤ 2(σr+1 + σr+2 + · · ·+ σN).

• ‖G(s)−G(∞)‖∞ ≤ 2(σ1 + . . . + σN).

• ‖G(s)−Gn−1(s)‖∞ = 2σN.
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Proof. We shall first show the one step model reduction. Hence we shall

assume Σ2 = σNIsN . Define the approximation error

E11 :=


A11 A12

A21 A22

B1

B2

C1 C2 D

−
 A11 B1

C1 D



=



A11 0 0 B1

0 A11 A12 B1

0 A21 A22 B2

−C1 C1 C2 0


Apply a similarity transformation T to the preceding state-space realiza-

tion with

T =


I/2 I/2 0

I/2 −I/2 0

0 0 I

 , T−1 =


I I 0

I −I 0

0 0 I


to get

E11 =



A11 0 A12/2 B1

0 A11 −A12/2 0

A21 −A21 A22 B2

0 −2C1 C2 0


Consider a dilation of E11(s):

E(s) =

 E11(s) E12(s)

E21(s) E22(s)



=



A11 0 A12/2 B1 0

0 A11 −A12/2 0 σNΣ−1
1 C∗1

A21 −A21 A22 B2 −C∗2
0 −2C1 C2 0 2σNI

−2σNB∗1Σ
−1
1 0 −B∗2 2σNI 0



=:

 Ã B̃

C̃ D̃


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Then it is easy to verify that

P̃ =


Σ1 0

0 σ2
NΣ−1

1 0

0 0 2σNIsN


satisfies

ÃP̃ + P̃ Ã∗ + B̃B̃∗ = 0

P̃ C̃∗ + B̃D̃∗ = 0

Using these two equations, we have

E(s)E∼(s) =


Ã −B̃B̃∗ B̃D̃∗

0 −Ã∗ C̃∗

C̃ −D̃B̃∗ D̃D̃∗



=


Ã −ÃP̃ − P̃ Ã∗ − B̃B̃∗ P̃ C̃∗ + B̃D̃∗

0 −Ã∗ C̃∗

C̃ −C̃P̃ − D̃B̃∗ D̃D̃∗



=


Ã 0 0

0 −Ã∗ C̃∗

C̃ 0 D̃D̃∗


= D̃D̃∗ = 4σ2

NI

where the second equality is obtained by applying a similarity transfor-

mation

T =

 I P̃

0 I


Hence ‖E11‖∞ ≤ ‖E‖∞ = 2σN , which is the desired result.

The remainder of the proof is achieved by using the order reduction

by one-step results and by noting that Gk(s) =

 A11 B1

C1 D

 obtained by

the “kth” order partitioning is internally balanced with balanced Gramian

given by

Σ1 = diag(σ1Is1, σ2Is2, . . . , σkIsk)
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Let Ek(s) = Gk+1(s) − Gk(s) for k = 1, 2, . . . , N − 1 and let GN(s) =

G(s). Then

σ [Ek(jω)] ≤ 2σk+1

since Gk(s) is a reduced-order model obtained from the internally balanced

realization of Gk+1(s) and the bound for one-step order reduction holds.

Noting that

G(s)−Gr(s) =
N−1∑
k=r

Ek(s)

by the definition of Ek(s), we have

σ [G(jω)−Gr(jω)] ≤
N−1∑
k=r

σ [Ek(jω)] ≤ 2
N−1∑
k=r

σk+1

This is the desired upper bound. 2
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• bound can be tight. For example,

G(s) =
n∑

j=1

bi

s + ai
==



−a1

√
b1

−a2

√
b2

. . . ...

−an

√
bn√

b1

√
b2 · · ·

√
bn 0



with ai > 0 and bi > 0. Then P = Q =

√bibj
ai+aj

 and

‖G(s)‖∞ = G(0) =
n∑

i=1

bi

ai
= 2trace(P ) = 2

n∑
i=1

σi

• bound can also be loose for systems with Hankel singular values close

to each other. For example,

G(s) =



−19.9579 −5.4682 9.6954 0.9160 −6.3180

5.4682 0 0 0.2378 0.0020

−9.6954 0 0 −4.0051 −0.0067

0.9160 −0.2378 4.0051 −0.0420 0.2893

−6.3180 −0.0020 0.0067 0.2893 0


with Hankel singular values given by

σ1 = 1, σ2 = 0.9977, σ3 = 0.9957, σ4 = 0.9952.

r 0 1 2 3

‖G−Gr‖∞ 2 1.996 1.991 1.9904

Bounds: 2
∑4

i=r+1 σi 7.9772 5.9772 3.9818 1.9904

2σr+1 2 1.9954 1.9914 1.9904
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Frequency-Weighted Balanced Model Reduction

General Case: inf
deg(Gr)≤r

‖Wo(G−Gr)Wi‖∞

G =

 A B

C 0

 , Wi =

 Ai Bi

Ci Di

 , Wo =

 Ao Bo

Co Do



WoGWi =



A 0 BCi BDi

BoC Ao 0 0

0 0 Ai Bi

DoC Co 0 0


=:

 Ā B̄

C̄ 0

 .

Let P̄ and Q̄ be the solutions to the following Lyapunov equations

ĀP̄ + P̄ Ā∗ + B̄B̄∗ = 0

Q̄Ā + Ā∗Q̄ + C̄∗C̄ = 0.

The input/output weighted Gramians P and Q are defined by

P :=
[
In 0

]
P̄

 In

0

 , Q :=
[
In 0

]
Q̄

 In

0

 .

P and Q satisfy the following lower order equations[
A BCi
0 Ai

] [
P P12

P ∗12 P22

]
+

[
P P12

P ∗12 P22

] [
A BCi
0 Ai

]∗
+

[
BDi

Bi

] [
BDi

Bi

]∗
= 0

[
Q Q12

Q∗12 Q22

] [
A 0
BoC Ao

]
+

[
A 0
BoC Ao

]∗ [
Q Q12

Q∗12 Q22

]
+

[
C∗D∗o
C∗o

] [
C∗D∗o
C∗o

]∗
= 0.

Wi = I =⇒ P can be obtained from

PA∗ + AP + BB∗ = 0

Wo = I =⇒ Q can be obtained from

QA + A∗Q + C∗C = 0.



106

Now let T be a nonsingular matrix such that

TPT ∗ = (T−1)∗QT−1 =

 Σ1

Σ2


(i.e., balanced) and partition the system accordingly as

 TAT−1 TB

CT−1 0

 =


A11 A12 B1

A21 A22 B2

C1 C2 0

 .

Then a reduced order model Gr is obtained as

Gr =

 A11 B1

C1 0

 .

Works well but with guarantee.
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Relative Reduction

Gr = G(I + ∆rel), =⇒ inf
deg(Gr)≤r

∥∥∥∥G−1(G−Gr)
∥∥∥∥∞

and a related problem is

G = Gr(I + ∆mul)

Let G(s) =

 A B

C D

 ∈ RH∞ be minimum phase and D be nonsingular.

Then Wo = G−1(s) =

 A−BD−1C −BD−1

D−1C D−1

.
(a) Then the input/output weighted Gramians P and Q are given by

PA∗ + AP + BB∗ = 0

Q(A−BD−1C) + (A−BD−1C)∗Q + C∗(D−1)∗D−1C = 0.

(b) Suppose P and Q are balanced:

P = Q = diag(σ1Is1, . . . , σrIsr, σr+1Isr+1, . . . , σNIsN ) = diag(Σ1, Σ2)

and let G be partitioned compatibly with Σ1 and Σ2 as

G(s) =


A11 A12 B1

A21 A22 B2

C1 C2 D

 .

Then

Gr(s) =

 A11 B1

C1 D


is stable and minimum phase. Furthermore

‖∆rel‖∞ ≤
N∏

i=r+1

(
1 + 2σi(

√
1 + σ2

i + σi)
)
− 1

‖∆mul‖∞ ≤
N∏

i=r+1

(
1 + 2σi(

√
1 + σ2

i + σi)
)
− 1.
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Chapter 8: Uncertainty and Robustness

• model uncertainty

• small gain theorem

• additive uncertainty

• multiplicative uncertainty

• coprime factor uncertainty

• other tests

• robust performance

• skewed specifications

• example: siso vs mimo
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Model Uncertainty

P∆(s) = P (s) + w(s)∆(s), σ[∆(jω)] < 1, ∀ω
P∆(s) = (I + w(s)∆(s))P (s).

P(j 

w(jω

ω )

)

actual model 

log  

nominal  model 

ω

Suppose P ∈ Π is the nominal model and K is a controller.

Nominal Stability (NS): if K stabilizes the nominal P .

Robust Stability (RS): if K stabilizes every plant in Π.

Nominal Performance (NP): if the performance objectives are

satisfied for the nominal plant P .

Robust Performance (RP): if the performance objectives are satis-

fied for every plant in Π.
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Examples

P (s, α, β) =
10

(
(2 + 0.2α)s2 + (2 + 0.3α + 0.4β)s + (1 + 0.2β)

)
(s2 + 0.5s + 1)(s2 + 2s + 3)(s2 + 3s + 6)

α, β ∈ [−1, 1]

P (s, α, β) ∈ {P0 + W∆ | ‖∆‖ ≤ 1}
with P0 := P (s, 0, 0) and

W (s) = P (s, 1, 1)−P (s, 0, 0) =
10

(
0.2s2 + 0.7s + 0.2

)
(s2 + 0.5s + 1)(s2 + 2s + 3)(s2 + 3s + 6)

The frequency response P0 + W∆ is shown in Figure 0.14 as circles.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Figure 0.14: Nyquist diagram of uncertain system and disk covering

Another way to bound the frequency response is to treat α and β as

norm bounded uncertainties; that is,

P (s, α, β) ∈ {P0 + W1∆1 + W2∆2 | ‖∆i‖∞ ≤ 1}

with P0 = P (s, 0, 0) and

W1 =
10(0.2s2 + 0.3s)

(s2 + 0.5s + 1)(s2 + 2s + 3)(s2 + 3s + 6)
,
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W2 =
10(0.4s + 0.2)

(s2 + 0.5s + 1)(s2 + 2s + 3)(s2 + 3s + 6)

It is in fact easy to show that

{P0 + W1∆1 + W2∆2 | ‖∆i‖∞ ≤ 1} = {P0 + W∆ | ‖∆‖∞ ≤ 1}
with |W | = |W1| + |W2|. The frequency response P0 + W∆ is shown in

Figure 0.15. This bounding is clearly more conservative.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Figure 0.15: A conservative covering

Consider a process control model

G(s) =
ke−τs

Ts + 1
, 4 ≤ k ≤ 9, 2 ≤ T ≤ 3, 1 ≤ τ ≤ 2.

Take the nominal model as

G0(s) =
6.5

(2.5s + 1)(1.5s + 1)

Then for each frequency, all possible frequency responses are in a box, as

shown in Figure 0.16.

∆a(jω) = G(jω)−G0(jω)

� mf= ginput(50) % pick 50 points: the first column of mf is the

frequency points and the second column of mf is the corresponding

magnitude responses.
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Figure 0.16: Uncertain delay system and G0

� magg=vpck(mf(:,2),mf(:,1)); % pack them as a varying ma-

trix.

�Wa =fitmag(magg); % choose the order of Wa online. A third-

order Wa is sufficient for this example.

� [A,B,C,D]=unpck(Wa) % converting into state-space.

� [Z, P, K]=ss2zp(A,B,C,D) % converting into zero/pole/gain

form.

We get

Wa(s) =
0.0376(s + 116.4808)(s + 7.4514)(s + 0.2674)

(s + 1.2436)(s + 0.5575)(s + 4.9508)

and the frequency response of Wa is also plotted in Figure 0.17. Similarly,

define the multiplicative uncertainty

∆m(s) :=
G(s)−G0(s)

G0(s)

and a Wm can be found such that |∆m(jω)| ≤ |Wm(jω)|, as shown in

Figure 0.18. A Wm is given by

Wm =
2.8169(s + 0.212)(s2 + 2.6128s + 1.732)

s2 + 2.2425s + 2.6319
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Figure 0.17: ∆a (dashed line) and a bound Wa (solid line)
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Figure 0.18: ∆m (dashed line) and a bound Wm (solid line)
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Small Gain Theorem

e
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+
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e1

w2

w1

� �

-
6

?

-

M

∆

Small Gain Theorem: Suppose M ∈ (RH∞)p×q. Then the system is

well-posed and internally stable for all ∆(s) ∈ RH∞ with

(a) ‖∆‖∞ ≤ 1/γ if and only if ‖M(s)‖∞ < γ;

(b) ‖∆‖∞ < 1/γ if and only if ‖M(s)‖∞ ≤ γ.

Proof. Assume γ = 1. System is stable iff det(I −M∆) has no zero in

the closed right-half plane for all ∆ ∈ RH∞ and ‖∆‖∞ ≤ 1.

(⇐=) det(I −M∆) 6= 0 for all ∆ ∈ RH∞ and ‖∆‖∞ ≤ 1 since

|λ(I −M∆)| ≥ 1−max |λ(M∆)| ≥ 1− ‖M‖∞ > 0

(⇒) Suppose ‖M‖∞ ≥ 1. There exists a ∆ ∈ RH∞ with ‖∆‖∞ ≤ 1

such that det(I −M(s)∆(s)) has a zero on the imaginary axis, so the

system is unstable. Suppose ω0 ∈ R+∪{∞} is such that σ̄(M(jω0)) ≥ 1.

Let M(jω0) = U(jω)Σ(jω0)V
∗(jω0) be a singular value decomposition

with

U(jω0) =
[
u1 u2 · · · up

]

V (jω0) =
[
v1 v2 · · · vq

]

Σ(jω0) =


σ1

σ2
. . .


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We shall construct a ∆ ∈ RH∞ such that ∆(jω0) = 1
σ1

v1u
∗
1 and ‖∆‖∞ ≤

1. Indeed, for such ∆(s),

det(I−M(jω0)∆(jω0)) = det(I−UΣV ∗v1u
∗
1/σ1) = 1−u∗1UΣV ∗v1/σ1 = 0

and thus the closed-loop system is either not well-posed (if ω0 = ∞) or

unstable (if ω ∈ R). There are two different cases:

(1) ω0 = 0 or∞: then U and V are real matrices. Chose

∆ =
1

σ1
v1u

∗
1 ∈ Rq×p.

(2) 0 < ω0 <∞: write u1 and v1 in the following form:

u∗1 =
[
u11e

jθ1 u12e
jθ2 · · · u1pe

jθp
]
, v1 =



v11e
jφ1

v12e
jφ2

...

v1qe
jφq


where u1i, v1j ∈ R are chosen so that θi, φj ∈ [−π, 0).

Choose βi ≥ 0 and αj ≥ 0 so that

∠
βi − jω0

βi + jω0

 = θi, ∠

αj − jω0

αj + jω0

 = φj

Let

∆(s) =
1

σ1


v11

α1−s
α1+s
...

v1q
αq−s
αq+s


[
u11

β1−s
β1+s · · · u1p

βp−s
βp+s

]
∈ RH∞.

Then ‖∆‖∞ = 1/σ1 ≤ 1 and ∆(jω0) = 1
σ1

v1u
∗
1.

2
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The theorem still holds even if ∆ and M are infinite dimensional. This

is summarized as the following corollary.

The following statements are equivalent:

(i) The system is well-posed and internally stable for all ∆ ∈ H∞ with

‖∆‖∞ < 1/γ;

(ii) The system is well-posed and internally stable for all ∆ ∈ RH∞ with

‖∆‖∞ < 1/γ;

(iii) The system is well-posed and internally stable for all ∆ ∈ Cq×p with

‖∆‖ < 1/γ;

(iv) ‖M‖∞ ≤ γ.

It can be shown that the small gain condition is sufficient to guaran-

tee internal stability even if ∆ is a nonlinear and time varying “stable”

operator with an appropriately defined stability notion, see Desoer and

Vidyasagar [1975].
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Additive Uncertainty

So = (I + PK)−1, To = PK(I + PK)−1

Si = (I + KP )−1, Ti = KP (I + KP )−1.

Let Π = {P + W1∆W2 : ∆ ∈ RH∞} and let K stabilize P . Then

the closed-loop system is well-posed and internally stable for all ‖∆‖∞ < 1

if and only if ‖W2KSoW1‖∞ ≤ 1.

f iK

W2 ∆ W1

P- - -

- - -

? -
6−

∆

−W2KSoW1

-

�
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Multiplicative Uncertainty

ff ∆W2 W1

PK- - -

- - -

? -
6−

∆

−W2ToW1

-

�

Let Π = {(I + W1∆W2)P : ∆ ∈ RH∞} and let K stabilize P . Then

the closed-loop system is well-posed and internally stable for all ∆ ∈ RH∞
with ‖∆‖∞ < 1 if and only if ‖W2ToW1‖∞ ≤ 1.
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Coprime Factor Uncertainty

f
ff

−

−

yw

z2z1

r
6

?

� �

-

∆̃M

M̃−1--

-

Ñ

∆̃N
-

-K--

Let P = M̃−1Ñ be stable left coprime factorization and K stabilize P .

Suppose

Π = (M̃ + ∆̃M)−1(Ñ + ∆̃N), ∆ :=
[
∆̃N ∆̃M

]

with ∆̃M , ∆̃N ∈ RH∞. Then the closed-loop system is well-posed and

internally stable for all ‖∆‖∞ < 1 if and only if
∥∥∥∥∥∥∥
 K

I

 (I + PK)−1M̃−1

∥∥∥∥∥∥∥∞ ≤ 1.



120

Other Tests

W1 ∈ RH∞ W2 ∈ RH∞ ∆ ∈ RH∞ ‖∆‖∞ < 1

Perturbed Model Sets Representative Types of Robust Stability Tests
Π Uncertainty Characterized

output (sensor) errors
(I + W1∆W2)P neglected HF dynamics ‖W2ToW1‖∞ ≤ 1

uncertain rhp zeros

input (actuators) errors
P (I + W1∆W2) neglected HF dynamics ‖W2TiW1‖∞ ≤ 1

uncertain rhp zeros

LF parameter errors
(I + W1∆W2)

−1P uncertain rhp poles ‖W2SoW1‖∞ ≤ 1

LF parameter errors
P (I + W1∆W2)

−1 uncertain rhp poles ‖W2SiW1‖∞ ≤ 1

additive plant errors
P + W1∆W2 neglected HF dynamics ‖W2KSoW1‖∞ ≤ 1

uncertain rhp zeros

LF parameter errors
P (I + W1∆W2P )−1 uncertain rhp poles ‖W2SoPW1‖∞ ≤ 1

(M̃ + ∆̃M)−1(Ñ + ∆̃N) LF parameter errors

P = M̃−1Ñ neglected HF dynamics
∥∥∥∥∥
[
K
I

]
SoM̃

−1

∥∥∥∥∥
∞
≤ 1

∆ =
[

∆̃N ∆̃M

]
uncertain rhp poles & zeros

(N + ∆N)(M + ∆M)−1 LF parameter errors
P = NM−1 neglected HF dynamics

∥∥M−1Si[K I]
∥∥
∞ ≤ 1

∆ =

 ∆N

∆M

 uncertain rhp poles & zeros
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Robust Performance

f f- P∆
6

- - ey
d

−
r ? -We

--K

sup
‖d‖2≤1

‖e‖2 ≤ 1

Ted = We(I + P∆K)−1, P∆ ∈ Π.

Suppose P∆ ∈ {(I + ∆W2)P : ∆ ∈ RH∞, ‖∆‖∞ < 1} and K inter-

nally stabilizes P . Then robust performance is guaranteed if

σ(WeSo) + σ(W2To) ≤ 1.

σ(Ted) ≤ σ(WeSo)σ[(I + ∆W2To)
−1] =

σ(WeSo)

σ(I + ∆W2To)

≤ σ(WeSo)

1− σ(∆W2To)
≤ σ(WeSo)

1− σ(W2To)
.
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Skewed Specifications

Π := {P (I + w∆) : ∆ ∈ RH∞, ‖∆‖∞ < 1} .

e e eK

w
∆

I

P

I

We
- - - - - -6

-
?

? ?

?

6−

z w d

e

robust stability:

‖wTi‖∞ ≤ 1,

nominal performance:

‖WeSo‖∞ ≤ 1.

T̃ed = WeSo(I + P∆wKSo)
−1 = WeSo

[
I + P∆P−1(wTo)

]−1
.

robust performance is guaranteed if

σ(WeSo) + κ(P )σ(wTi) ≤ 1

or

σ(WeSo) + κ(P )σ(wTo) ≤ 1.
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Why Condition Number?

Π1 := {P (I + wt∆) : ∆ ∈ RH∞, ‖∆‖∞ < 1}
Π2 := {(I + w̃t∆)P : ∆ ∈ RH∞, ‖∆‖∞ < 1} .

Π2 ⊇ Π1 if |w̃t| ≥ |wt|κ(P ) ∀ω

since P (I + wt∆) = (I + wtP∆P−1)P .

ee?
- -

? --

∆w̃t

P--

--

-- P

wt ∆

P (s) =



−0.2 0.1 1 0 1

−0.05 0 0 0 0.7

0 0 −1 1 0

1 0 0 0 0

0 1 0 0 0


=

1

a(s)

 s (s + 1)(s + 0.07)

−0.05 0.7(s + 1)(s + 0.13)



where a(s) = (s + 1)(s + 0.1707)(s + 0.02929).

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

frequency

co
nd

iti
on

 n
um

be
r
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Example: SISO vs MIMO

z

y

x

 ω̇1

ω̇2

 =

 0 a

−a 0


 ω1

ω2

 +

 u1

u2

 , y =

 1 a

−a 1


 ω1

ω2



P (s) =
1

s2 + a2

 s− a2 a(s + 1)

−a(s + 1) s− a2

 .

S = (I + P )−1 =
1

s + 1

 s −a

a s

 , T = P (I + P )−1 =
1

s + 1

 1 a

−a 1

 .

Each loop has the open-loop transfer function as
1

s
so each loop has phase

margin φmax = −φmin = 90o and gain margin kmin = 0, kmax =∞.

Suppose one loop transfer function is perturbed

c c cu2

w z

y2 −
−

u1y1

6
� 6

�

�

�

�

?

6
δ

�
P

Denote
z(s)

w(s)
= −T11 = − 1

s + 1
.
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Then the maximum allowable perturbation is given by

‖δ‖∞ <
1

‖T11‖∞
= 1

which is independent of a. However, if both loops are perturbed at the

same time, then the maximum allowable perturbation is much smaller, as

shown below.

e

e

e

e e

e r̃2

r̃1

y2

y1 ?

6
�

�

�

�

�

�
?��/

SSo6

δ21

δ12

δ22

δ11

�

�

�

�

?

6

�

�

�

�

�

�

g22

g21

g12

g11

−

−

P∆ = (I + ∆)P, ∆ =

 δ11 δ12

δ21 δ22

 ∈ RH∞
‖∆‖∞ < γ. The system is robustly stable for every such ∆ iff

γ ≤ 1

‖T‖∞
=

1√
1 + a2

(� 1 if a� 1).

In particular, consider

∆ = ∆d =

 δ11

δ22

 ∈ R2×2.

Then the closed-loop system is stable for every such ∆ iff

det(I + T∆d) =

(
s2 + (2 + δ11 + δ22)s + 1 + δ11 + δ22 + (1 + a2)δ11δ22

)
(s + 1)2
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has no zero in the closed right-half plane. Hence the stability region is

given by

2 + δ11 + δ22 > 0

1 + δ11 + δ22 + (1 + a2)δ11δ22 > 0.

The system is unstable with

δ11 = −δ22 =
1√

1 + a2
.

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
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Chapter 9: Linear Fractional Transformation

A (lower) LFT of M =

 M11 M12

M21 M22

 over ∆ is defined as

F`(M, ∆) := M11 + M12∆(I −M22∆)−1M21

Similarly, an upper LFT:

Fu(M, ∆u) = M22 + M21∆u(I −M11∆u)
−1M12

y1 u1

w1z1
� �

�

-

M

∆

y2 u2

w2z2
��
�

-

M

∆u

 z1

y1

 = M

 w1

u1

 =

 M11 M12

M21 M22


 w1

u1

 ,

u1 = ∆ y1
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Properties

• F`(M, ∆) is well-posed if (I −M22∆) is invertible.

• (Fu(M, ∆))−1 = Fu(N, ∆) with N given by

N =

 M11 −M12M
−1
22 M21 −M12M

−1
22

M−1
22 M21 M−1

22

 .

• Suppose C is invertible. Then

(A + BQ)(C + DQ)−1 = F`(M,Q)

(C + QD)−1(A + QB) = F`(N,Q)

with

M =

 AC−1 B −AC−1D

C−1 −C−1D

 ,

N =

 C−1A C−1

B −DC−1A −DC−1

 .

• if M12 is invertible, then

F`(M,Q) = (C + QD)−1(A + QB)

with A = M−1
12 M11, B = M21 −M22M

−1
12 M11, C = M−1

12 and D =

−M22M
−1
12 .

• if M21 is invertible, then

F`(M,Q) = (A + BQ)(C + DQ)−1

with A = M11M
−1
21 , B = M12 −M11M

−1
21 M22, C = M−1

21 and D =

−M−1
21 M22.
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Example

The following diagram can be rearranged as an LFT z = F`(G,K)w

with

w =

 d

n

 z =

 v

uf

 G =


W2P 0 W2P

0 0 W1

−FP −F −FP

 .

F

K

W1

P W2
j j

j
- - - - -

��

?

?��

6

y

uf

u

d
v

n

−

P =

 Ap Bp

Cp 0

 , F =

 Af Bf

Cf Df

 , W1 =

 Au Bu

Cu Du

 , W2 =

 Av Bv

Cv Dv

 .

That is,

ẋp = Apxp + Bp(d + u), yp = Cpxp,

ẋf = Afxf + Bf(yp + n), −y = Cfxf + Df(yp + n),

ẋu = Auxu + Buu, uf = Cuxu + Duu,

ẋv = Avxv + Bvyp, v = Cvxv + Dvyp.

Now define a new state vector

x =



xp

xf

xu

xv


and eliminate the variable yp to get a realization of G as

ẋ = Ax + B1w + B2u

z = C1x + D11w + D12u

y = C2x + D21w + D22u
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with

A =



Ap 0 0 0

BfCp Af 0 0

0 0 Au 0

BvCp 0 0 Av


, B1 =



Bp 0

0 Bf

0 0

0 0


, B2 =



Bp

0

Bu

0



C1 =

 DvCp 0 0 Cv

0 0 Cu 0

 , D11 = 0, D12 =

 0

Du


C2 =

[
−DfCp −Cf 0 0

]
, D21 =

[
0 −Df

]
, D22 = 0.
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Parametric Uncertainty: A Mass/Spring/Damper System

m

6
F

XX��
�XX

X��
�XX ck

ẍ +
c

m
ẋ +

k

m
x =

F

m
.

k̄(1 + 0.3δk)

c̄(1 + 0.2δc)

1
m̄(1+0.1δm)

1
s

1
s

−
d

d
+

����

-

- -
6

6

Fẍẋx

Then  ẋ1

ẋ2

 = F`(M, ∆)


x1

x2

F


where

M =



0 1 0 0 0 0

− k̄
m̄ − c̄

m̄
1
m̄ −

1
m̄ −

1
m̄ −0.1

m̄

0.3k̄ 0 0 0 0 0

0 0.2c̄ 0 0 0 0

−k̄ −c̄ 1 −1 −1 −0.1



, ∆ =


δk 0 0

0 δc 0

0 0 δm

 .
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one page missing here
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e e

e
e

δ2 δ1

δ1 −e−d

c

b

a

δ2

�

-

6

-

�
6

?

6
-

�
6

���

�

? �

�

z u4 y4

u3 y3 u1 y1

y2 u2

w



y1

y2

y3

y4

z



= M



u1

u2

u3

u4

w


where

M =



0 −e −d 0 1

1 0 0 0 0

1 0 0 0 0

0 −be −bd + c 0 b

0 −ae −ad 1 a



.

Then

z = Fu(M, ∆)w, ∆ =

 δ1I2 0

0 δ2I2

 .
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HIMAT Example

Wdel =


50(s + 100)

s + 10000
0

0
50(s + 100)

s + 10000

 , Wp =


0.5(s + 3)

s + 0.03
0

0
0.5(s + 3)

s + 0.03

 ,

Wn =


2(s + 1.28)

s + 320
0

0
2(s + 1.28)

s + 320

 ,

P0 =



−0.0226 −36.6 −18.9 −32.1 0 0

0 −1.9 0.983 0 −0.414 0

0.0123 −11.7 −2.63 0 −77.8 22.4

0 0 1 0 0 0

0 57.3 0 0 0 0

0 0 0 57.3 0 0



f f

f
P0 Wp

WnK

Wdel

-6

∆-

?- - ? - -

�?��

 d1

d2



 n1

n2



 e1

e2



 z1

z2

  p1

p2



u y

Figure 0.19: HIMAT closed-loop interconnection



135

The open-loop interconnection is



z1

z2

e1

e2

y1

y2



= Ĝ(s)



p1

p2

d1

d2

n1

n2

u1

u2



.

The Simulink block diagram:

Figure 0.20: Simulink block diagram for HIMAT (aircraft.m)

The Ĝ(s) =

 A B

C D

 can be computed by

� [A,B,C,D] = linmod(′aircraft′)
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which gives

A =



−10000I2 0 0 0 0 0 0 0

0 −0.0226 −36.6 −18.9 −32.1 0 0 0

0 0 −1.9 0.983 0 0 0 0

0 0.0123 −11.7 −2.63 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −54.087 0 0 −0.018 0 0

0 0 0 0 −54.087 0 −0.018 0

0 0 0 0 0 0 0 −320I2



B =



0 0 0 0 −703.5624 0

0 0 0 0 0 −703.5624

0 0 0 0 0 0

−0.4140 0 0 0 −0.4140 0

−77.8 22.4 0 0 −77.8 22.4

0 0 0 0 0 0

0 0 −0.9439I2 0 0 0

0 0 0 −25.2476I2 0 0



C =



703.5624I2 0 0 0 0 0 0 0 0

0 0 28.65 0 0 −0.9439 0 0 0

0 0 0 0 28.65 0 −0.9439 0 0

0 0 57.3 0 0 0 0 25.2476 0

0 0 0 0 57.3 0 0 0 25.2476



D =



0 0 0 0 0 0 50 0

0 0 0 0 0 0 0 50

0 0 0.5 0 0 0 0 0

0 0 0 0.5 0 0 0 0

0 0 1 0 2 0 0 0

0 0 0 1 0 2 0 0


.
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Redheffer Star Products

P =

 P11 P12

P21 P22

 , K =

 K11 K12

K21 K22



P ? K :=

 Fl (P,K11) P12 (I −K11P22)
−1 K12

K21 (I − P22K11)
−1 P21 Fu (K,P22)

 .

ẑ ŵ

wzw

ŵẑ

z

y u

�

�

!!
!!

!!aaaaaa

�

�

�

�

�

�

�

�
P ? K

K

P

Figure 0.21: Interconnection of LFTs

P =


A B1 B2

C1 D11 D12

C2 D21 D22

 K =


AK BK1 BK2

CK1 DK11 DK12

CK2 DK21 DK22

 .

Then the transfer matrix

P ? K :

 w

ŵ

 7→
 z

ẑ


has a representation

P ? K =


Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22

 =

 Ā B̄

C̄ D̄


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where

Ā =

 A + B2R̃
−1DK11C2 B2R̃

−1CK1

BK1R
−1C2 AK + BK1R

−1D22CK1



B̄ =

 B1 + B2R̃
−1DK11D21 B2R̃

−1DK12

BK1R
−1D21 BK2 + BK1R

−1D22DK12



C̄ =

 C1 + D12DK11R
−1C2 D12R̃

−1CK1

DK21R
−1C2 CK2 + DK21R

−1D22CK1



D̄ =

 D11 + D12DK11R
−1D21 D12R̃

−1DK12

DK21R
−1D21 DK22 + DK21R

−1D22DK12



R = I −D22DK11, R̃ = I −DK11D22.

Ā =

 A B2

C2 D22

 ?

 DK11 CK1

BK1 AK

 ,

B̄ =

 B1 B2

D21 D22

 ?

 DK11 DK12

BK1 BK2

 ,

C̄ =

 C1 D12

C2 D22

 ?

 DK11 CK1

DK21 CK2

 ,

D̄ =

 D11 D12

D21 D22

 ?

 DK11 DK12

DK21 DK22

 .

� P ? K = starp(P,K,dimy,dimu)

� F`(P,K) = starp(P,K)
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Chapter 10: µ and µ Synthesis

• general framework

• analysis and synthesis methods for unstructured uncertainty

• stability with structured uncertainties

• structured singular value

• structured robust stability

• robust performance

• extension to nonlinear time varying uncertainties

• skewed problem

• overview on µ synthesis
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General Framework

General Framework:

wz

-

�

-

�
� �

K

∆

P

P (s) =


P11(s) P12(s) P13(s)

P21(s) P22(s) P23(s)

P31(s) P32(s) P33(s)



z = Fu (F`(P,K), ∆)w

= F` (Fu(P, ∆),K)w.

Analysis Framework

M(s) = F` (P (s),K(s)) =

 M11(s) M12(s)

M21(s) M22(s)

 ,

z = Fu(M, ∆)w =
[
M22 + M21∆(I −M11∆)−1M12

]
w.

wz ��
�

-

M

∆
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Analysis and Synthesis Methods for Unstructured

Uncertainty

Input Performance Perturbation Analysis Synthesis

Assumptions Specifications Assumptions Tests Methods

E(w(t)w(τ)∗) E(z(t)∗z(t)) ≤ 1 LQG

= δ(t− τ)I

∆ = 0 ‖M22‖2 ≤ 1 Wiener-Hopf

w = U0δ(t) E(‖z‖22) ≤ 1
E(U0U

∗
0 ) = I H2

‖w‖2 ≤ 1 ‖z‖2 ≤ 1 ∆ = 0 ‖M22‖∞ ≤ 1 Singular Value

Loop Shaping

‖w‖2 ≤ 1 Internal Stability ‖∆‖∞ < 1 ‖M11‖∞ ≤ 1 H∞
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Stability with Structured Uncertainties

Assume

∆(s) = diag
[
δ1Ir1, . . . , δsIrS , ∆1, . . . , ∆F

]
∈ RH∞

with ‖δi‖∞ < 1 and ‖∆j‖∞ < 1.

Robust Stability⇐⇒ The following interconnection is stable.

...
...

-

�

�

-

...

M11(s)

∆F(s)

δ1(s)I

Stability Conditions:

(1) (sufficient conditions) ‖M11‖∞ ≤ 1.

Conservative, ignoring structure of the uncertainties.

(2) (necessary conditions) Test for each δi (∆j) individually (assuming no

uncertainty in other channels): ‖(M11)ii‖∞ ≤ 1.

Optimistic because it ignores interaction between the δi (∆j).
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Structured Singular Value

e
e

+
+

++e2

e1

w2

w1

� �

-
6

?

-

M

∆

Unstructured ∆

Problem: Given M ∈ Cp×q, find a smallest ∆ ∈ Cq×p in the sense of

σ(∆) such that

det(I −M∆) = 0.

It is easy to see that

αmin := inf
{
σ(∆) : det(I −M∆) = 0, ∆ ∈ Cq×p}

= inf
{
α : det(I − αM∆) = 0, σ(∆) ≤ 1, ∆ ∈ Cq×p}

and

max
σ(∆)≤1

ρ(M∆) = α−1
min = σ(M)

with a smallest “destabilizing” ∆:

∆des =
1

σ(M)
v1u

∗
1, det(I −M∆des) = 0

where M = σ(M)u1v
∗
1 + σ2u2v

∗
2 + · · ·

So σ(M) can be defined as

σ(M) :=
1

inf{σ(∆) : det(I −M∆) = 0, ∆ ∈ Cq×p}
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Structured ∆

∆ =
{
diag

[
δ1Ir1, . . . , δsIrS , ∆1, . . . , ∆F

]
: δi ∈ C, ∆j ∈ Cmj×mj

}
.

αmin := inf {σ(∆) : det(I −M∆) = 0, ∆ ∈∆}

= inf {α : det(I − αM∆) = 0, σ(∆) ≤ 1, ∆ ∈∆}
and

max
σ(∆)≤1

ρ(M∆) = α−1
min ≤ σ(M)

Definition of SSV

For M ∈ Cn×n, µ∆(M) is defined as

µ∆ (M) :=
1

min {σ(∆) : ∆ ∈∆, det (I −M∆) = 0} (0.6)

unless no ∆ ∈∆ makes I−M∆ singular, in which case µ∆ (M) := 0.

• If ∆ = {δI : δ ∈ C} (S =1, F =0, r1 =n), then µ∆ (M) = ρ (M), the

spectral radius of M .

• If ∆ = Cn×n (S =0, F =1,m1 =n), then µ∆(M) = σ(M).

ρ (M) ≤ µ∆ (M) ≤ σ (M) .
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(1) M =

 0 β

0 0

 for any β > 0. Then ρ(M) = 0 and σ(M) = β. But

µ(M) = 0 since det(I −M∆) = 1 for all admissible ∆.

(2) M =

 −1/2 1/2

−1/2 1/2

. Then ρ(M) = 0 and σ(M) = 1. Since

det(I −M∆) = 1 +
δ1 − δ2

2
= 0

if δ1 = −δ2 = −1. so µ(M) = 1.

Thus neither ρ nor σ provide useful bounds even in these simple cases.
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U = {U ∈∆ : UU∗ = In}

D =


diag

[
D1, . . . , DS, d1Im1, . . . , dF−1ImF−1, ImF

]
:

Di ∈ Cri×ri, Di = D∗i > 0, dj ∈ R, dj > 0

 .

Note that for any ∆ ∈∆, U ∈ U , and D ∈ D,

U∗ ∈ U U∆ ∈∆ ∆U ∈∆ σ (U∆) = σ (∆U) = σ (∆)

D∆ = ∆D.

For all U ∈ U and D ∈ D

µ∆ (MU) = µ∆ (UM) = µ∆ (M) = µ∆

(
DMD−1

)
.

max
U∈U

ρ(UM) ≤ max
∆∈B∆

ρ (∆M) = µ∆(M) ≤ inf
D∈D

σ
(
DMD−1

)

max
U∈U

ρ (UM) ≤ µ∆ (M) ≤ inf
D∈D

σ
(
DMD−1

)
.

[Doyle, 1982] max
U∈U

ρ(MU) = µ∆ (M). Not Convex.

µ∆ (M) = inf
D∈D

σ(DMD−1) if 2S + F ≤ 3

F= 0 1 2 3 4

S=

0 yes yes yes no

1 yes yes no no no

2 no no no no no
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� [bounds,rowd] = mu(M,blk)

∆ =



δ1I2 0 0 0 0 0

0 δ2 0 0 0 0

0 0 ∆3 0 0 0

0 0 0 ∆4 0 0

0 0 0 0 δ5I3 0

0 0 0 0 0 ∆6



δ1, δ2, δ5,∈ C, ∆3 ∈ C2×3, ∆4 ∈ C3×3, ∆6 ∈ C2×1

can be specified by

blk =



2 0

1 1

2 3

3 3

3 0

2 1



.

� [D`,Dr] = unwrapd(rowd,blk)
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Structured Robust Stability

How large ∆ (in the sense of ‖∆‖∞) can be without destabilizing

the feedback system?

Since the closed-loop poles are given by det(I − M∆) = 0, the

feedback system becomes unstable if det(I −M(s)∆(s)) = 0 for some

s ∈ C+. Now let α > 0 be a sufficiently small number such that the

closed-loop system is stable for all stable ‖∆‖∞ < α. Next increase α

until αmax so that the closed-loop system becomes unstable. So αmax

is the robust stability margin.

Define

∆ := {∆(·) ∈ RH∞ : ∆(so) ∈∆ for all so ∈ C+}

Let β > 0. The system is well-posed and internally stable for all

∆(·) ∈∆ with ‖∆‖∞ < 1
β if and only if

sup
ω∈R

µ∆(G(jω)) ≤ β

h

h
+

+

++e2

e1

w2

w1

� �

-
6

?

-

G(s)

∆
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Robust Performance

Gp(s) =

 G11 G12

G21 G22



∆P :=


 ∆ 0

0 ∆f

 : ∆ ∈∆, ∆f ∈ Cq2×p2

 .

wz
��

�

-

Gp(s)

∆(s)

Let β > 0. For all ∆(s) ∈ ∆ with ‖∆‖∞ < 1
β , the system is

well-posed, internally stable, and ‖Fu (Gp, ∆)‖∞ ≤ β if and only if

sup
ω∈R

µ∆P
(Gp(jω)) ≤ β.

�

-

-

�

∆f

∆

Gp(s)
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Extension to Nonlinear Time Varying Uncertainty

Suppose ∆ ∈∆N is a structured Nonlinear (Time-varying) Uncer-

tainty and suppose D is constant scaling matrix such that D∆D−1 ∈
∆N .

Then a sufficient condition for stability is (by small gain theorem)∥∥∥∥D−1G(s)D
∥∥∥∥∞ ≤ 1

∆

G(s)�

-

∆

G(s)

D−1

D

D

D−1

- -

���

-
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HIMAT Example

� [A,B,C,D] = linmod(′aircraft′)

� Ĝ = pck(A,B,C,D);

� [K,Gp, γ] = hinfsyn(Ĝ,2,2,0,10,0.001,2);

which gives γ = 1.8612 = ‖Gp‖∞, a stabilizing controller K, and a

closed loop transfer matrix Gp:



z1

z2

e1

e2


= Gp(s)



p1

p2

d1

d2

n1

n2



, Gp(s) =

 Gp11 Gp12

Gp21 Gp22

 .

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

frequency (rad/sec)

maximum singular value

Figure 0.22: Singular values of Gp(jω)

Now generate the singular value frequency responses of Gp:
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� w=logspace(-3,3,300);

� Gpf = frsp(Gp,w); % Gpf is the frequency response of Gp;

� [u, s,v] = vsvd(Gpf);

� vplot(′liv,m′, s)

The singular value frequency responses of Gp are shown in Figure 0.22.

To test the robust stability, we need to compute ‖Gp11‖∞:

� Gp11 = sel(Gp,1 : 2,1 : 2);

� norm of Gp11 = hinfnorm(Gp11,0.001);

which gives ‖GP11‖∞ = 0.933 < 1. So the system is robustly stable.

To check the robust performance, we shall compute the µ∆P
(Gp(jω))

for each frequency with

∆P =

 ∆

∆f

 , ∆ ∈ C2×2, ∆f ∈ C4×2.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0.5

1

1.5

2

frequency (rad/sec)

Maximum Singular Value and mu

maximum singular value

mu bounds

Figure 0.23: µ∆P
(Gp(jω)) and σ(Gp(jω))

� blk=[2,2;4,2];
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� [bnds,dvec,sens,pvec]=mu(Gpf,blk);

� vplot(′liv,m′,vnorm(Gpf),bnds)

� title(′Maximum Singular Value and mu′)

� xlabel(′frequency(rad/sec)′)

� text(0.01,1.7,′maximum singular value′)

� text(0.5,0.8,′mu bounds′)

The structured singular value µ∆P
(Gp(jω)) and σ(Gp(jω)) are shown

in Figure 0.23. It is clear that the robust performance is not satisfied.

Note that

max
‖∆‖∞≤1

‖Fu(Gp, ∆)‖∞ ≤ γ ⇐⇒ sup
ω

µ∆P


 Gp11 Gp12

Gp21/γ Gp22/γ


 ≤ 1.

Using a bisection algorithm, we can also find the worst performance:

max
‖∆‖∞≤1

‖Fu(Gp, ∆)‖∞ = 12.7824.
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Skewed Problem

G =

 −W2TiW1 −W2KSoWd

WeSoPW1 WeSoWd

 .

robust performance condition:

µ∆ (G(jω)) = inf
dω∈R+

σ


 −W2TiW1 −dωW2KSoWd

1
dω

WeSoPW1 WeSoWd


 ≤ 1

for all ω ≥ 0. An upper bound:

µ∆ (G(jω)) ≤
√
κ(W−1

d PW1)(‖W2TiW1‖+ ‖WeSoWd‖).

µ is proportional to the square root of the plant condition number.

Assumptions:

We = wsI, Wd = I, W1 = I, W2 = wtI,

and P is stable and has a stable inverse (i.e., minimum phase) and

K(s) = P−1(s)l(s)

such that K(s) is proper and the closed-loop is stable. Then

So = Si =
1

1 + l(s)
I = ε(s)I, To = Ti =

l(s)

1 + l(s)
I = τ (s)I

G =

 −wtτI −wtτP−1

wsεP wsεI

 .

Then

µ∆(G(jω)) = inf
d∈R+

σ


 −wtτI −wtτ (dP )−1

wsεdP wsεI


 .
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Let the SVD of P (jω) be

P (jω) = UΣV ∗, Σ = diag(σ1, σ2, . . . , σm)

with σ1 = σ and σm = σ where m is the dimension of P . Then

µ∆ (G(jω)) = inf
d∈R+

σ


 −wtτI −wtτ (dΣ)−1

wsεdΣ wsεI




 −wtτI −wtτ (dΣ)−1

wsεdΣ wsεI

 = P1diag(M1,M2, . . . ,Mm)P2

where P1 and P2 are permutation matrices and where

Mi =

 −wtτ −wtτ (dσi)
−1

wsεdσi wsε

 .

Hence

µ∆ (G(jω)) = inf
d∈R+

max
i

σ


 −wtτ −wtτ (dσi)

−1

wsεdσi wsε




= inf
d∈R+

max
i

σ


 −wtτ

wsεdσi


[

1 (dσi)
−1

]
= inf

d∈R+
max

i

√
(1 + |dσi|−2)(|wsεdσi|2 + |wtτ |2)

= inf
d∈R+

max
i

√√√√√√|wsε|2 + |wtτ |2 + |wsεdσi|2 +

∣∣∣∣∣∣
wtτ

dσi

∣∣∣∣∣∣
2

.

The maximum is achieved at

d2 =
|wtτ |
|wsε|σσ

,

and

µ∆(G(jω)) =

√√√√√|wsε|2 + |wtτ |2 + |wsε||wtτ |[κ(P ) +
1

κ(P )
].

µ∆(G(jω)) ≈
√
|wsε||wtτ |κ(P ) .
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Overview on µ Synthesis

wz� �
�

-

G

K

F`(G,K) = G11 + G12K(I −G22K)−1G21.

min
K
‖F`(G,K)‖µ

The µ-synthesis is not yet fully solved. But a reasonable approach is to

“solve”

min
K

inf
D,D−1∈H∞

∥∥∥∥DF`(G,K)D−1
∥∥∥∥∞

by iteratively solving for K and D, i.e., first minimizing over K with D

fixed, then minimizing pointwise over D with K fixed, then again over K,

and again over D, etc. This is the so-called D-K Iteration.

• Fix D

min
K

∥∥∥∥DF`(G,K)D−1
∥∥∥∥∞

is a standard H∞ optimization problem.

• Fix K

inf
D,D−1∈H∞

∥∥∥∥DF`(G,K)D−1
∥∥∥∥∞

is a standard convex optimization problem and it can be solved point-

wise in the frequency domain:

sup
ω

inf
Dω∈D

σ
[
DωF`(G,K)(jω)D−1

ω

]
.

Note that when S = 0, (no scalar blocks)

Dω = diag(dω
1 I, . . . , dω

F−1I, I) ∈ D,
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� �D D−1�

-

�

�

K

G

D-K Iterations:

(i) Fix an initial estimate of the scaling matrix Dω ∈ D pointwise across

frequency.

(ii) Find scalar transfer functions di(s), d
−1
i (s) ∈ RH∞ for i = 1, . . . ,

(F − 1) such that |di(jω)| ≈ dω
i .

(iii) Let

D(s) = diag(d1(s)I, . . . , dF−1(s)I, I).

Construct a state space model for system

Ĝ(s) =

 D(s)

I

 G(s)

 D−1(s)

I

 .

(iv) Solve an H∞-optimization problem to minimize∥∥∥∥F`(Ĝ,K)
∥∥∥∥∞

over all stabilizing K’s. Denote the minimizing controller by K̂.

(v) Minimize σ[DωF`(G, K̂)D−1
ω ] over Dω, pointwise across frequency.

The minimization itself produces a new scaling function.

(vi) Compare D̂ω with the previous estimate Dω. Stop if they are close,

otherwise, replace Dω with D̂ω and return to step (ii).

The joint optimization of D and K is not convex and the global con-

vergence is not guaranteed, many designs have shown that this approach

works very well.
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Chapter 11: Controller Parameterization

G

K

z

y

w

u

� �

�

-

G(s) =


A B1 B2

C1 D11 D12

C2 D21 D22

 =

 G11(s) G12(s)

G21(s) G22(s)

 .

Suppose (A,B2) is stabilizable and (C2, A) is detectable.

Youla parameterization:

all controllers K that internally stabilize G.

• Suppose G ∈ RH∞. Then

K = Q(I + G22Q)−1, Q ∈ RH∞

and I + D22Q(∞) nonsingular.

K stabilizes a stable plant G22 iff K(I − G22K)−1 is stable. So let

Q = K(I −G22K)−1.

• General Case: Let F and L be such that A + LC2 and A + B2F are

stable. Then K = F`(J,Q):

J =


A + B2F + LC2 + LD22F −L B2 + LD22

F 0 I

−(C2 + D22F ) I −D22


with any Q ∈ RH∞ and I + D22Q(∞) nonsingular.
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Figure 0.24: Structure of Stabilizing Controllers
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• Closed-loop Matrix:

F`(G,K) = F`(G,F`(J,Q)) = F`(T,Q).

= {T11 + T12QT21 : Q ∈ RH∞, I + D22Q(∞) invertible}
where T is given by

T =

 T11 T12

T21 T22

 =



A + B2F −B2F B1 B2

0 A + LC2 B1 + LD21 0

C1 + D12F −D12F D11 D12

0 C2 D21 0


.

• Coprime factorization approach: Let G22 = NM−1 = M̃−1Ñ be rcf

and lcf of G22 overRH∞, respectively. And let U0, V0, Ũ0, Ṽ0 ∈ RH∞
satisfy the Bezout identity: Ṽ0 −Ũ0

−Ñ M̃


 M U0

N V0

 =

 I 0

0 I

 .

Then

K = (U0 + MQy)(V0 + NQy)
−1

= (Ṽ0 + QyÑ)−1(Ũ0 + QyM̃)

= F`(Jy,Qy), Qy ∈ RH∞

where

Jy :=

 U0V
−1
0 Ṽ −1

0

V −1
0 −V −1

0 N


and (I + V −1

0 NQy)(∞) is invertible
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Chapter 12: Algebraic Riccati Equations

A∗X + XA + XRX + Q = 0, R = R∗, Q = Q∗

The associated Hamiltonian matrix:

H :=

 A R

−Q −A∗

 .

Then

J−1HJ = −JHJ = −H∗, J :=

 0 −I

I 0


so H and −H∗ are similar. Thus λ is an eigenvalue iff −λ̄ is.

eig(H) 6= jω ⇔ H has n eigenvalues in Re s < 0 and n in Re s > 0.

Let X−(H) be the n-dimensional spectral subspace corresponding to

eigenvalues in Re s < 0.

X−(H) = Im

 X1

X2


where X1, X2 ∈ Cn×n. (X1 and X2 can be chosen to be real matrices.)

If X1 is nonsingular, define

X := Ric(H) = X2X
−1
1 : dom(Ric) ⊂ R2n×2n 7−→ Rn×n.

where dom(Ric) consists of all H matrices such that

• H has no eigenvalues on the imaginary axis

• X−(H), Im

 0

I

 are complementary (or X1 is nonsingular.)
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Theorem: Suppose H ∈ dom(Ric) and X = Ric(H). Then

(i) X is real symmetric;

(ii) X satisfies the algebraic Riccati equation

A∗X + XA + XRX + Q = 0;

(iii) A + RX is stable .

Proof. (i) Let X−(H) = Im

 X1

X2

. We show X∗1X2 is symmetric. Note

that there exists a stable matrix H− in Rn×n such that

H

 X1

X2

 =

 X1

X2

 H− .

Pre-multiply this equation by  X1

X2


∗

J

to get  X1

X2


∗

JH

 X1

X2

 =

 X1

X2


∗

J

 X1

X2

 H−

Since JH is symmetric⇒:

(−X∗1X2 + X∗2X1)H− = H∗−(−X∗1X2 + X∗2X1)
∗

= −H∗−(−X∗1X2 + X∗2X1).

This is a Lyapunov equation. Since H− is stable, the unique solution is

−X∗1X2 + X∗2X1 = 0.
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i.e., X∗1X2 is symmetric. ⇒ X = (X−1
1 )∗(X∗1X2)X

−1
1 is symmetric.

(ii) Start with the equation

H

 X1

X2

 =

 X1

X2

 H−

and post-multiply by X−1
1 to get

H

 I

X

 =

 I

X

 X1H−X
−1
1 .

Now pre-multiply by [X − I]:

[X − I]H

 I

X

 = 0.

This is precisely the Riccati equation.

(iii) [I 0]

H

 I

X

 =

 I

X

 X1H−X
−1
1

 ⇒

A + RX = X1H−X
−1
1 .

Thus A + RX is stable because H− is. 2

� [X1,X2] = ric schr(H), X = X2/X1
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Theorem: Suppose eig(H) 6= jω and R is semi-definite (≥ 0 or ≤ 0).

Then H ∈ dom(Ric)⇔ (A,R) is stabilizable.

Proof. (⇐) Note that X−(H) = Im

 X1

X2

 , H

 X1

X2

 =

 X1

X2

 H−

We need to show that X1 is nonsingular, i.e., Ker X1 = 0.

Claim: Ker X1 is H−-invariant.

Let x ∈ Ker X1 and note that X∗2X1 is symmetric and

AX1 + RX2 = X1H− .

Pre-multiply by x∗X∗2 , post-multiply by x to get

x∗X∗2RX2x = 0⇒ RX2x = 0⇒ X1H−x = 0

i.e. H−x ∈ Ker X1.

Suppose Ker X1 6= 0. Then H−|Ker X1 has an eigenvalue, λ, and a

corresponding eigenvector, x:

H−x = λx, Re λ < 0, 0 6= x ∈ Ker X1.

Note that

−QX1 −A∗X2 = X2H− .

Post-multiply the above equation by x:

(A∗ + λI)X2x = 0.

Recall that RX2x = 0, we have

x∗X∗2 [A + λI R] = 0.

(A,R) stabilizable⇒ X2x = 0⇒
 X1

X2

 x = 0⇒ x = 0 since

 X1

X2

 has

full column rank, which is a contradiction.

(⇒) H ∈ dom(Ric)⇒ A + RX stable⇒ (A,R) stabilizable.

2
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Bounded Real Lemma: Let γ > 0, G(s) =

 A B

C D

 ∈ RH∞
and

H :=

 A + BR−1D∗C BR−1B∗

−C∗(I + DR−1D∗)C −(A + BR−1D∗C)∗


where R = γ2I −D∗D. Then the following conditions are equivalent:

(i) ‖G‖∞ < γ.

(ii) σ̄(D) < γ and H has no eigenvalues on the imaginary axis.

(iii) σ̄(D) < γ and H ∈ dom(Ric) .

(iv) σ̄(D) < γ and H ∈ dom(Ric) and Ric(H) ≥ 0 (Ric(H) > 0 if

(C,A) is observable).

(v) σ̄(D) < γ and there exists an X ≥ 0 such that

X(A+BR−1D∗C)+(A+BR−1D∗C)∗X+XBR−1B∗X+C∗(I+DR−1D∗)C = 0

and A+BR−1D∗C+BR−1B∗X has no eigenvalues on the imaginary

axis.

(vi) σ̄(D) < γ and there exists an X > 0 such that

X(A+BR−1D∗C)+(A+BR−1D∗C)∗X+XBR−1B∗X+C∗(I+DR−1D∗)C < 0.

(vii) there exists an X > 0 such that


XA + A∗X XB C∗

B∗X −γI D∗

C D −γI

 < 0.

Proof. (v)→ (i): Assume D = 0 for simplicity. Then there is an X ≥ 0

XA + A∗X + XBB∗X/γ2 + C∗C = 0
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and A + BB∗X/γ2 has no jω-axis eigenvalue. Hence

W (s) :=

 A −B

B∗X/γ γI


has no zeros on the imaginary axis since

W−1(s) =

 A + BB∗X/γ2 B/γ

B∗X/γ2 I/γ


has no poles on the imaginary axis. Next, note that

−X(jωI −A)− (jωI −A)∗X + XBB∗X/γ2 + C∗C = 0.

Multiply B∗{(jωI − A)∗}−1 on the left and (jωI − A)−1B on the right

of the above equation to get

−B∗{(jωI − A)∗}−1XB −B∗X(jωI −A)−1B

+B∗{(jωI −A)∗}−1XBB∗X(jωI −A)−1B/γ2

+B∗{(jωI −A)∗}−1C∗C(jωI −A)−1B = 0.

Completing square, we have

G∗(jω)G(jω) = γ2I −W ∗(jω)W (jω).

Since W (s) has no jω-axis zeros , we conclude that ‖G‖∞ < γ.

(vi)⇒ (vii) follows from Schur complement.

(vi)⇒ (i) by following the similar procedure as above.

(i)⇒ (vi): let

Ĝ =


A B

C D

εI 0

 .

Then there exists an ε > 0 such that
∥∥∥∥Ĝ∥∥∥∥∞ < γ. Now (vi) follows by

applying part (v) to Ĝ. 2
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Theorem: Suppose H has the form

H =

 A −BB∗

−C∗C −A∗

 .

Then H ∈ dom(Ric) iff (A,B) is stabilizable and (C,A) has no unob-

servable modes on the imaginary axis. Furthermore, X = Ric(H) ≥ 0.

And X > 0 if and only if (C,A) has no stable unobservable modes.

Proof. Only need to show that, assuming (A,B) is stabilizable, H has

no imaginary eigenvalues iff (C,A) has no unobservable modes on the

imaginary axis. Suppose that jω is an eigenvalue and 0 6=
 x

z

 is a

corresponding eigenvector. Then

Ax−BB∗z = jωx, −C∗Cx−A∗z = jωz.

Re-arrange:

(A− jωI)x = BB∗z, −(A− jωI)∗z = C∗Cx.

Thus

〈z, (A− jωI)x〉 = 〈z,BB∗z〉 = ‖B∗z‖2

−〈x, (A− jωI)∗z〉 = 〈x,C∗Cx〉 = ‖Cx‖2

so 〈x, (A− jωI)∗z〉 is real and

−‖Cx‖2 = 〈(A− jωI)x, z〉 = 〈z, (A− jωI)x〉 = ‖B∗z‖2.
Therefore B∗z = 0 and Cx = 0. So

(A− jωI)x = 0, (A− jωI)∗z = 0.

Combine the last four equations to get

z∗[A− jωI B] = 0,

 A− jωI

C

 x = 0.
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The stabilizability of (A,B) gives z = 0. Now it is clear that jω is an

eigenvalue of H iff jω is an unobservable mode of (C,A).

(A−BB∗X)∗X + X(A−BB∗X) + XBB∗X + C∗C = 0.

X ≥ 0 since A−BB∗X is stable. 2

Corollary: Suppose (A,B) is stabilizable and (C,A) is detectable.

Then

A∗X + XA−XBB∗X + C∗C = 0

has a unique positive semidefinite solution. Moreover, it is stabilizing.

Corollary: Suppose D has full column rank and denote R = D∗D > 0.

Let H have the form

H =

 A 0

−C∗C −A∗

−
 B

−C∗D

 R−1
[
D∗C B∗

]

=

 A−BR−1D∗C −BR−1B∗

−C∗(I −DR−1D∗)C −(A−BR−1D∗C)∗

 .

Then H ∈ dom(Ric) iff (A,B) is stabilizable and

 A− jωI B

C D

 has full

column rank for all ω. Furthermore, X = Ric(H) ≥ 0 if H ∈ dom(Ric),

and Ker(X) = 0 if and only if (D∗⊥C,A − BR−1D∗C) has no stable

unobservable modes.

This is because

 A− jωI B

C D

 has full column rank for all ω ⇐⇒
(
(I −DR−1D∗)C, A−BR−1D∗C

)
has no unobservable modes on jω-

axis.
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Chapter 13: H2 Optimal Control

• H2 optimal control

• stability margins of H2 controllers
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H2 Optimal Control

G

K

z

y

w

u

� �

�

-

G(s) =


A B1 B2

C1 0 D12

C2 D21 0

 .

Assumptions:

(i) (A,B2) is stabilizable and (C2, A) is detectable;

(ii) D12 has full column rank with
[
D12 D⊥

]
unitary, and D21 has full

row rank with

 D21

D̃⊥

 unitary;

(iii)

 A− jωI B2

C1 D12

 has full column rank for all ω;

(iv)

 A− jωI B1

C2 D21

 has full row rank for all ω.

H2 Problem: find a stabilizing controller K that minimizes

‖Tzw‖2 .

X2(A−B2D
∗
12C1)+(A−B2D

∗
12C1)

∗X2−X2B2B
∗
2X2 +C∗1D⊥D

∗
⊥C1 = 0

Y2(A−B1D
∗
21C2)

∗ + (A−B1D
∗
21C2)Y2− Y2C

∗
2C2Y2 + B1D̃

∗
⊥D̃⊥B

∗
1 = 0
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Define

F2 := −(B∗2X2 + D∗12C1), L2 := −(Y2C
∗
2 + B1D

∗
21)

Gc(s) :=

 A + B2F2 I

C1 + D12F2 0

 , Gf(s) :=

 A + L2C2 B1 + L2D21

I 0

 .

There exists a unique optimal controller

Kopt(s) :=

 A + B2F2 + L2C2 −L2

F2 0

 .

Moreover, min ‖Tzw‖22 = ‖GcB1‖22 + ‖F2Gf‖22 = ‖GcL2‖22 + ‖C1Gf‖22.

• U :=

 A + B2F2 B2

C1 + D12F2 D12

 ∈ RH∞ is inner and U∼Gc ∈ RH⊥2 .

• V :=

 A + L2C2 B1 + L2D21

C2 D21

 ∈ RH∞ is co-inner and GfV
∼ ∈

RH⊥2 .

• all stabilizing controllers K(s) = F`(M2, Q), Q ∈ RH∞ with

M2(s) =


A + B2F2 + L2C2 −L2 B2

F2 0 I

−C2 I 0

 .

• Closed-loop with K

Tzw = GcB1 − UF2Gf + UQV.
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Q

M2

G

‖Tzw‖22 = ‖GcB1‖22 +‖F2Gf −QV ‖22 = ‖GcB1‖22 +‖F2Gf‖22 +‖Q‖22
and Q = 0 gives the unique optimal control: K = F`(M2, 0).
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Stability Margins of H2 Controllers

• LQR margin: ≥ 60o phase margin and ≥ 6dB gain margin.

• LQG or H2 Controller: No guaranteed margin:

G(s) =



 1 1

0 1



√

σ 0
√

σ 0


 0

1



√

q
√

q

0 0

 0

 0

1

[
1 0

] [
0 1

]
0



.

Then

X2 =

 2α α

α α

 , Y2 =

 2β β

β β


and

F2 = −α
[

1 1
]
, L2 = −β

 1

1


where

α = 2 +
√

4 + q , β = 2 +
√

4 + σ.

Kopt =


1− β 1 β

−(α + β) 1− α β

−α −α 0

 .

Suppose the controller implemented in the system (or plant G22) is

actually

K = kKopt,
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with a nominal value k = 1. Then the closed-loop system A-matrix

becomes

Ã =



1 1 0 0

0 1 −kα −kα

β 0 1− β 1

β 0 −α− β 1− α


.

The characteristic polynomial has the form

det(sI − Ã) = a4s
4 + a3s

3 + a2s
2 + a1s + a0

with

a1 = α + β − 4 + 2(k − 1)αβ, a0 = 1 + (1− k)αβ.

– necessary for stability: a0 > 0 and a1 > 0.

– α � 1 and β � 1 and k 6= 1 ⇒ a0 ≈ (1 − k)αβ and a1 ≈
2(k − 1)αβ.

– α � 1 and β � 1 (or q and σ), the system is unstable for

arbitrarily small perturbations in k in either direction. Thus, by

choice of q and σ, the gain margins may be made arbitrarily small.

It is interesting to note that the margins deteriorate as control weight

(1/q) gets small (large q) and/or system driving noise gets large (large

σ). In modern control folklore, these have often been considered ad

hoc means of improving sensitivity.

• H2 (LQG) controllers have no global system-independent guaranteed

robustness properties.

• Improve the robustness of a given design by relaxing the optimality

of the filter (or FC controller) with respect to error properties. LQG

loop transfer recovery (LQG/LTR) design technique. The idea is to

design a filtering gain (or FC control law) in such way so that the

LQG (or H2) control law will approximate the loop properties of the

regular LQR control.
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Chapter 14a: Understanding H∞ Control

Objective: Derivation of H∞ controller

Methods: Intuition and handwaving

Background: State Feedback and Observer

• Problem Formulation and Solutions

• An intuitive Derivation
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Problem Formulation and Solutions

G

K

z

y

w

u

� �

�

-

G(s) =


A B1 B2

C1 0 D12

C2 D21 0



(i) (A,B1) is stabilizable and (C1, A) is detectable

(ii) (A,B2) is stabilizable and (C2, A) is detectable

(iii) D∗12

[
C1 D12

]
=

[
0 I

]

(iv)

 B1

D21

 D∗21 =

 0

I



(i) Together with (ii) guarantees that the two AREs have nonnegative

definite stabilizing solutions.

(ii) Necessary and sufficient for G to be internally stabilizable.

(iii) The penalty on z = C1x + D12u includes a nonsingular, normalized

penalty on the control u. In the conventional H2 setting this means

that there is no cross weighting between the state and control and

that the control weight matrix is the identity.

(iv) w includes both plant disturbance and sensor noise, these are orthog-

onal, and the sensor noise weighting is normalized and nonsingular.

These assumptions can be relaxed.
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Output Feedback H∞ Control

∃K such that ‖Tzw‖∞ < γ if and only if

(i) ∃ X∞ ≥ 0

X∞A + A∗X∞ + X∞(B1B
∗
1/γ

2 −B2B
∗
2)X∞ + C∗1C1 = 0

(ii) ∃ Y∞ ≥ 0

AY∞ + Y∞A∗ + Y∞(C∗1C1/γ
2 − C∗2C2)Y∞ + B1B

∗
1 = 0

(iii) ρ(X∞Y∞) < γ2 .

Ksub(s) :=

 Â∞ −Z∞L∞

F∞ 0


where

Â∞ := A + γ−2B1B
∗
1X∞ + B2F∞ + Z∞L∞C2

F∞ := −B∗2X∞, L∞ := −Y∞C∗2

Z∞ := (I − γ−2Y∞X∞)−1.
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Bounded Real Lemma

z = G(s)w, G(s) = C(sI − A)−1B ∈ H∞

‖G‖∞ = sup
w

‖z‖2
‖w‖2

:= sup
w

√∫ ∞
0
‖z‖2 dt√∫ ∞

0
‖w‖2 dt

‖G‖∞ < γ

m∫ ∞
0

(
‖z‖2 − γ2 ‖w‖2

)
dt < 0, ∀w 6= 0

m

∃ X = X∗ ≥ 0 such that

XA + A∗X + XBB∗X/γ2 + C∗C = 0

and A + BB∗X/γ2 is stable

m

∃ Y = Y ∗ ≥ 0 such that

Y A∗ + AY + Y C∗CY/γ2 + BB∗ = 0

and A + Y C∗C/γ2 is stable
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Let Φ(s) = γ2I −G∼(s)G(s). Then

‖G‖∞ < γ ⇐⇒ Φ(jω) > 0, ∀ω ∈ R ⇐⇒ det Φ(jω) 6= 0

since Φ(∞) = γ2I > 0 and Φ(jω) is continuous

⇐⇒ Φ(s) has no imaginary axis zero.

⇐⇒ Φ−1(s) has no imaginary axis pole.

Φ(s) =


A 0 −B

−C∗C −A∗ 0

0 B∗ γ2I



Φ−1 =


A BB∗/γ2 B/γ2

−C∗C −A∗ 0

0 B∗/γ2 γ−2I



⇐⇒
 A BB∗/γ2

−C∗C −A∗

 has no jω axis eigenvalues

Apply the following similarity transformation to Φ−1

T =

 I 0

−X I



Φ−1 =


A + BB∗X/γ2 BB∗/γ2 B/γ2

M(X) −A∗ −XBB∗/γ2 −XB/γ2

B∗X/γ2 B∗/γ2 γ−2I


M(X) := −XA−A∗X −XBB∗X/γ2 − C∗C

If M(X) = 0, we have

Φ−1 = γ2

 A + BB∗X/γ2 B/γ2

B∗X/γ2 I/γ2


 −(A + BB∗X/γ2)∗ −XB/γ2

B/γ2 I/γ2


Φ(jω) > 0 if A + BB∗X/γ2 has no jω eigenvalue
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System Equations:

ẋ = Ax + B1w + B2u

z = C1x + D12u

y = C2x + D21w

State feedback u = Fx:

ẋ = (A + B2F )x + B1w

z = (C1 + D12F )x

By Bounded Real Lemma, ‖Tzw‖∞ < γ

m

∃ X = X∗ ≥ 0 such that

X(A+B2F ) + (A+B2F )∗X +XB1B
∗
1X/γ

2 + (C1 +D12F )∗(C1 +D12F ) = 0

and A + B2F + B1B
∗
1X/γ2 is stable

complete m square

∃ X = X∗ ≥ 0 such that

XA+A∗X +XB1B
∗
1X/γ

2 −XB2B
∗
2X + C∗1C1 + (F +B∗2X)∗(F +B∗2X) = 0

and A + B2F + B1B
∗
1X/γ2 is stable

Intuition =⇒ F = −B∗2X

m

∃ X = X∗ ≥ 0 such that

XA+A∗X +XB1B
∗
1X/γ

2 −XB2B
∗
2X + C∗1C1 = 0

and A + B1B
∗
1X/γ2 −B2B

∗
2X is stable

=⇒ F = F∞, X = X∞
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Output Feedback : Converting to State Estimation

Suppose ∃ a K such that

‖Tzw‖∞ < γ

Then x(∞) = 0 by stability (note also x(0) = 0)
∫ ∞
0

(
‖z‖2 − γ2 ‖w‖2

)
dt

=
∫ ∞
0

‖z‖2 − γ2 ‖w‖2 +
d

dt
(x∗X∞x)

 dt

=
∫ ∞
0

(
‖z‖2 − γ2 ‖w‖2 + ẋ∗X∞x + x∗X∞ẋ

)
dt

Substituting ẋ = Ax + B1w + B2u and z = C1x + D12u

=
∫ ∞
0

(
‖C1x‖2 + ‖u‖2 − γ2 ‖w‖2

+2x∗X∞Ax + 2x∗X∞B1w + 2x∗X∞B2u) dt

=
∫ ∞
0

(
x∗(C∗1C1 + X∞A + A∗X∞)x + ‖u‖2

−γ2 ‖w‖2 + 2x∗X∞B1w + 2x∗X∞B2u
)
dt

using X∞ equation

=
∫ ∞
0

(
x∗(−X∞B1B

∗
1X∞/γ2 + X∞B2B

∗
2X∞)x + ‖u‖2

−γ2 ‖w‖2 + 2x∗X∞B1w + 2x∗X∞B2u
)
dt

=
∫ ∞
0

(
−‖B∗1X∞x/γ‖2 − γ2 ‖w‖2 + 2x∗X∞B1w

+ ‖B∗2X∞x‖2 + ‖u‖2 + 2x∗X∞B2u
)
dt

completing the squares with respect to u and w

=
∫ ∞
0

(
‖u + B∗2X∞x‖2 − γ2

∥∥∥∥w − γ−2B∗1X∞x
∥∥∥∥2

)
dt
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Summary:

∫ ∞
0

(
‖z‖2 − γ2 ‖w‖2

)
dt =

∫ ∞
0

(
‖v‖2 − γ2 ‖r‖2

)
dt

v = u + B∗2X∞x = u− F∞x, r = w − γ−2B∗1X∞x

Rewrite the system equation with: w = r + γ−2B∗1X∞x

ẋ = (A + B1B
∗
1X∞/γ2)x + B1r + B2u

v = −F∞x + u

y = C2x + D21r

‖Tzw‖∞ < γ ⇐⇒ ‖Tvr‖∞ < γ

⇐⇒
∫ ∞
0

(
‖u− F∞x‖2 − γ2 ‖r‖2

)
dt < 0

If state is available: u = F∞x

worst disturbance: w∗ = γ−2B∗1X∞x

State is not available: using estimated state

u = F∞x̂

A standard observer:

˙̂x = (A + B1B
∗
1X∞/γ2)x̂ + B2u + L(C2x̂− y)

where L is the observer gain to be determined.
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Let e := x− x̂. Then

ė = (A + B1B
∗
1X∞/γ2 + LC2)e + (B1 + LD21)r

v = −F∞e

‖Tvr‖∞ < γ =⇒ ∃ a Y ≥ 0 by bounded real lemma

Y (A+B1B
∗
1X∞/γ2+LC2)

∗+(A+B1B
∗
1X∞/γ2+LC2)Y +Y F ∗∞F∞Y/γ2

+(B1 + LD21)(B1 + LD21)
∗ = 0

Complete square w.r.t. L

(A+B1B
∗
1X∞/γ2)∗+(A+B1B

∗
1X∞/γ2)Y +Y F ∗∞F∞Y/γ2+B1B

∗
1−Y C∗2C2Y

+(L + Y C∗2)(L + Y C∗2)∗ = 0

Again, intuition suggests that we can take

L = −Y C∗2

which gives

Y (A + B1B
∗
1X∞/γ2)∗ + (A + B1B

∗
1X∞/γ2)Y

+Y F ∗∞F∞Y/γ2 − Y C∗2C2Y + B1B
∗
1 = 0

It is easy to verify that

Y = Y∞(I − γ−2X∞Y∞)−1

Since Y ≥ 0, we must have

ρ(X∞Y∞) < γ2

Hence L = Z∞L∞ and the controller is give by

˙̂x = (A + B1B
∗
1X∞/γ2)x̂ + B2u + Z∞L∞(C2x̂− y)

u = F∞x̂
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Chapter 14: H∞ Control

• H∞ background

• H∞: 1984 workshop approach

• Assumptions

• output feedback H∞ control

• a matrix fact

• inequality characterization

• connection between ARE and ARI (LMI)

• proof for necessity

• proof for sufficiency

• comments

• optimality and dependence on γ

• H∞ controller structure

• example

• an optimal controller

• H∞ control: general case

• relaxing assumptions

• H2 and H∞ integral control

• H∞ filtering
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H∞ Background

• Initial theory was SISO (Zames, Helton, Tannenbaum)

• Nevanlinna-Pick interpolation

• Operator-theoretic methods (Sarason, Adamjan et al, Ball-Helton)

• Initial work handled restricted problems

( “1-block” and “2-block” )

• Solution to “2× 2-block” problem

(1984 Honeywell-ONR Workshop)
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H∞: 1984 H/ONR Workshop Approach

Solution approach:

• Parameterize all stabilizing controllers

via [Youla et al]

• Obtain realizations of the closed-loop

transfer matrix

• Transform to ”2× 2-block”

general distance problem

• Reduce to the Nehari problem

and solve via Glover

Properties of the solution:

• State-space using standard operations

• Computationally intensive (many Ric. eqns.)

• Potentially high-order controllers

• Find solution < γ, iterate for optimal
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Assumptions

G

K

z

y

w

u

� �

�

-

G(s) =


A B1 B2

C1 0 D12

C2 D21 0



(i) (A,B1) is Controllable and (C1, A) is observable

(ii) (A,B2) is stabilizable and (C2, A) is detectable

(iii) D∗12

[
C1 D12

]
=

[
0 I

]

(iv)

 B1

D21

 D∗21 =

 0

I



(i) Together with (ii) guarantees that the two AREs have positive definite

stabilizing solution.

(ii) Necessary and sufficient for G to be internally stabilizable.

(iii) The penalty on z = C1x + D12u includes a nonsingular, normalized

penalty on the control u. In the conventional H2 setting this means

that there is no cross weighting between the state and control input,

and that the control weight matrix is the identity.

(iv) w includes both plant disturbance and sensor noise, these are orthog-

onal, and the sensor noise weighting is normalized and nonsingular.

These assumptions simplify the theorem statements and proofs, and

can be relaxed.
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Output Feedback H∞ Control

∃K such that ‖Tzw‖∞ < γ iff

(i) ∃ X∞ > 0

X∞A + A∗X∞ + X∞(B1B
∗
1/γ

2 −B2B
∗
2)X∞ + C∗1C1 = 0

(ii) ∃ Y∞ > 0

AY∞ + Y∞A∗ + Y∞(C∗1C1/γ
2 − C∗2C2)Y∞ + B1B

∗
1 = 0

(iii) ρ(X∞Y∞) < γ2 .

Ksub(s) :=

 Â∞ −Z∞L∞

F∞ 0


where

Â∞ := A + γ−2B1B
∗
1X∞ + B2F∞ + Z∞L∞C2

F∞ := −B∗2X∞, L∞ := −Y∞C∗2

Z∞ := (I − γ−2Y∞X∞)−1.



189

A Matrix Fact

[Packard, 1994] Suppose X,Y ∈ Rn×n and X = X∗ > 0, Y = Y ∗ > 0.

Let r be a positive integer. Then there exists matrices X12 ∈ Rn×r,

X2 ∈ Rr×r such that X2 = X∗2 , and
 X X12

X∗12 X2

 > 0 &

 X X12

X∗12 X2


−1

=

 Y ?

? ?


if and only if X In

In Y

 ≥ 0 & rank

 X In

In Y

 ≤ n + r.

Proof. (⇐) By assumption, there is a matrix X12 ∈ Rn×r such that X −
Y −1 = X12X

∗
12. Defining X2 := Ir completes the construction.

(⇒) Using Schur complements,

Y = X−1 + X−1X12(X2 −X∗12X
−1X12)

−1X∗12X
−1.

Inverting, using the matrix inversion lemma, gives

Y −1 = X −X12X
−1
2 X∗12.

Hence, X − Y −1 = X12X
−1
2 X∗12 ≥ 0, and indeed,

rank(X − Y −1) =rank(X12X
−1
2 X∗12) ≤ r. 2
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Inequality Characterization

Lemma IC: ∃ r-th order K such that ‖Tzw‖∞ < γ only if

(i) ∃ Y1 > 0

AY1 + Y1A
∗ + Y1C

∗
1C1Y1/γ

2 + B1B
∗
1 − γ2B2B

∗
2 < 0

(ii) ∃X1 > 0

X1A + A∗X1 + X1B1B
∗
1X1/γ

2 + C∗1C1 − γ2C∗2C2 < 0

(iii)

 X1/γ In

In Y1/γ

 ≥ 0 and rank

 X1/γ In

In Y1/γ

 ≤ n + r.

Proof. Suppose that there exists an r-th order controller K(s) such

that ‖Tzw‖∞ < γ. Let K(s) have a state space realization

K(s) =

 Â B̂

Ĉ D̂


then

Tzw =

 Ac Bc

Cc Dc

 :=


A + B2D̂C2 B2Ĉ B1 + B2D̂D21

B̂C2 Â B̂D21

C1 + D12D̂C2 D12Ĉ D12D̂D21

 .

Denote

R = γ2I −D∗cDc, R̃ = γ2I −DcD
∗
c .

By Bounded Real Lemma, ∃X̃ =

 X1 X12

X∗12 X2

 > 0 such that

X̃(Ac + BcR
−1D∗cCc) + (Ac + BcR

−1D∗cCc)
∗X̃
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+X̃BcR
−1B∗c X̃ + C∗c R̃

−1Cc < 0

This gives after much algebraic manipulation

X1A + A∗X1 + X1B1B
∗
1X1/γ

2 + C∗1C1 − γ2C∗2C2

+(X1B1D̂+X12B̂ +γ2C∗2)(γ2I−D̂∗D̂)−1(X1B1D̂+X12B̂ +γ2C∗2)∗ < 0

which implies that

X1A + A∗X1 + X1B1B
∗
1X1/γ

2 + C∗1C1 − γ2C∗2C2 < 0.

Let Ỹ = γ2X̃−1 and partition Ỹ as Ỹ =

 Y1 Y12

Y ∗12 Y2

 > 0 then

(Ac + BcR
−1D∗cCc)Ỹ + Ỹ (Ac + BcR

−1D∗cCc)
∗

+Ỹ C∗c R̃
−1CcỸ + BcR

−1B∗c < 0

This gives

AY1 + Y1A
∗ + B1B

∗
1 − γ2B2B

∗
2 + Y1C

∗
1C1Y1/γ

2

+(Y1C
∗
1D̂
∗+Y12Ĉ

∗+γ2B2)(γ
2I−D̂D̂∗)−1(Y1C

∗
1D̂
∗+Y12Ĉ

∗+γ2B2)
∗ < 0

which implies that

AY1 + Y1A
∗ + B1B

∗
1 − γ2B2B

∗
2 + Y1C

∗
1C1Y1/γ

2 < 0.

By the matrix fact, given X1 > 0 and Y1 > 0, there exists X12 and X2

such that Ỹ = γ2X̃−1 or Ỹ /γ = (X̃/γ)−1:
 X1/γ X12/γ

X∗12/γ X2/γ


−1

=

 Y1/γ ?

? ?



⇐⇒
 X1/γ In

In Y1/γ

 ≥ 0 and rank

 X1/γ In

In Y1/γ

 ≤ n + r. 2
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Connection between ARE and ARI (LMI)

Lemma ARE: [Ran and Vreugdenhil, 1988] Suppose (A,B) is con-

trollable and there is an X = X∗ such that

Q(X) := XA + A∗X + XBB∗X + Q < 0.

Then there exists a solution X+ > X to the Riccati equation

XA + A∗X + XBB∗X + Q = 0 (0.7)

such that A + BB∗X+ is antistable.

Proof. Let X be such that Q(X) < 0.

Choose F0 such that A0 := A−BF0 is antistable.

Let X0 = X∗0 solve

X0A0 + A∗0X0 − F ∗0 F0 + Q = 0.

Define F̂0 := F0 + B∗X . Then

(X0 −X)A0 + A∗0(X0 −X) = F̂ ∗0 F̂0 −Q(X) > 0.

and X0 > X (by anti-stability of A0)

Define a non-increasing sequence of hermitian matrices {Xi}:

X0 ≥ X1 ≥ · · · ≥ Xn−1 > X,

Ai = A−BFi, is antistable, i = 0, . . . , n− 1;

Fi = −B∗Xi−1, i = 1, . . . , n− 1;

XiAi + A∗i Xi = F ∗i Fi −Q, i = 0, 1, . . . , n− 1. (0.8)

By Induction: We show this sequence can indeed be defined:

Introduce

Fn = −B∗Xn−1, An = A−BFn.
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We show that An is antistable. Using (0.8), with i = n− 1, we get

Xn−1An + A∗nXn−1 + Q− F ∗nFn − (Fn − Fn−1)
∗(Fn − Fn−1) = 0.

Let F̂n := Fn + B∗X ; then

(Xn−1 −X)An + A∗n(Xn−1 −X) = −Q(X)

+F̂ ∗nF̂n + (Fn − Fn−1)
∗(Fn − Fn−1) > 0

⇒ An is antistable by Lyapunov theorem since Xn−1 −X > 0.

Let Xn be the unique solution of

XnAn + A∗nXn = F ∗nFn −Q. (0.9)

Then Xn is hermitian. Next, we have

(Xn −X)An + A∗n(Xn −X) = −Q(X) + F̂ ∗nF̂n > 0,

(Xn−1 −Xn)An + A∗n(Xn−1 −Xn) = (Fn − Fn−1)
∗(Fn − Fn−1) ≥ 0.

Since An is antistable, we have Xn−1 ≥ Xn > X .

We have a non-increasing sequence {Xi}.

Since the sequence is bounded below by Xi > X . Hence the limit

X+ := lim
n→∞Xn

exists and is hermitian, and we have X+ ≥ X . Passing the limit n→∞
in (0.9), we get Q(X+) = 0. So X+ is a solution of (0.7).

Note that X+ −X ≥ 0 and

(X+ −X)A+ + A∗+(X+ −X) = −Q(X)

+(X+ −X)BB∗(X+ −X) > 0 (0.10)

hence, X+ −X > 0 and A+ = A + BB∗X+ is antistable.

2
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Proof for Necessary

There exists a controller such that ‖Tzw‖∞ < γ only if the following

three conditions hold:

(i) there exists a stabilizing solution X∞ > 0 to

X∞A + A∗X∞ + X∞(B1B
∗
1/γ

2 −B2B
∗
2)X∞ + C∗1C1 = 0

(ii) there exists a stabilizing solution Y∞ > 0 to

AY∞ + Y∞A∗ + Y∞(C∗1C1/γ
2 − C∗2C2)Y∞ + B1B

∗
1 = 0

(iii)  γY −1
∞ In

In γX−1
∞

 > 0 or ρ(X∞Y∞) < γ2.

Proof. Applying Lemma ARE to part (i) of Lemma IC, we conclude

that there exists a Y > Y1 > 0 such that

AY + Y A∗ + Y C∗1C1Y/γ2 + B1B
∗
1 − γ2B2B

∗
2 = 0

and A + C∗1C1Y/γ2 is antistable. Let X∞ := γ2Y −1, we have

X∞A + A∗X∞ + X∞(B1B
∗
1/γ

2 −B2B
∗
2)X∞ + C∗1C1 = 0

and

A + (B1B
∗
1/γ

2 −B2B
∗
2)X∞ = −X−1

∞ (A + C∗1C1X
−1
∞ )X∞

= −X−1
∞ (A + C∗1C1Y/γ2)X∞

is stable.

Similarly, applying Lemma ARE to part (ii) of Lemma IC, we conclude

that there exists an X > X1 > 0 such that

XA + A∗X + XB1B
∗
1X/γ2 + C∗1C1 − γ2C∗2C2 = 0
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and A + B1B
∗
1X/γ2 is antistable. Let Y∞ := γ2X−1, we have

AY∞ + Y∞A∗ + Y∞(C∗1C1/γ
2 − C∗2C2)Y∞ + B1B

∗
1 = 0 (0.11)

and A + (C∗1C1/γ
2 − C∗2C2)Y∞ is stable.

Finally, note that the rank condition in part (iii) of Lemma IC is auto-

matically satisfied by r ≥ n, and γY −1
∞ In

In γX−1
∞

 =

 X/γ In

In Y/γ



>

 X1/γ In

In Y1/γ

 ≥ 0.

or ρ(X∞Y∞) < γ2. 2
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Proof for Sufficiency

Show Ksub renders ‖Tzw‖∞ < γ.

The closed-loop transfer function with Ksub:

Tzw =


A B2F∞ B1

−Z∞L∞C2 Â∞ −Z∞L∞D21

C1 D12F∞ 0

 =:

 Ac Bc

Cc Dc



Define

P =

 γ2Y −1
∞ −γ2Y −1

∞ Z−1
∞

−γ2(Z∗∞)−1Y −1
∞ γ2Y −1

∞ Z−1
∞


Then P > 0 and

PAc + A∗cP + PBcB
∗
cP/γ2 + C∗c Cc = 0.

Moreover

Ac + BcB
∗
cP/γ2 =

 A + B1B
∗
1Y
−1
∞ B2F∞ −B1B

∗
1Y
−1
∞ Z−1

∞

0 A + B1B
∗
1X∞/γ2 + B2F∞


has no eigenvalues on the imaginary axis since

A + B1B
∗
1Y
−1
∞ is antistable

and

A + B1B
∗
1X∞/γ2 + B2F∞ is stable

By Bounded Real Lemma, ‖Tzw‖∞ < γ.
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Comments

The conditions in Lemma IC are in fact necessary and sufficient.

But the three conditions have to be checked simultaneously. This is

because if one finds an X1 > 0 and a Y1 > 0 satisfying conditions (i) and

(ii) but not condition (iii), this does not imply that there is no admissible

H∞ controller since there might be other X1 > 0 and Y1 > 0 that satisfy

all three conditions.

For example, consider γ = 1 and

G(s) =



−1
[

1 0
]

1 1

0

 0

 0

1


1

[
0 1

]
0


.

It is easy to check that X1 = Y1 = 0.5 satisfy (i) and (ii) but not (iii).

Nevertheless, we can show that γopt = 0.7321 and thus a suboptimal con-

troller exists for γ = 1. In fact, we can check that 1 < X1 < 2, 1 < Y1 < 2

also satisfy (i), (ii) and (iii). For this reason, Riccati equation approach

is usually preferred over the Riccati inequality and LMI approaches when-

ever possible.



198

Example

Consider the feedback system shown in Figure 0.4 with

P =
50(s + 1.4)

(s + 1)(s + 2)
, We =

2

s + 0.2
, Wu =

s + 1

s + 10
.

Design a K to minimize the H∞ norm from w =

 d

di

 to z =

 e

ũ

:
 e

ũ

 =

 We(I + PK)−1 We(I + PK)−1P

−WuK(I + PK)−1 −WuK(I + PK)−1P


 d

di

 =: Tzw

 d

di

 .

LFT framework:

G(s) =


We WeP −WeP

0 0 −Wu

I P −P

 =



−0.2 2 2 0 2 0 0

0 −1 0 0 0 20 −20

0 0 −2 0 0 30 −30

0 0 0 −10 0 0 −3

1 0 0 0 0 0 0

0 0 0 −3 0 0 −1

0 1 1 0 1 0 0



.

� [K,Tzw, γsubopt] = hinfsyn(G,ny,nu, γmin, γmax, tol)

where ny = dimensions of y, nu = dimensions of u; γmin = a lower bound,

γmax = an upper bound for γopt; and tol is a tolerance to the optimal

value. Set ny = 1, nu = 1, γmin = 0, γmax = 10, tol = 0.0001; we get

γsubopt = 0.7849 and a suboptimal controller

K =
12.82(s/10 + 1)(s/7.27 + 1)(s/1.4 + 1)

(s/32449447.67 + 1)(s/22.19 + 1)(s/1.4 + 1)(s/0.2 + 1)
.
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If we set tol = 0.01, we would get γsubopt = 0.7875 and a suboptimal

controller

K̃ =
12.78(s/10 + 1)(s/7.27 + 1)(s/1.4 + 1)

(s/2335.59 + 1)(s/21.97 + 1)(s/1.4 + 1)(s/0.2 + 1)
.

The only significant difference between K and K̃ is the exact location of

the far-away stable controller pole. Figure 0.25 shows the closed-loop fre-

quency response of σ (Tzw) and Figure 0.26 shows the frequency responses

of S, T,KS, and SP .
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Figure 0.25: The closed-loop frequency responses of
σ(Tzw) with K (solid line) and K̃ (dashed line)
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Figure 0.26: The frequency responses of S, T, KS, and SP
with K
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Consider again the two-mass/spring/damper system shown in Figure 0.1.

Assume that F1 is the control force, F2 is the disturbance force, and the

measurements of x1 and x2 are corrupted by measurement noise:

y =

 y1

y2

 =

 x1

x2

 + Wn

 n1

n2

 , Wn =


0.01(s + 10)

s + 100
0

0
0.01(s + 10)

s + 100

 .

Our objective is to design a control law so that the effect of the disturbance

force F2 on the positions of the two masses, x1 and x2, are reduced in a

frequency range 0 ≤ ω ≤ 2.

The problem can be set up as shown in Figure 0.27, where We = W1 0

0 W2

 is the performance weight and Wu is the control weight. In

order to limit the control force, we shall choose

Wu =
s + 5

s + 50
.

e
K Plant We

Wn

Wu

- -

?� �

-

6

6

?
-

u = F1

w1 = F2

z2

z1

 x1

x2



w2 =

 n1

n2


y

Figure 0.27: Rejecting the disturbance force F2 by a feedback control
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Let u = F1, w =


F2

n1

n2

:

G(s) =



 WeP1 0

0 0


 WeP2

Wu

[
P1 Wn

]
P2



where P1 and P2 denote the transfer matrices from F1 and F2 to

 x1

x2

,
respectively.

• W1 = 5
s/2+1, W2 = 0: only reject the effect of the disturbance force

F2 on the position x1.

‖F`(G,K2)‖2 = 2.6584

‖F`(G,K2)‖∞ = 2.6079

‖F`(G,K∞)‖∞ = 1.6101.

This means that the effect of the disturbance force F2 in the desired

frequency rang 0 ≤ ω ≤ 2 will be effectively reduced with the H∞
controller K∞ by 5/1.6101 = 3.1054 times at x1.

• W1 = 0, W2 = 5
s/2+1: only reject the effect of the disturbance force

F2 on the position x2.

‖F`(G,K2)‖2 = 0.1659

‖F`(G,K2)‖∞ = 0.5202

‖F`(G,K∞)‖∞ = 0.5189.

This means that the effect of the disturbance force F2 in the desired

frequency rang 0 ≤ ω ≤ 2 will be effectively reduced with the H∞
controller K∞ by 5/0.5189 = 9.6358 times at x2.
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Figure 0.28: The largest singular value plot of the closed-loop system Tzw with an H2 controller
and an H∞ controller

• W1 = W2 = 5
s/2+1: want to reject the effect of the disturbance force

F2 on both x1 and x2.

‖F`(G,K2)‖2 = 4.087

‖F`(G,K2)‖∞ = 6.0921

‖F`(G,K∞)‖∞ = 4.3611.

This means that the effect of the disturbance force F2 in the desired

frequency rang 0 ≤ ω ≤ 2 will only be effectively reduced with the

H∞ controller K∞ by 5/4.3611 = 1.1465 times at both x1 and x2.

This result shows clearly that it is very hard to reject the disturbance

effect on both positions at the same time. The largest singular value

Bode plots of the closed-loop system are shown in Figure 0.28. We

note that the H∞ controller typically gives a relatively flat frequency

response since it tries to minimize the peak of the frequency response.

On the other hand, the H2 controller would typically produce a fre-

quency response that rolls off fast in the high-frequency range but

with a large peak in the low-frequency range.
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Optimality and dependence on γ

There exists an admissible controller such that ‖Tzw‖∞ < γ iff the follow-

ing three conditions hold:

(i) ∃ a stabilizing X∞ > 0

(ii) ∃ a stabilizing Y∞ > 0

(iii) ρ(X∞Y∞) < γ2

• Denote by γo the infimum over all γ such that conditions (i)-(iii) are

satisfied.

• Descriptor formulae can be obtained for γ = γo.

• As γ →∞, H∞ → H2, X∞ → X2, etc., and Ksub→ K2.

• If γ2 ≥ γ1 > γ0 then X∞(γ1) ≥ X∞(γ2) and Y∞(γ1) ≥ Y∞(γ2).

• Thus X∞ and Y∞ are decreasing functions of γ, as is ρ(X∞Y∞).

• At γ = γo, any one of the 3 conditions can fail.

• It is most likely that condition (iii) will fail first.

• To understand this, consider (i) and let γ1 be the largest γ for which

H∞ fails to be in dom(Ric), because it fails to have either the stability

property or the complementarity property. The same remarks will

apply to (ii) by duality.

• If the stability property fails at γ = γ1, then H∞ 6∈ dom(Ric) but

Ric can be extended to obtain X∞ and the controller u = −B∗2X∞x

is stabilizing and makes ‖Tzw‖∞ = γ1. The stability property will also

not hold for any γ ≤ γ1, and no controller whatsoever exists which

makes ‖Tzw‖∞ < γ1.
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• In other words, if stability breaks down first then the infimum over sta-

bilizing controllers equals the infimum over all controllers, stabilizing

or otherwise.

• In view of this, we would expect that typically complementarity would

fail first.

• Complementarity failing at γ = γ1 means ρ(X∞) → ∞ as γ → γ1

so condition (iii) would fail at even larger values of γ, unless the

eigenvectors associated with ρ(X∞) as γ → γ1 are in the null space

of Y∞.

• Thus condition (iii) is the most likely of all to fail first.
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H∞ Controller Structure

Ksub(s) :=

 Â∞ −Z∞L∞

F∞ 0



Â∞ := A + γ−2B1B
∗
1X∞ + B2F∞ + Z∞L∞C2

F∞ := −B∗2X∞, L∞ := −Y∞C∗2 , Z∞ := (I − γ−2Y∞X∞)−1

˙̂x = Ax̂ + B1ŵworst + B2u + Z∞L∞(C2x̂− y)

u = F∞x̂, ŵworst = γ−2B∗1X∞x̂

1) ŵworst is the estimate of wworst

2) Z∞L∞ is the filter gain for the OE problem of estimating F∞x in the

presence of the “worst-case” w, wworst

3) The H∞ controller has a separation interpretation

Optimal Controller:

(I − γ−2
optY∞X∞) ˙̂x = Asx̂− L∞y (0.12)

u = F∞x̂ (0.13)

As := A + B2F∞ + L∞C2

+γ−2
optY∞A∗X∞ + γ−2

optB1B
∗
1X∞ + γ−2

optY∞C∗1C1

See the example below.
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Example

G(s) =



a
[

1 0
]

1 1

0

 0

 0

1


1

[
0 1

]
0


.

Then all assumptions for output feedback problem are satisfied and

H∞ =

 a 1−γ2

γ2

−1 −a

 , J∞ =

 a 1−γ2

γ2

−1 −a

 .

The eigenvalues of H∞ and J∞ are given, respectively, by

σ(H∞) =

±
√
(a2 + 1)γ2 − 1

γ

 , σ(J∞) =

±
√
(a2 + 1)γ2 − 1

γ

 .

If γ >
1√

a2 + 1
, then X−(H∞) and X−(J∞) exist and

X−(H∞) = Im


√

(a2+1)γ2−1−aγ

γ

1



X−(J∞) = Im


√

(a2+1)γ2−1−aγ

γ

1

 .

Note that if γ > 1, then H∞ ∈ dom(Ric), J∞ ∈ dom(Ric), and

X∞ =
γ√

(a2 + 1)γ2 − 1− aγ
> 0

Y∞ =
γ√

(a2 + 1)γ2 − 1− aγ
> 0.
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It can be shown that

ρ(X∞Y∞) =
γ2

(
√
(a2 + 1)γ2 − 1− aγ)2

< γ2

is satisfied if and only if

γ >
√

a2 + 2 + a.

So condition (iii) will fail before either (i) or (ii) fails.

The optimal γ for the output feedback is given by

γopt =
√

a2 + 2 + a

and the optimal controller given by the descriptor formula in equations (0.12)

and (0.13) is a constant. In fact,

uopt = − γopt√
(a2 + 1)γ2

opt − 1− aγopt

y.

For instance, let a = −1 then γopt =
√

3 − 1 = 0.7321 and

uopt = −0.7321 y. Further,

Tzw =


−1.7321 1 −0.7321

1 0 0

−0.7321 0 −0.7321

 .

It is easy to check that ‖Tzw‖∞ = 0.7321.
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An Optimal Controller

There exists an admissible controller such that ‖Tzw‖∞ ≤ γ iff the

following three conditions hold:

(i) there exists a full column rank matrix

 X∞1

X∞2

 ∈ R2n×n such that

H∞

 X∞1

X∞2

 =

 X∞1

X∞2

 TX, Re λi(TX) ≤ 0 ∀i

and

X∗∞1X∞2 = X∗∞2X∞1;

(ii) there exists a full column rank matrix

 Y∞1

Y∞2

 ∈ R2n×n such that

J∞

 Y∞1

Y∞2

 =

 Y∞1

Y∞2

 TY , Re λi(TY ) ≤ 0 ∀i

and

Y ∗∞1Y∞2 = Y ∗∞2Y∞1;

(iii)

 X∗∞2X∞1 γ−1X∗∞2Y∞2

γ−1Y ∗∞2X∞2 Y ∗∞2Y∞1

 ≥ 0.

Moreover, when these conditions hold, one such controller is

Kopt(s) := CK(sEK − AK)+BK

where

EK := Y ∗∞1X∞1 − γ−2Y ∗∞2X∞2

BK := Y ∗∞2C
∗
2

CK := −B∗2X∞2

AK := EKTX −BKC2X∞1 = T ∗Y EK + Y ∗∞1B2CK.
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H∞ Control: General Case

G(s) =


A B1 B2

C1 D11 D12

C2 D21 0

 =

 A B

C D



Assumptions:

(A1) (A,B2) is stabilizable and (C2, A) is detectable;

(A2) D12 =

 0

I

 and D21 =
[

0 I
]
;

(A3)

 A− jωI B2

C1 D12

 has full column rank for all ω;

(A4)

 A− jωI B1

C2 D21

 has full row rank for all ω.

R := D∗1•D1• −
 γ2Im1 0

0 0

 , where D1• := [D11 D12]

R̃ := D•1D
∗
•1 −

 γ2Ip1 0

0 0

 , where D•1 :=

 D11

D21



H∞ :=

 A 0

−C∗1C1 −A∗

−
 B

−C∗1D1•

 R−1
[
D∗1•C1 B∗

]

J∞ :=

 A∗ 0

−B1B
∗
1 −A

−
 C∗

−B1D
∗
•1

 R̃−1
[
D•1B

∗
1 C

]

X∞ := Ric(H∞) Y∞ := Ric(J∞)
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F :=

 F1∞

F2∞

 := −R−1 [D∗1•C1 + B∗X∞]

L :=
[
L1∞ L2∞

]
:= −[B1D

∗
•1 + Y∞C∗]R̃−1

D, F1∞, and L1∞ are Partitioned as follows:

 F ′

L′ D

 =



F ∗11∞ F ∗12∞ F ∗2∞

L∗11∞ D1111 D1112 0

L∗12∞ D1121 D1122 I

L∗2∞ 0 I 0


.

There exists a stabilizing controller K(s) such that

‖F`(G,K)‖∞ < γ

if and only if

(i) γ > max(σ[D1111, D1112, ], σ[D∗1111, D
∗
1121]);

(ii) H∞ ∈ dom(Ric) with X∞ = Ric(H∞) ≥ 0;

(iii) J∞ ∈ dom(Ric) with Y∞ = Ric(J∞) ≥ 0;

(iv) ρ(X∞Y∞) < γ2.

K = F`(M∞, Q), Q ∈ RH∞, ‖Q‖∞ < γ

where

M∞ =


Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 0


D̂11 = −D1121D

∗
1111(γ

2I −D1111D
∗
1111)

−1D1112 −D1122,
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D̂12 ∈ Rm2×m2 and D̂21 ∈ Rp2×p2 are any matrices satisfying

D̂12D̂
∗
12 = I −D1121(γ

2I −D∗1111D1111)
−1D∗1121,

D̂∗21D̂21 = I −D∗1112(γ
2I −D1111D

∗
1111)

−1D1112,

and

B̂2 = Z∞(B2 + L12∞)D̂12,

Ĉ2 = −D̂21(C2 + F12∞),

B̂1 = −Z∞L2∞ + B̂2D̂
−1
12 D̂11,

Ĉ1 = F2∞ + D̂11D̂
−1
21 Ĉ2,

Â = A + BF + B̂1D̂
−1
21 Ĉ2

where

Z∞ = (I − γ−2Y∞X∞)−1.

Some Special Cases:

• D12 = I. Then (i) becomes γ > σ(D1121) and

D̂11 = −D1122, D̂12D̂
∗
12 = I − γ−2D1121D

∗
1121, D̂∗21D̂21 = I.

• D21 = I. Then (i) becomes γ > σ(D1112) and

D̂11 = −D1122, D̂12D̂
∗
12 = I, D̂∗21D̂21 = I − γ−2D∗1112D1112.

• D12 = I & D21 = I. Then (i) drops out and

D̂11 = −D1122, D̂12D̂
∗
12 = I, D̂∗21D̂21 = I.
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Relaxing Assumptions

P

Kp

zp

yp

wp

up

� �

�

-

P (s) =


Ap Bp1 Bp2

Cp1 Dp11 Dp12

Cp2 Dp21 Dp22



Assume Dp12 has full column rank and Dp21 has full row rank:

Normalize D12 and D21

Perform SVD

Dp12 = Up

 0

I

 Rp, Dp21 = R̃p

[
0 I

]
Ũp

such that Up and Ũp are square and unitary. Now let

zp = Upz, wp = Ũ∗pw, yp = R̃py, up = Rpu

K(s) = RpKp(s)R̃p

G(s) =

 U∗p 0

0 R̃−1
p

 P (s)

 Ũ∗p 0

0 R−1
p



=


Ap Bp1Ũ

∗
p Bp2R

−1
p

U∗p Cp1 U∗p Dp11Ũ
∗
p U∗p Dp12R

−1
p

R̃−1
p Cp2 R̃−1

p Dp21Ũ
∗
p R̃−1

p Dp22R
−1
p



=:


A B1 B2

C1 D11 D12

C2 D21 D22

 =

 A B

C D

 .
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Then

D12 =

 0

I

 D21 =
[

0 I
]
,

‖F`(P,Kp)‖∞ = ‖F`(G,K)‖∞

Remove the Assumption D22 = 0

Suppose K(s) is a controller for G with D22 set to zero. Then the controller

for D22 6= 0 is K(I + D22K)−1.

Relaxing A3 and A4

Complicated. Suppose that

G =


0 0 1

0 0 1

1 1 0


which violates both A3 and A4 and corresponds to the robust stabilization

of an integrator. If the controller u = −εx where ε > 0 is used, then

Tzw =
−εs

s + ε
, with ‖Tzw‖∞ = ε.

Hence the norm can be made arbitrarily small as ε→ 0, but ε = 0 is not

stabilizing.

Relaxing A1

Complicated.

Relaxing A2

Singular Problem: reduced ARE or LMI, . . .
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H2 and H∞ Integral Control

H2 and H∞ design frameworks do not in general produce integral con-

trol.

g gK P We

WdWu

- - - -

?

-
6

6

6

?-
− u

wz2

z1yr

Ways to achieve the integral control:

1. introduce an integral in the performance weight We:

z1 = We(I + PK)−1Wdw.

Now if the norm (2-norm or∞-norm) between w and z1 is finite, then K

must have a pole at s = 0 which is the zero of the sensitivity function.

The standard H2 (or H∞) control theory can not be applied to this

problem formulation directly because the pole s = 0 of We becomes an

uncontrollable pole of the feedback system (A1 is violated).

Suppose We can be factorized as follows

We = W̃e(s)M(s)

where M(s) is proper, containing all the imaginary axis poles of We, and

M−1(s) ∈ RH∞, W̃e(s) is stable and minimum phase. Now suppose

there exists a controller K(s) which contains the same imaginary axis

poles that achieves the performance. Then without loss of generality, K

can be factorized as

K(s) = −K̂(s)M(s)

Now the problem can be reformulated as
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gK̂ P

WdWu

-

?

-
6

6

?
M W̃e

- - --
u

wz2

y1 z1

�� ��
gM

Wu

W̃e Wd

K̂

�

?�

-

P� �

�

�

�

�z1

z2

w

uy1

A simple numerical example:

P =
s− 2

(s + 1)(s− 3)
=


0 1 0

3 2 1

−2 1 0

 , Wd = 1,

Wu =
s + 10

s + 100
=

 −100 −90

1 1

 , We =
1

s
.

Then we can choose without loss of generality that

M =
s + α

s
, W̃e =

1

s + α
, α > 0.
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This gives the following generalized system

G(s) =



−α 0 1 −2 1 1 0

0 −100 0 0 0 0 −90

0 0 0 −2α α α 0

0 0 0 0 1 0 0

0 0 0 3 2 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 1

0 0 1 −2 1 1 0


suboptimal H∞ controller K̂∞:

K̂∞ =
−2060381.4(s + 1)(s + α)(s + 100)(s− 0.1557)

(s + α)2(s + 32.17)(s + 262343)(s− 19.89)

which gives the closed-loop∞ norm 7.854.

K∞ = −K̂∞(s)M(s) =
2060381.4(s + 1)(s + 100)(s− 0.1557)

s(s + 32.17)(s + 262343)(s− 19.89)

≈ 7.85(s + 1)(s + 100)(s− 0.1557)

s(s + 32.17)(s− 19.89)

An optimal H2 controller

K̂2 =
−43.487(s + 1)(s + α)(s + 100)(s− 0.069)

(s + α)2(s2 + 30.94s + 411.81)(s− 7.964)

and

K2(s) = −K̂2(s)M(s) =
43.487(s + 1)(s + 100)(s− 0.069)

s(s2 + 30.94s + 411.81)(s− 7.964)
.

2. An approximate integral control:

We = W̃e =
1

s + ε
, M(s) = 1
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for a sufficiently small ε > 0. For example, a controller for ε = 0.001 is

given by

K∞ =
316880(s + 1)(s + 100)(s− 0.1545)

(s + 0.001)(s + 32)(s + 40370)(s− 20)

≈ 7.85(s + 1)(s + 100)(s− 0.1545)

s(s + 32)(s− 20)

which gives the closed-loop H∞ norm of 7.85.

K2 =
43.47(s + 1)(s + 100)(s− 0.0679)

(s + 0.001)(s2 + 30.93s + 411.7)(s− 7.9718)
.
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H∞ Filtering

ẋ = Ax + B1w(t), x(0) = 0

y = C2x + D21w(t)

z = C1x, B1D
∗
21 = 0, D21D

∗
21 = I

H∞ Filtering: Given a γ > 0, find a causal filter F (s) ∈ RH∞
if it exists such that

J := sup
w∈L2[0,∞)

‖z − ẑ‖22
‖w‖22

< γ2

with ẑ = F (s)y.

m


A B1

C1 D11

C2 D21

F (s) ���
?

�

z∆

z

−
ẑ y

w

G(s)

F (s)

z∆

y

w

ẑ

� �

�

-

G(s) =


A B1 0

C1 D11 −I

C2 D21 0


This can be regarded as a H∞ problem without internal stability.

There exists a causal filter F (s) ∈ RH∞ such that J < γ2 if and only if

J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) ≥ 0

ẑ = F (s)y =

 A− Y∞C∗2C2 Y∞C∗2

C1 0

 y

where Y∞ is the stabilizing solution to

Y∞A∗ + AY∞ + Y∞(γ−2C∗1C1 − C∗2C2)Y∞ + B1B
∗
1 = 0.
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Chapter 15: H∞ Controller Reduction

• problem formulation

• additive reduction

• coprime factor reduction
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Problem Formulation

G(s) =


A B1 B2

C1 D11 D12

C2 D21 D22

 .

G(s)

K(s)

z

y

w

u

� �

�

-

All stabilizing controllers satisfying ‖Tzw‖∞ < γ:

K = F`(M∞, Q), Q ∈ RH∞, ‖Q‖∞ < γ

where M∞ is of the form

M∞ =

 M11(s) M12(s)

M21(s) M22(s)

 =


Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22



such that Â − B̂2D̂
−1
12 Ĉ1 and Â − B̂1D̂

−1
21 Ĉ2 are both stable, i.e., M−1

12

and M−1
21 are both stable.

Find a controller K̂ with a minimal order such that
∥∥∥∥F`(G, K̂)

∥∥∥∥∞ < γ.

m
Find a stable Q such that K = F`(M∞, Q) has minimal order and

‖Q‖∞ < γ.
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Additive Reduction

Consider the class of (reduced order) controllers:

K̂ = K0 + W2∆W1, ∆ ∈ RH∞
W1,W

−1
1 ,W2,W

−1
2 ∈ RH∞

such that ‖F`(G,K0)‖∞ < γ

K̂ and K0 have the same right half plane poles.

Then ∥∥∥∥F`(G, K̂)
∥∥∥∥∞ < γ

m
∃ Q ∈ RH∞ with ‖Q‖∞ < γ such that K̂ = F`(M∞, Q).

⇓

Q = F`(K̄
−1
a , K̂), K̄−1

a :=

 0 I

I 0

 M−1
∞

 0 I

I 0

 .

‖Q‖∞ < γ ⇐⇒
∥∥∥∥F`(K̄

−1
a , K̂)

∥∥∥∥∞ < γ

⇐⇒
∥∥∥∥F`(K̄

−1
a ,K0 + W2∆W1)

∥∥∥∥∞ < γ

⇐⇒
∥∥∥∥F`(R̃, ∆)

∥∥∥∥∞ < 1

where

R̃ =

 γ−1/2I 0

0 W1


 R11 R12

R21 R22


 γ−1/2I 0

0 W2


 R11 R12

R21 R22

 = S(K̄−1
a ,

 Ko I

I 0

).

Redheffer’s Lemma:
∥∥∥∥R̃∥∥∥∥∞ ≤ 1 and ‖∆‖∞ < 1⇒

∥∥∥∥F`(R̃, ∆)
∥∥∥∥∞ < 1.
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Suppose W1 and W2 are stable, minimum phase and invertible transfer

matrices such that R̃ is a contraction. Let K0 be a stabilizing controller

such that ‖F`(G,K0)‖∞ < γ. Then K̂ is also a stabilizing controller such

that
∥∥∥∥F`(G, K̂)

∥∥∥∥∞ < γ if

‖∆‖∞ =
∥∥∥∥W−1

2 (K̂ −K0)W
−1
1

∥∥∥∥∞ < 1.

R̃ can always be made contractive for sufficiently small W1 and W2.

We would like to select the “largest” W1 and W2.

Assume ‖R22‖∞ < γ and define

L =

 L1 L2

L∼2 L3

 = F`(



0 −R11 0 R12

−R∼11 0 R∼21 0

0 R21 0 −R22

R∼12 0 −R∼22 0


, γ−1I).

Then R̃ is a contraction if W1 and W2 satisfy (W∼
1 W1)

−1 0

0 (W2W
∼
2 )−1

 ≥
 L1 L2

L∼2 L3

 .

An algorithm that maximizes det(W∼
1 W1) det(W2W

∼
2 ) has been devel-

oped by Goddard and Glover [1993].
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Coprime Factor Reduction

All controllers such that ‖Tzw‖∞ < γ can also be written as

K(s) = F`(M∞, Q) = (Θ11Q + Θ12)(Θ21Q + Θ22)
−1 := UV −1

= (QΘ̃12 + Θ̃22)
−1(QΘ̃11 + Θ̃21) := Ṽ −1Ũ

where Q ∈ RH∞, ‖Q‖∞ < γ, and UV −1 and Ṽ −1Ũ are respectively

right and left coprime factorizations over RH∞, and

Θ =

 Θ11 Θ12

Θ21 Θ22

 =


Â− B̂1D̂

−1
21 Ĉ2 B̂2 − B̂1D̂

−1
21 D̂22 B̂1D̂

−1
21

Ĉ1 − D̂11D̂
−1
21 Ĉ2 D̂12 − D̂11D̂

−1
21 D̂22 D̂11D̂

−1
21

−D̂−1
21 Ĉ2 −D̂−1

21 D̂22 D̂−1
21



Θ̃ =

 Θ̃11 Θ̃12

Θ̃21 Θ̃22

 =


Â− B̂2D̂

−1
12 Ĉ1 B̂1 − B̂2D̂

−1
12 D̂11 −B̂2D̂

−1
12

Ĉ2 − D̂22D̂
−1
12 Ĉ1 D̂21 − D̂22D̂

−1
12 D̂11 −D̂22D̂

−1
12

D̂−1
12 Ĉ1 D̂−1

12 D̂11 D̂−1
12



Θ−1 =


Â− B̂2D̂

−1
12 Ĉ1 B̂2D̂

−1
12 B̂1 − B̂2D̂

−1
12 D̂11

−D̂−1
12 Ĉ1 D̂−1

12 −D̂−1
12 D̂11

Ĉ2 − D̂22D̂
−1
12 Ĉ1 D̂22D̂

−1
12 D̂21 − D̂22D̂

−1
12 D̂11



Θ̃−1 =


Â− B̂1D̂

−1
21 Ĉ2 −B̂1D̂

−1
21 B̂2 − B̂1D̂

−1
21 D̂22

D̂−1
21 Ĉ2 D̂−1

21 D̂−1
21 D̂22

Ĉ1 − D̂11D̂
−1
21 Ĉ2 −D̂11D̂

−1
21 D̂12 − D̂11D̂

−1
21 D̂22

 .
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Let K0 = Θ12Θ
−1
22 be the central H∞ controller: ‖F`(G,K0)‖∞ < γ

Let Û , V̂ ∈ RH∞ with det V̂ (∞) 6= 0 be such that∥∥∥∥∥∥∥∥∥

 γ−1I 0

0 I

 Θ−1


 Θ12

Θ22

−
 Û

V̂




∥∥∥∥∥∥∥∥∥∞
< 1/
√

2.

Then K̂ = Û V̂ −1 is also a stabilizing controller and ‖F`(G, K̂)‖∞ < γ.

Note that K is a stabilizing controller such that ‖Tzw‖∞ < γ if and

only if there exists a Q ∈ RH∞ with ‖Q‖∞ < γ such that U

V

 :=

 Θ11Q + Θ12

Θ21Q + Θ22

 = Θ

 Q

I

 (0.14)

and

K = UV −1.

Define

∆ :=

 γ−1I 0

0 I

 Θ−1


 Θ12

Θ22

−
 Û

V̂




and partition ∆ as

∆ :=

 ∆U

∆V

 .

Then  Û

V̂

 =

 Θ12

Θ22

−Θ

 γI 0

0 I

 ∆ = Θ

 −γ∆U

I −∆V


and  Û(I −∆V )−1

V̂ (I −∆V )−1

 = Θ

 −γ∆U(I −∆V )−1

I

 .

Define

U := Û(I −∆V )−1, V := V̂ (I −∆V )−1
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Q := −γ∆U(I −∆V )−1

Then K̂ = Û V̂ −1 = UV −1 and

Q := −γ∆U(I −∆V )−1 = −γ
[
I 0

]
∆

(
I −

[
0 I

]
∆

)−1

= −γF`




0
[
I 0

]

I/
√

2
[

0 I/
√

2
]

 ,
√

2∆


Again by Redheffer’s Lemma,

∥∥∥∆U(I −∆V )−1
∥∥∥∞ < 1 since

0
[
I 0

]

I/
√

2
[

0 I/
√

2
]



is a contraction and
∥∥∥∥√2∆

∥∥∥∥∞ < 1.

=⇒ ‖Q‖∞ =
∥∥∥∥γ∆U(I −∆V )−1

∥∥∥∥∞ < γ

Therefore ‖F`(G, K̂)‖∞ < γ.

Let K0 = Θ̃−1
22 Θ̃21 be the central H∞ controller: ‖F`(G,K0)‖∞ < γ

Let ˆ̃U, ˆ̃V ∈ RH∞ with det ˆ̃V (∞) 6= 0 be such that∥∥∥∥∥∥∥∥∥
([

Θ̃21 Θ̃22

]
−

[
ˆ̃U ˆ̃V

])
Θ̃−1

 γ−1I 0

0 I


∥∥∥∥∥∥∥∥∥∞

< 1/
√

2.

Then K̂ = ˆ̃V
−1 ˆ̃U is also a stabilizing controller and ‖F`(G, K̂)‖∞ < γ.

sufficient conditions:

H∞ controller reduction =⇒ frequency weighted H∞ model reduction.
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Chapter 16: H∞ Loop Shaping

• Robust Stabilization of Coprime factors

• Robust Stabilization of Normalized Coprime Factors

• H∞ Loop Shaping Design

• Weighted H∞ Control Interpretation

• Further Guidelines for Loop Shaping
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Robust Stabilization of Coprime Factors

Robust Stabilization Condition:

Let P = M̃−1Ñ be the nominal model and

P∆ = (M̃ + ∆̃M)−1(Ñ + ∆̃N)

with M̃, Ñ, ∆̃M, ∆̃N ∈ RH∞ and
∥∥∥∥∥
[

∆̃N ∆̃M

]∥∥∥∥∥∞ < ε.

f
ff

−

−

y
w

z2z1

r

6

?

� �

-

∆̃M

M̃−1--

-

Ñ

∆̃N
-

-K--

The perturbed system is robustly stable iff∥∥∥∥∥∥∥∥∥

 K

I

 (I + PK)−1M̃−1

∥∥∥∥∥∥∥∥∥∞
≤ 1/ε.

State Space Coprime Factorization:

Let

P =

 A B

C D


and let L be such that A + LC is stable. Then

P = M̃−1Ñ,
[
Ñ M̃

]
=

 A + LC B + LD L

C D I

 .

Denote

K̂ = −K
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LFT framework:

G(s) =



 0

M̃−1


 I

P


M̃−1 P

 =



A −L B 0

C


 0

I


 I

D


C I D



=:


A B1 B2

C1 D11 D12

C2 D21 D22

 .

jM̃−1

K̂

� Ñ� �
?

�

�

-

uy

z1

z2

w

Controller for a Special Case: D = 0.∥∥∥∥∥∥∥∥∥

 K

I

 (I + PK)−1M̃−1

∥∥∥∥∥∥∥∥∥∞
< γ

iff γ > 1 and there exists a stabilizing solution X∞ ≥ 0 solving

X∞(A− LC

γ2 − 1
)+(A− LC

γ2 − 1
)∗X∞−X∞(BB∗− LL∗

γ2 − 1
)X∞+

γ2C∗C

γ2 − 1
= 0.

a central controller:

K =

 A−BB∗X∞ + LC L

−B∗X∞ 0

 .
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Robust Stabilization of Normalized Coprime Factors

Suppose M̃ and Ñ are normalized coprime factors

M̃(jω)M̃∗(jω) + Ñ(jω)Ñ∗(jω) = I

Then M̃ and Ñ can be obtained as
[
Ñ M̃

]
=

 A− Y C∗C B −Y C∗

C 0 I


where L = −Y C∗ and Y ≥ 0 is the stabilizing solution to

AY + Y A∗ − Y C∗CY + BB∗ = 0

γmin := inf
K stabilizing

∥∥∥∥∥∥∥∥∥

 K

I

 (I + PK)−1M̃−1

∥∥∥∥∥∥∥∥∥∞
=

1√
1− λmax(Y Q)

λmax(Y Q) =
∥∥∥∥∥
[
Ñ M̃

]∥∥∥∥∥
2

H

where Q is the solution to

Q(A− Y C∗C) + (A− Y C∗C)∗Q + C∗C = 0.

Moreover, for any γ > γmin a controller achieving∥∥∥∥∥∥∥∥∥

 K

I

 (I + PK)−1M̃−1

∥∥∥∥∥∥∥∥∥∞
< γ

is given by

K(s) =

 A−BB∗X∞ − Y C∗C −Y C∗

−B∗X∞ 0


where

X∞ =
γ2

γ2 − 1
Q

I − γ2

γ2 − 1
Y Q


−1

.
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• Let P = M̃−1Ñ be a normalized left coprime factorization and

P∆ = (M̃ + ∆̃M)−1(Ñ + ∆̃N)

with ∥∥∥∥∥
[

∆̃N ∆̃M

]∥∥∥∥∥∞ < ε.

Then there is a robustly stabilizing controller for P∆ if and only if

ε ≤
√
1− λmax(Y Q) =

√√√√√1−
∥∥∥∥∥
[
Ñ M̃

]∥∥∥∥∥
2

H
.

• Let X ≥ 0 be the stabilizing solution to

XA + A∗X −XBB∗X + C∗C = 0

then

Q = (I + XY )−1X

and

γmin =
1√

1− λmax(Y Q)
=

1−
∥∥∥∥∥
[
Ñ M̃

]∥∥∥∥∥
2

H

−1/2

=
√
1 + λmax(XY ).

• Let P = M̃−1Ñ be a normalized left coprime factorization. Then∥∥∥∥∥∥∥∥∥

 K

I

 (I + PK)−1M̃−1

∥∥∥∥∥∥∥∥∥∞
=

∥∥∥∥∥∥∥∥∥

 K

I

 (I + PK)−1
[
I P

]∥∥∥∥∥∥∥∥∥∞
.

•

∥∥∥∥∥∥∥∥∥

 I

K

 (I + PK)−1
[
I P

]∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥

 I

P

 (I + KP )−1
[
I K

]∥∥∥∥∥∥∥∥∥ .

• Let P = M̃−1Ñ = NM−1 be respectively the normalized left and

right coprime factorizations. Then∥∥∥∥∥∥∥∥∥

 K

I

 (I + PK)−1M̃−1

∥∥∥∥∥∥∥∥∥∞
=

∥∥∥∥∥M−1(I + KP )−1
[
I K

]∥∥∥∥∥∞ .
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H∞ Loop Shaping Design

e
eee

n

6

�?

yu
ddi

−
r ? --P

? -K ---

Loop Shaping Design Procedure

(1) Loop Shaping: Using a precompensator W1 and/or a postcompen-

sator W2, the singular values of the nominal plant are shaped to give

a desired open-loop shape.

Ps = W2PW1

Assume that W1 and W2 are such that Ps contains no hidden modes.

e

e

W1 P W2

W1 P W2K∞

W2 K∞ W1 P

- - - -

- - -
6
-

- - - -
6

K

Ps

−

−

(2) Robust Stabilization: a) Calculate εmax, where

εmax =

 inf
K stabilizing

∥∥∥∥∥∥∥∥∥

 I

K

 (I + PsK)−1M̃−1
s

∥∥∥∥∥∥∥∥∥∞


−1

=

√√√√√1−
∥∥∥∥∥
[
Ñs M̃s

]∥∥∥∥∥
2

H
< 1
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Ps = M̃−1
s Ñs and

M̃s(jω)M̃∗
s (jω) + Ñs(jω)Ñ∗s (jω) = I.

If εmax � 1 return to (1) and adjust W1 and W2.

b) Select ε ≤ εmax, then synthesize a stabilizing controller K∞, which

satisfies ∥∥∥∥∥∥∥∥∥

 I

K∞

 (I + PsK∞)−1M̃−1
s

∥∥∥∥∥∥∥∥∥∞
≤ ε−1.

(3) The final controller K

K = W1K∞W2.

A typical design works as follows: the designer inspects the open-loop

singular values of the nominal plant, and shapes these by pre- and/or

postcompensation until nominal performance (and possibly robust stabil-

ity) specifications are met. (Recall that the open-loop shape is related to

closed-loop objectives.) A feedback controller K∞ with associated stabil-

ity margin (for the shaped plant) ε ≤ εmax, is then synthesized. If εmax is

small, then the specified loop shape is incompatible with robust stability

requirements, and should be adjusted accordingly, then K∞ is reevaluated.
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Weighted H∞ Control Interpretation

∥∥∥∥∥∥∥∥∥

 I

K∞

 (I + PsK∞)−1M̃−1
s

∥∥∥∥∥∥∥∥∥∞
=

∥∥∥∥∥∥∥∥∥

 I

K∞

 (I + PsK∞)−1
[
I Ps

]∥∥∥∥∥∥∥∥∥∞
=

∥∥∥∥∥∥∥∥∥

 W2

W−1
1


 I

K

 (I + PK)−1
[
I P

]  W−1
2

W1


∥∥∥∥∥∥∥∥∥∞

=

∥∥∥∥∥∥∥∥∥

 I

Ps

 (I + K∞Ps)
−1

[
I K∞

]∥∥∥∥∥∥∥∥∥∞
=

∥∥∥∥∥∥∥∥∥

 W−1
1

W2


 I

P

 (I + KP )−1
[
I P

]  W1

W−1
2


∥∥∥∥∥∥∥∥∥∞

This shows how all the closed-loop objective are incorporated. z1

z2

 =

 W2

W−1
1


 I

K

 (I + PK)−1
[
I P

]  W−1
2

W1


 w1

w2

 .

h h hK

W−1
1 W1

P W−1
2

W2

- - - - - -?

??

?6

6

6−

z2 w2 w1

z1
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Define

bP,K :=




∥∥∥∥∥∥∥∥∥

 I

K

 (I + PK)−1
[
I P

]∥∥∥∥∥∥∥∥∥∞


−1

if K stabilizes P

0 otherwise

and

bopt := sup
K

bP,K.

Then bP,K = bK,P and

bopt =
√
1− λmax(Y Q) =

√√√√√1−
∥∥∥∥∥
[
Ñ M̃

]∥∥∥∥∥
2

H
.

SISO P :

gain margin ≥ 1 + bP,K

1− bP,K

and

phase margin ≥ 2 arcsin(bP,K).

Proof. Note that for SISO system

bP,K ≤
|1 + P (jω)K(jω)|√

1 + |P (jω)|2
√
1 + |K(jω)|2

, ∀ω.

So, at frequencies where k := −P (jω)K(jω) ∈ R+,

bP,K ≤
|1− k|√√√√√√(1 + |P |2)(1 +

k2

|P |2)
≤ |1− k|√√√√√√min

P

(1 + |P |2)(1 +
k2

|P |2)


=

∣∣∣∣∣∣
1− k

1 + k

∣∣∣∣∣∣ ,

which implies that

k ≤ 1− bP,K

1 + bP,K
, or k ≥ 1 + bP,K

1− bP,K
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from which the gain margin result follows. Similarly, at frequencies where

P (jω)K(jω) = −ejθ,

bP,K ≤
|1− ejθ|√√√√√(1 + |P |2)(1 +

1

|P |2)
≤ |2 sin θ

2|√√√√√√min
P

(1 + |P |2)(1 +
1

|P |2)


=
|2 sin θ

2|
2

,

which implies θ ≥ 2 arcsin bP,K. 2

For example, bP,K = 1/2 guarantees a gain margin of 3 and a phase

margin of 60o.

� bp,k = emargin(P,K); % given P and K, compute bP,K.

� [Kopt,bp,k] = ncfsyn(P,1); % find the optimal controller Kopt.

� [Ksub,bp,k] = ncfsyn(P,2); % find a suboptimal controller Ksub.
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Further Guidelines for Loop Shaping

P = NM−1: normalized right coprime factorization.

bopt(P ) ≤ λ(P ) := inf
<s>0

σ


 M(s)

N(s)


 .

small λ(P ) =⇒ small bopt(P ).

open right-half plane zeros and poles of P :

z1, z2, . . . , zm, p1, p2, . . . , pk

Define

Nz(s) =
z1 − s

z1 + s

z2 − s

z2 + s
. . .

zm − s

zm + s
, Np(s) =

p1 − s

p1 + s

p2 − s

p2 + s
. . .

pk − s

pk + s
.

Then

P (s) = P0(s)Nz(s)/Np(s)

where P0(s) has no open right-half plane poles or zeros.

Let N0(s) and M0(s) be stable and minimum phase spectral factors:

N0(s)N
∼
0 (s) =

1 +
1

P (s)P∼(s)


−1

, M0(s)M
∼
0 (s) = (1+P (s)P∼(s))−1.

Then P0 = N0/M0 is a normalized coprime factorization and (N0Nz) and

(M0Np) form a pair of normalized coprime factorizations of P . Thus

bopt(P ) ≤
√
|N0(s)Nz(s)|2 + |M0(s)Np(s)|2, ∀<(s) > 0.

ln |N0(re
jθ)| =

∫ ∞
−∞ ln

 1√
1 + 1/|P (jω)|2

 Kθ(ω/r) d(ln ω)

ln |M0(re
jθ)| =

∫ ∞
−∞ ln

 1√
1 + |P (jω)|2

 Kθ(ω/r) d(ln ω)
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Figure 0.29: Kθ(ω/r) vs. normalized frequency ω/r

where r > 0, −π/2 < θ < π/2, and

Kθ(ω/r) =
1

π

2(ω/r)[1 + (ω/r)2] cos θ

[1− (ω/r)2]2 + 4(ω/r)2 cos2 θ

Kθ(ω/r) large near ω = r: |N0(re
jθ)| will be small if |P (jω)| is small

near ω = r and |M0(re
jθ)| will be small if |P (jω)| is large near ω = r.

Large θ: Kθ(ω/r) very near ω = r and small otherwise. Hence

|N0(re
jθ)| and |M0(re

jθ)| will essentially be determined by |P (jω)| in

a very narrow frequency range near ω = r when θ is large. On the other

hand, when θ is small, a larger range of frequency response |P (jω)| around

ω = r will have affect on the value |N0(re
jθ)| and |M0(re

jθ)|. (This, in

fact, will imply that a right-plane zero (pole) with a much larger real part

than the imaginary part will have much worse effect on the performance

than a right-plane zero (pole) with a much larger imaginary part than the

real part.)
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When can bopt(P ) be small

Let s = rejθ and note that Nz(zi) = 0 and Np(pj) = 0. Then the

bound can be small if

� |Nz(s)| and |Np(s)| are both small for some s. That is, |Nz(s)| ≈ 0

(i.e., s is close to a right-half plane zero of P ) and |Np(s)| ≈ 0 (i.e.,

s is close to a right-half plane pole of P ). This is only possible if

P (s) has a right-half plane zero near a right-half plane pole. (See

Example 0.1.)

� |Nz(s)| and |M0(s)| are both small for some s. That is, |Nz(s)| ≈ 0

(i.e., s is close to a right-half plane zero of P ) and |M0(s)| ≈ 0 (i.e.,

|P (jω)| is large around ω = |s| = r). This is only possible if |P (jω)|
is large around ω = r, where r is the modulus of a right-half plane

zero of P . (See Example 0.2.)

� |Np(s)| and |N0(s)| are both small for some s. That is, |Np(s)| ≈ 0

(i.e., s is close to a right-half plane pole of P ) and |N0(s)| ≈ 0 (i.e.,

|P (jω)| is small around ω = |s| = r). This is only possible if |P (jω)|
is small around ω = r, where r is the modulus of a right-half plane

pole of P . (See Example 0.3.)

� |N0(s)| and |M0(s)| are both small for some s. That is, |N0(s)| ≈ 0

(i.e., |P (jω)| is small around ω = |s| = r) and |M0(s)| ≈ 0 (i.e.,

|P (jω)| is large around ω = |s| = r). The only way in which |P (jω)|
can be both small and large at frequencies near ω = r is that |P (jω)|
is approximately equal to 1 and the absolute value of the slope of

|P (jω)| is large. (See Example 0.4.)
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RHP Poles/Zeros are close

Example 0.1

P1(s) =
K(s− r)

(s + 1)(s− 1)
.

bopt(P1) will be very small for all K whenever r is close to 1 (i.e.,

whenever there is an unstable pole close to an unstable zero).

r 0.5 0.7 0.9 1.1 1.3 1.5

K = 0.1 bopt(P1) 0.0125 0.0075 0.0025 0.0025 0.0074 0.0124

r 0.5 0.7 0.9 1.1 1.3 1.5

K = 1 bopt(P1) 0.1036 0.0579 0.0179 0.0165 0.0457 0.0706

r 0.5 0.7 0.9 1.1 1.3 1.5

K = 10 bopt(P1) 0.0658 0.0312 0.0088 0.0077 0.0208 0.0318
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Figure 0.30: Frequency responses of P1 for r = 0.9 and K = 0.1, 1, and 10
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Nonminimum Phase

Example 0.2

P2(s) =
K(s− 1)

s(s + 1)
.

bopt(P2) will be small if |P2(jω)| is large around ω = 1, the modulus of

the right-half plane zero.

K 0.01 0.1 1 10 100

bopt(P2) 0.7001 0.6451 0.3827 0.0841 0.0098
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K=1

K=10

Figure 0.31: Frequency responses of P2 and P3 for K = 0.1, 1, and 10

Note that bopt(L/s) = 0.707 for any L and bopt(P2) −→ 0.707 as

K −→ 0. This is because |P2(jω)| around the frequency of the right-half

plane zero is very small as K −→ 0.
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Complex Nonminimum Phase Zeros

P3(s) =
K[(s− cos θ)2 + sin2 θ]

s[(s + cos θ)2 + sin2 θ]
.

θ (degree) 0 45 60 80 85

K = 0.1 bopt(P3) 0.5952 0.6230 0.6447 0.6835 0.6950

θ (degree) 0 45 60 80 85

K = 1 bopt(P3) 0.2588 0.3078 0.3568 0.4881 0.5512

θ (degree) 0 45 60 80 85

K = 10 bopt(P3) 0.0391 0.0488 0.0584 0.0813 0.0897

• bopt(P3) will be small if |P3(jω)| is large around the frequency of ω = 1

(the modulus of the right-half plane zero).

• for zeros with the same modulus, bopt(P3) will be smaller for a plant

with relatively larger real part zeros than for a plant with relatively

larger imaginary part zeros (i.e., a pair of real right-half plane zeros

has a much worse effect on the performance than a pair of almost pure

imaginary axis right-half plane zeros of the same modulus).



242

Unstable Poles

Example 0.3

P4(s) =
K(s + 1)

s(s− 1)
.

bopt(P4) will be small if |P4(jω)| is small around ω = 1 (the modulus of

the right-half plane pole).

K 0.01 0.1 1 10 100

bopt(P4) 0.0098 0.0841 0.3827 0.6451 0.7001

Note that bopt(P4) −→ 0.707 as K −→ ∞. This is because |P4(jω)|
is very large around the frequency of the modulus of the right-half plane

pole as K −→∞.

P5(s) =
K[(s + cos θ)2 + sin2 θ]

s[(s− cos θ)2 + sin2 θ]
.

The optimal bopt(P5) for various θ’s are listed in the following table:

θ (degree) 0 45 60 80 85

K = 0.1 bopt(P5) 0.0391 0.0488 0.0584 0.0813 0.0897

θ (degree) 0 45 60 80 85

K = 1 bopt(P5) 0.2588 0.3078 0.3568 0.4881 0.5512

θ (degree) 0 45 60 80 85

K = 10 bopt(P5) 0.5952 0.6230 0.6447 0.6835 0.6950

• bopt(P5) will be small if |P5(jω)| is small around the frequency of the

modulus of the right-half plane pole.
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• for poles with the same modulus, bopt(P5) will be smaller for a plant

with relatively larger real part poles than for a plant with relatively

larger imaginary part poles (i.e., a pair of real right-half plane poles

has a much worse effect on the performance than a pair of almost pure

imaginary axis right-half plane poles of the same modulus).
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Large Slope near Crossover

Example 0.4

P6(s) =
K(0.2s + 1)4

s(s + 1)4
.
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K=10000

Figure 0.32: Frequency response of P6 for K = 10−5, 10−1 and 104

• K = 10−5: slope near crossover is not too large =⇒ bopt(P6) not too

small.

• K = 104: Similar.

• K = 0.1: slope near crossover is quite large =⇒ bopt(P6) quite small.

K 10−5 10−3 0.1 1 10 102 104

bopt(P6) 0.3566 0.0938 0.0569 0.0597 0.0765 0.1226 0.4933
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Guidelines

Based on the preceding discussion, we can give some guidelines for the

loop-shaping design.

♥ The loop transfer function should be shaped in such a way that it has

low gain around the frequency of the modulus of any right-half plane

zero z. Typically, it requires that the crossover frequency be much

smaller than the modulus of the right-half plane zero; say, ωc < |z|/2

for any real zero and ωc < |z| for any complex zero with a much larger

imaginary part than the real part (see Figure 0.29).

♥ The loop transfer function should have a large gain around the fre-

quency of the modulus of any right-half plane pole.

♥ The loop transfer function should not have a large slope near the

crossover frequencies.

These guidelines are consistent with the rules used in classical control

theory (see Bode [1945] and Horowitz [1963]).
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Chapter 17: Gap metric and ν-Gap Metric

• Gap metric

• ν-Gap metric

• Geometric interpretation of ν-gap metric

• Extended loop-shaping design

• controller order reduction



247

Example

Measure of Distance:

P1(s) =
1

s
, P2(s) =

1

s + 0.1
.

Closed-loop: ∥∥∥∥P1(I + P1)
−1 − P2(I + P2)

−1
∥∥∥∥∞ = 0.0909,

Open-loop:

‖P1 − P2‖∞ =∞.

Need new measure.
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Gap Metric

normalized right and left stable coprime factorizations:

P = NM−1 = M̃−1Ñ.

M∼M + N∼N = I, M̃M̃∼ + ÑÑ∼ = I.

The graph of the operator P is the subspace of H2 consisting of all pairs

(u, y) such that y = Pu. This is given by M

N

H2

and is a closed subspace of H2. The gap between two systems P1 and P2

is defined by

δg(P1, P2) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
Π M1

N1

H2

− Π M2

N2

H2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
where ΠK denotes the orthogonal projection onto K and P1 = N1M

−1
1

and P2 = N2M
−1
2 are normalized right coprime factorizations.

Theorem 0.1 Let P1 = N1M
−1
1 and P2 = N2M

−1
2 be normalized right

coprime factorizations. Then

δg(P1, P2) = max
{
~δ(P1, P2), ~δ(P2, P1)

}

where ~δg(P1, P2) is the directed gap and can be computed by

~δg(P1, P2) = inf
Q∈H∞

∥∥∥∥∥∥∥∥∥

 M1

N1

−
 M2

N2

 Q

∥∥∥∥∥∥∥∥∥∞
.
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� δg(P1,P2) = gap(P1,P2, tol)

δg

1

s
,

1

s + 0.1

 = 0.0995,
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Lower Bound of Gap

Let

Φ =

 M∼
2 N∼2

−Ñ2 M̃2

 .

Then Φ∼Φ = ΦΦ∼ = I and

~δg(P1, P2) = inf
Q∈H∞

∥∥∥∥∥∥∥∥∥

 M∼
2 N∼2

−Ñ2 M̃2




 M1

N1

−
 M2

N2

 Q


∥∥∥∥∥∥∥∥∥∞

= inf
Q∈H∞

∥∥∥∥∥∥∥∥∥

 M∼
2 M1 + N∼2 N1 −Q

−Ñ2M1 + M̃2N1


∥∥∥∥∥∥∥∥∥∞

≥ ‖Ψ(P1, P2)‖∞
where

Ψ(P1, P2) := −Ñ2M1 + M̃2N1 =
[
M̃2 Ñ2

]  0 I

−I 0


 M1

N1

 .

‖Ψ(P1, P2)‖∞ is related to the ν-gap metric.

P1 =
k1

s + 1
, P2 =

k2

s + 1
.

Then it is easy to verify that Pi = Ni/Mi, i = 1, 2, with

Ni =
ki

s +
√
1 + k2

i

, Mi =
s + 1

s +
√
1 + k2

i

,

are normalized coprime factorizations and it can be further shown, as in

Georgiou and Smith [1990], that

δg(P1, P2) = ‖Ψ(P1, P2)‖∞ =



|k1 − k2|
|k1|+ |k2|

, if |k1k2| > 1;

|k1 − k2|√
(1 + k2

1)(1 + k2
2)

, if |k1k2| ≤ 1.



251

Connection with Coprime Factor Uncertainty

Corollary 0.2 Let P have a normalized coprime factorization P =

NM−1. Then for all 0 < b ≤ 1,{
P1 : ~δg(P, P1) < b

}

=

P1 : P1 = (N + ∆N)(M + ∆M)−1, ∆N, ∆M ∈ H∞,

∥∥∥∥∥∥∥∥∥

 ∆N

∆M


∥∥∥∥∥∥∥∥∥∞

< b

 .

Proof. Suppose ~δg(P, P1) < b and let P1 = N1M
−1
1 be a normalized right

coprime factorization. Then there exists a Q ∈ H∞ such that∥∥∥∥∥∥∥∥∥

 M

N

−
 M1

N1

 Q

∥∥∥∥∥∥∥∥∥∞
< b.

Define  ∆M

∆N

 :=

 M1

N1

 Q−
 M

N

 ∈ H∞.

Then

∥∥∥∥∥∥∥∥∥

 ∆M

∆N


∥∥∥∥∥∥∥∥∥∞

< b and P1 = (N1Q)(M1Q)−1 = (N +∆N)(M +∆M)−1.

To show the converse, note that P1 = (N +∆N )(M +∆M )−1 and there

exists a Q̃−1 ∈ H∞ such that P1 =
{
(N + ∆N)Q̃

} {
(M + ∆M)Q̃

}−1
is a

normalized right coprime factorization. Hence by definition, ~δg(P, P1) can

be computed as

~δg(P, P1) = inf
Q

∥∥∥∥∥∥∥∥∥

 M

N

−
 M + ∆M

N + ∆N

 Q̃Q

∥∥∥∥∥∥∥∥∥∞
≤

∥∥∥∥∥∥∥∥∥

 M

N

−
 M + ∆M

N + ∆N


∥∥∥∥∥∥∥∥∥∞

< b

where the first inequality follows by taking Q = Q̃−1 ∈ H∞. 2
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Properties

• If δg(P1, P2) < 1, then δg(P1, P2) = ~δg(P1, P2) = ~δg(P2, P1).

• If b ≤ λ(P ) := inf
<s>0

σ


 M(s)

N(s)


, then

{
P1 : ~δ(P, P1) < b

}
= {P1 : δ(P, P1) < b} .

Recall that

bobt(P ) :=

 inf
K stabilizing

∥∥∥∥∥∥∥∥∥

 I

K

 (I + PK)−1
[
I P

]∥∥∥∥∥∥∥∥∥∞


−1

=
√
1− λmax(Y Q) =

√√√√√1−
∥∥∥∥∥
[
Ñ M̃

]∥∥∥∥∥
2

H

and

bP,K :=

∥∥∥∥∥∥∥∥∥

 I

K

 (I + PK)−1
[
I P

]∥∥∥∥∥∥∥∥∥
−1

∞

=

∥∥∥∥∥∥∥∥∥

 I

P

 (I + KP )−1
[
I K

]∥∥∥∥∥∥∥∥∥
−1

∞

.

Theorem 0.3 Suppose the feedback system with the pair (P0,K0) is

stable. Let P := {P : δg(P, P0) < r1} and K := {K : δg(K,K0) < r2}.
Then

(a) The feedback system with the pair (P,K) is also stable for all

P ∈ P and K ∈ K if and only if

arcsin bP0,K0 ≥ arcsin r1 + arcsin r2.

(b) The worst possible performance resulting from these sets of plants

and controllers is given by

inf
P∈P, K∈K

arcsin bP,K = arcsin bP0,K0 − arcsin r1 − arcsin r2.

one can take either r1 = 0 or r2 = 0.
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Example

Consider

P1 =
s− 1

s + 1
= N1/M1, P2 =

2s− 1

s + 1
= N2/M2.

N1 =
1√
2

s− 1

s + 1
, M1 =

1√
2
, N2 =

2s− 1√
5s +

√
2
, M2 =

s + 1√
5s +

√
2

δg(P1, P2) = 1/3 > ‖Ψ(P1, P2)‖∞ = sup
ω

|ω|√
10ω2 + 4

=
1√
10

,

� δg(P1,P2) = gap(P1,P2, tol)

Next, note that bobt(P1) = 1/
√

2 and the optimal controller achieving

bobt(P1) is Kobt = 0. There must be a plant P with δν(P1, P ) = bobt(P1) =

1/
√

2 that can not be stabilized by Kobt = 0; that is, there must be an

unstable plant P such that δν(P1, P ) = bobt(P1) = 1/
√

2. A such P can

be found using Corollary 0.2:

{P : δg(P1, P ) ≤ bobt(P1)}

=

P : P =
N1 + ∆N

M1 + ∆M
, ∆N, ∆M ∈ H∞,

∥∥∥∥∥∥∥∥∥

 ∆N

∆M


∥∥∥∥∥∥∥∥∥∞
≤ bobt(P1)

 .

that is, there must be ∆N, ∆M ∈ H∞,

∥∥∥∥∥∥∥∥∥

 ∆N

∆M


∥∥∥∥∥∥∥∥∥∞

= bobt(P1) such that

P =
N1 + ∆N

M1 + ∆M

is unstable. Let

∆N = 0, ∆M =
1√
2

s− 1

s + 1
.

Then

P =
N1 + ∆N

M1 + ∆M
=

s− 1

2s
, δν(P1, P ) = bobt(P1) = 1/

√
2.
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Example

Question: Given an uncertain plant

P (s) =
k

s− 1
, k ∈ [k1, k2],

(a) Find the best nominal design model P0 =
k0

s− 1
in the sense

inf
k0∈[k1,k2]

sup
k∈[k1,k2]

δg(P, P0).

(b) Let k1 be fixed and k2 be variable. Find the k0 so that the largest

family of the plant P can be guaranteed to be stabilized a priori by

any controller satisfying bP0,K = bobt(P0).

For simplicity, suppose k1 ≥ 1. It can be shown that δg(P, P0) = |k0−k|
k0+k .

Then the optimal k0 for question (a) satisfies

k0 − k1

k0 + k1
=

k2 − k0

k2 + k0
;

that is, k0 =
√

k1k2 and

inf
k0∈[k1,k2]

sup
k∈[k1,k2]

δg(P, P0) =

√
k2 −

√
k1√

k2 +
√

k1
.

To answer question (b), we note that by Theorem 0.3, a family of plants

satisfying δg(P, P0) ≤ r with P0 = k0/(s + 1) is stabilizable a priori by

any controller satisfying bP0,K = bobt(P0) if, and only if, r < bP0,K . Since

P0 = N0/M0 with

N0 =
k0

s +
√
1 + k2

0

, M0 =
s− 1

s +
√
1 + k2

0

is a normalized coprime factorization, it is easy to show that∥∥∥∥∥∥∥∥∥

 N0

M0


∥∥∥∥∥∥∥∥∥
H

=

√
k2

0 + (1−
√
1 + k2

0)2

2
√
1 + k2

0
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and

bobt(P0) =

√√√√√1

2

1 +
1√

1 + k2
0

.

Hence we need to find a k0 such that

bobt(P0) ≥ max

k0 − k1

k0 + k1
,
k2 − k0

k2 + k0

 ;

that is, √√√√√1

2

1 +
1√

1 + k2
0

 ≥ max

k0 − k1

k0 + k1
,
k2 − k0

k2 + k0


for a largest possible k2. The optimal k0 is given by the solution of the

equation: √√√√√1

2

1 +
1√

1 + k2
0

 =
k0 − k1

k0 + k1

and the largest k2 = k2
0/k1. For example, if k1 = 1, then k0 = 7.147 and

k2 = 51.0793.

In general, given a family of plant P , it is not easy to see how to choose

a best nominal model P0 such that (a) or (b) is true. This is still a very

important open question.
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ν-Gap Metric

Definition 0.2 The the winding number of g(s) with respect to this

contour, denoted by wno(g), is the number of counterclockwise encir-

clements around the origin by g(s) evaluated on the Nyquist contour

Γ. (A clockwise encirclement counts as a negative encirclement.)

Γ

0

Figure 0.33: The Nyquist contour

Lemma 0.4 (The Argument Principle) Let Γ be a closed con-

tour in the complex plane. Let f(s) be a function analytic along the

contour; that is, f(s) has no poles on Γ. Assume f(s) has Z zeros and

P poles inside Γ. Then f(s) evaluated along the contour Γ once in an

anti-clockwise direction will make Z−P anti-clockwise encirclements

of the origin.
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Properties of wno

Denote η(G) and η0(G), respectively, the number of open right-half

plane and imaginary axis poles of G(s).

Lemma 0.5 Let g and h be biproper rational scalar transfer functions

and let F be a square transfer matrix. Then

(a) wno(gh) = wno(g)+wno(h);

(b) wno(g) = η(g−1)− η(g);

(c) wno(g∼) = −wno(g)− η0(g
−1) + η0(g);

(d) wno(1 + g) = 0 if g ∈ RL∞ and ‖g‖∞ < 1;

(e) wno det(I + F ) = 0 if F ∈ RL∞ and ‖F‖∞ < 1.

Proof.

(a) obvious.

(b) the number of right-half plane zeros of g is the number of right-half

plane poles of g−1.

(c) Suppose the order of g is n. Then η(g∼) = n − η(g) − η0(g) and

η
[
(g∼)−1

]
= n−η(g−1)−η0(g

−1), which gives wno(g∼) = η
[
(g∼)−1

]
−

η(g∼) = η(g)−η(g−1)−η0(g
−1)+η0(g) = −wno(g)−η0(g

−1)+η0(g).

(d) follows from the fact that 1 +<g(jω) > 0, ∀ω since ‖g‖∞ < 1.

(e) follows from part (d) and det(I+F ) =
∏m

i=1(1+λi(F )) with |λi(F )| <
1.

2
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Example

Let

g1 =
1.2(s + 3)

s− 5
, g2 =

s− 1

s− 2
, g3 =

2(s− 1)(s− 2)

(s + 3)(s + 4)
, g4 =

(s− 1)(s + 3)

(s− 2)(s− 4)
.

Figure 0.34 shows the functions, g1, g2, g3, and g4, evaluated on the Nyquist

contour Γ. Clearly, we have

wno(g1) = −1, wno(g2) = 0, wno(g3) = 2, wno(g4) = −1

and they are consistent with the results computed from using Lemma 0.5.

g1
g2
g3
g4

−1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

real

im
a

g
in

a
ry

Figure 0.34: g1, g2, g3, and g4 evaluated on Γ
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ν-Gap Metric

Definition 0.3 The ν-gap metric is defined as

δν(P1, P2) =



‖Ψ(P1, P2)‖∞ , if det Θ(jω) 6= 0 ∀ω
and wno det Θ(s) = 0,

1, otherwise

where Θ(s) := N∼2 N1 + M∼
2 M1 and Ψ(P1, P2) := −Ñ2M1 + M̃2N1.

δν(P1, P2) = δν(P2, P1) = δν(P
T
1 , P T

2 )

� δν(P1,P2) = nugap(P1,P2, tol)

where tol is the computational tolerance.

Consider, for example, P1 = 1 and P2 =
1

s
. Then

M1 = N1 =
1√
2
, M2 =

s

s + 1
, N2 =

1

s + 1
.

Hence

Θ(s) =
1√
2

1− s

1− s
=

1√
2
, Ψ(P1, P2) =

1√
2

s− 1

s + 1
,

and δν(P1, P2) = 1√
2
. (Note that Θ has no poles or zeros!)
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Theorem 0.6 The ν-gap metric can be defined as

δν(P1, P2) =



‖Ψ(P1, P2)‖∞ , if det(I + P∼2 P1) 6= 0 ∀ω and

wno det(I + P∼2 P1) + η(P1)

−η(P2)− η0(P2) = 0,

1, otherwise

where Ψ(P1, P2) can be written as

Ψ(P1, P2) = (I + P2P
∼
2 )−1/2(P1 − P2)(I + P∼1 P1)

−1/2.

Proof. Since the number of unstable zeros of M1 (M2) is equal to the

number of unstable poles of P1 (P2), and

N∼2 N1 + M∼
2 M1 = M∼

2 (I + P∼2 P1)M1,

we have

wno det(N∼2 N1 + M∼
2 M1) = wno det {M∼

2 (I + P∼2 P1)M1}
= wno det M∼

2 + wno det(I + P∼2 P1) + wno det M1.

Note that wno det M1 = η(P1), wno det M∼
2 = −wno det M2−η0(M

−1
2 ) =

−η(P2)− η0(P2), and

wno det(N∼2 N1+M∼
2 M1) = −η(P2)−η0(P2)+wno det(I+P∼2 P1)+η(P1).

Furthermore,

det(N∼2 N1 + M∼
2 M1) 6= 0, ∀ω ⇐⇒ det(I + P∼2 P1) 6= 0, ∀ω.

The theorem follows by noting that

Ψ(P1, P2) = (I + P2P
∼
2 )−1/2(P1 − P2)(I + P∼1 P1)

−1/2

since Ψ(P1, P2) = −Ñ2M1 + M̃2N1 = M̃2(P1 − P2)M1 and

M̃∼
2 M̃2 = (I + P2P

∼
2 )−1, M1M

∼
1 = (I + P∼1 P1)

−1.

2
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Theorem 0.7 Let P1 = N1M
−1
1 and P2 = N2M

−1
2 be normalized right

coprime factorizations. Then

δν(P1, P2) = inf
Q,Q−1 ∈ L∞

wno det(Q) = 0

∥∥∥∥∥∥∥∥∥

 M1

N1

−
 M2

N2

 Q

∥∥∥∥∥∥∥∥∥∞
.

Moreover, δg(P1, P2)bobt(P1) ≤ δν(P1, P2) ≤ δg(P1, P2).

It is now easy to see that

{P : δν(P0, P ) < r}

⊃

P = (N0 + ∆N)(M0 + ∆M)−1 :

 ∆N

∆M

 ∈ H∞,

∥∥∥∥∥∥∥∥∥

 ∆N

∆M


∥∥∥∥∥∥∥∥∥∞

< r

 .

Define

1

bP,K(ω)
:= σ


 I

K(jω)

 (I + P (jω)K(jω))−1
[
I P (jω)

]
and

ψ(P1(jω), P2(jω)) = σ (Ψ(P1(jω), P2(jω))) .

The following theorem states that robust stability can be checked using

the frequency-by-frequency test.

Theorem 0.8 Suppose (P0,K) is stable and δν(P0, P1) < 1. Then

(P1,K) is stable if

bP0,K(ω) > ψ(P0(jω), P1(jω)), ∀ω.

Moreover,

arcsin bP1,K(ω) ≥ arcsin bP0,K(ω)− arcsin ψ(P0(jω), P1(jω)), ∀ω

and

arcsin bP1,K ≥ arcsin bP0,K − arcsin δν(P0, P1).
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Proof. Let P1 = M̃−1
1 Ñ1, P0 = N0M

−1
0 = M̃−1

0 Ñ0 and K = UV −1 be

normalized coprime factorizations, respectively. Then

1

bP1,K(ω)
= σ


 V

U

 (M̃1V + Ñ1U)−1
[
M̃1 Ñ1

] = σ
(
(M̃1V + Ñ1U)−1

)
.

That is,

bP1,K(ω) = σ(M̃1V + Ñ1U) = σ


[
M̃1 Ñ1

]  V

U


 .

Similarly,

bP0,K(ω) = σ(M̃0V + Ñ0U) = σ


[
M̃0 Ñ0

]  V

U


 .

Note that

ψ(P0(jω), P1(jω)) = σ


[
M̃1 Ñ1

]  N0

−M0




 N0 M̃∼
0

−M0 Ñ∼0


∼  N0 M̃∼

0

−M0 Ñ∼0

 = I.

To simplify the derivation, define

G0 =

 N0

−M0

 , G̃0 =
[
M̃0 Ñ0

]
, G̃1 =

[
M̃1 Ñ1

]
, F =

 V

U

 .

Then

ψ(P0, P1) = σ(G̃1G0), bP0,K(ω) = σ(G̃0F ), bP1,K(ω) = σ(G̃1F )

and [
G0 G̃∼0

]∼ [
G0 G̃∼0

]
= I =⇒

[
G0 G̃∼0

] [
G0 G̃∼0

]∼
= I.
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That is,

G0G
∼
0 + G̃∼0 G̃0 = I.

Note that

I = G̃1G̃
∼
1 = G̃1(G0G

∼
0 +G̃∼0 G̃0)G̃

∼
1 = (G̃1G0)(G̃1G0)

∼+(G̃1G̃
∼
0 )(G̃1G̃

∼
0 )∼.

Hence

σ2(G̃1G̃
∼
0 ) = 1− σ2(G̃1G0).

Similarly,

I = F∼F = F∼(G0G
∼
0 + G̃∼0 G̃0)F = (G∼0 F )∼(G∼0 F ) + (G̃0F )∼(G̃0F )

=⇒ σ2(G∼0 F ) = 1− σ2(G̃0F ).

By the assumption, ψ(P0, P1) < bP0,K(ω); that is,

σ(G̃1G0) < σ(G̃0F ), ∀ω

and

σ(G∼0 F ) =
√
1− σ2(G̃0F ) <

√
1− σ2(G̃1G0) = σ(G̃1G̃

∼
0 ).

Hence

σ(G̃1G0)σ(G∼0 F ) < σ(G̃1G̃
∼
0 )σ(G̃0F );

that is,

σ(G̃1G0G
∼
0 F ) < σ(G̃1G̃

∼
0 G̃0F ), ∀ ω

=⇒
∥∥∥∥(G̃1G̃

∼
0 G0F )−1(G̃1G0G

∼
0 F )

∥∥∥∥∞ < 1.

Now

G̃1F = G̃1(G̃
∼
0 G̃0 + G0G

∼
0 )F = (G̃1G̃

∼
0 G̃0F ) + (G̃1G0G

∼
0 F )

= (G̃1G̃
∼
0 G̃0F )

(
I + (G̃1G̃

∼
0 G̃0F )−1(G̃1G0G

∼
0 F )

)
.

By Lemma 0.5,

wno det(G̃1F ) = wno det(G̃1G̃
∼
0 G̃0F ) = wno det(G̃1G̃

∼
0 )+wno det(G̃0F ).
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Since (P0,K) is stable =⇒ (G̃0F )−1 ∈ H∞ =⇒ η((G̃0F )−1) = 0

=⇒ wno det(G̃0F ) := η((G̃0F )−1)− η(G̃0F ) = 0.

Next, note that

PT
0 = (ÑT

0 )(M̃T
0 )−1, P T

1 = (ÑT
1 )(M̃T

1 )−1

and δν(P
T
0 , P T

1 ) = δν(P0, P1) < 1; then, by definition of δν(P
T
0 , P T

1 ),

wno det((ÑT
0 )∼(ÑT

1 )+(M̃T
0 )∼(M̃T

1 )) = wno det(G̃1G̃
∼
0 )T = wno det(G̃1G̃

∼
0 ) = 0

Hence wno det(G̃1F ) = 0, but wno det(G̃1F ) := η((G̃1F )−1)−η(G̃1F ) =

η((G̃1F )−1) since η(G̃1F ) = 0, so η((G̃1F )−1) = 0; that is, (P1,K) is sta-

ble.

Finally, note that

G̃1F = G̃1(G̃
∼
0 G̃0 + G0G

∼
0 )F = (G̃1G̃

∼
0 )(G̃0F ) + (G̃1G0)(G

∼
0 F )

and

σ(G̃1F ) ≥ σ(G̃1G̃
∼
0 )σ(G̃0F )− σ(G̃1G0)σ(G∼0 F )

=
√
1− σ2(G̃1G0)σ(G̃0F )− σ(G̃1G0)

√
1− σ2(G̃0F )

= sin(arcsinσ(G̃0F )− arcsinσ(G̃1G0))

= sin(arcsin bP0,K(ω)− arcsin ψ(P0(jω), P1(jω)))

and, consequently,

arcsin bP1,K(ω) ≥ arcsin bP0,K(ω)− arcsinψ(P0(jω), P1(jω))

and

inf
ω

arcsin bP1,K(ω) ≥ inf
ω

arcsin bP0,K(ω)− sup
ω

arcsin ψ(P0(jω), P1(jω)).

That is, arcsin bP1,K ≥ arcsin bP0,K − arcsin δν(P0, P1). 2
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The significance of the preceding theorem can be illustrated using Fig-

ure 0.35. It is clear from the figure that δν(P0, P1) > bP0,K. Thus a

frequency-independent stability test cannot conclude that a stabilizing

controller K for P0 will stabilize P1. However, the frequency-dependent

test in the preceding theorem shows that K stabilizes both P0 and P1

since bP0,K(ω) > ψ(P0(jω), P1(jω)) for all ω. Furthermore,

bP1,K ≥ inf
ω

sin (arcsin bP0,K(ω)− arcsin ψ(P0, P1)) > 0.

b P0

ω

ψ
δ v(P P10, )

b P0,K

)ω(K,

P( 0(jω), P(1 jω))

Figure 0.35: K stabilizes both P0 and P1 since bP0,K(ω) > ψ(P0, P1) for all ω
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Theorem 0.9 Let P0 be a nominal plant and β ≤ α < bobt(P0).

(i) For a given controller K,

arcsin bP,K > arcsinα− arcsinβ

for all P satisfying δν(P0, P ) ≤ β if and only if bP0,K > α.

(ii) For a given plant P ,

arcsin bP,K > arcsinα− arcsinβ

for all K satisfying bP0,K > α if and only if δν(P0, P ) ≤ β.

Theorem 0.10 Suppose the feedback system with the pair (P0,K0) is

stable. Then

arcsin bP,K ≥ arcsin bP0,K0 − arcsin δν(P0, P )− arcsin δν(K0,K)

for any P and K.

Proof. Use the fact that bP,K = bK,P and apply Theorem 0.8 to get

arcsin bP,K ≥ arcsin bP0,K − arcsin δν(P0, P ).

Dually, we have

arcsin bP0,K ≥ arcsin bP0,K0 − arcsin δν(K0,K).

Hence the result follows. 2



267

Example

Consider again the following example, studied in Vinnicombe [1993b], with

P1 =
s− 1

s + 1
, P2 =

2s− 1

s + 1

and note that

1 + P∼2 P1 = 1 +
−2s− 1

−s + 1

s− 1

s + 1
=

3s + 2

s + 1
.

Then

1+P∼2 (jω)P1(jω) 6= 0, ∀ω, wno det(I +P∼2 P1)+η(P1)− η(P2) = 0

and

δν(P1, P2) = ‖Ψ(P1, P2)‖∞ = sup
ω

|P1 − P2|√
1 + |P1|2

√
1 + |P2|2

= sup
ω

|ω|√
10ω2 + 4

=
1√
10

.

This implies that any controller K that stabilizes P1 and achieves only

bP1,K > 1/
√

10 will actually stabilize P2. This result is clearly less con-

servative than that of using the gap metric. Furthermore, there exists a

controller such that bP1,K = 1/
√

10 that destabilizes P2. Such a controller

is K = −1/2, which results in a closed-loop system with P2 ill-posed.
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Example

P1 =
100

2s + 1
, P2 =

100

2s− 1
, P3 =

100

(s + 1)2
.

δν(P1, P2) = δg(P1, P2) = 0.02, δν(P1, P3) = δg(P1, P3) = 0.8988,

δν(P2, P3) = δg(P2, P3) = 0.8941,

which show that P1 and P2 are very close while P1 and P3 (or P2 and P3)

are quite far away. It is not surprising that any reasonable controller for

P1 will do well for P2 but not necessarily for P3.

P1

P2

P3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1.8

Figure 0.36: Closed-loop step responses with K1 = 1

The corresponding stability margins for the closed-loop systems with

P1 and P2 are

bP1,K1 = 0.7071, and bP2,K1 = 0.7,

respectively, which are very close to their maximally possible margins,

bobt(P1) = 0.7106, and bobt(P2) = 0.7036

(in fact, the optimal controllers for P1 and P2 are K = 0.99 and K = 1.01,

respectively). While the stability margin for the closed-loop system with

P3 is

bP3,K1 = 0.0995,
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which is far away from its optimal value, bobt(P3) = 0.4307, and results

in poor performance of the closed loop. In fact, it is not hard to find a

controller that will perform well for both P1 and P2 but will destabilize

P3.

Of course, this does not necessarily mean that all controllers performing

reasonably well with P1 and P2 will do badly with P3, merely that some

do — the unit feedback being an example. It may be harder to find

a controller that will perform reasonably well with all three plants; the

maximally stabilizing controller of P3,

K3 =
2.0954s + 10.8184

s + 23.2649
,

is a such controller, which gives

bP1,K3 = 0.4307, bP2,K3 = 0.4126, and bP3,K3 = 0.4307.

The step responses under this control law are shown in Figure 0.37.

P1

P2

P3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.4

0.6

0.8

1

1.2

Figure 0.37: Closed-loop step responses with K3 =
2.0954s + 10.8184

s + 23.2649
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Geometric Interpretation of ν-Gap Metric

δν(P1, P2) = sup
ω

ψ(P1(jω), P2(jω))

In particular, for a single-input single-output system,

ψ(P1(jω), P2(jω)) =
|P1(jω)− P2(jω)|√

1 + |P1(jω)|2
√
1 + |P2(jω)|2

. (0.15)

This function has the interpretation of being the chordal distance between

P1(jω) and P2(jω).

Figure 0.38: Projection onto the Riemann sphere

Now consider a circle of chordal radius r centered at P0(jω0) on the

Riemann sphere for some frequency ω0; that is,

|P (jω0)− P0(jω0)|√
1 + |P (jω0)|2

√
1 + |P0(jω0)|2

= r.

Let P (jω0) = R + jI and P0(jω0) = R0 + jI0. Then it is easy to show

that R− R0

1− α

2

+

I − I0

1− α

2

=
α(1 + |P0|2 − α)

(1− α)2
, if α 6= 1
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Figure 0.39: Projection of a disk on the Nyquist diagram onto the Riemann sphere

where α = r2(1 + |P0|2).
For example, an uncertainty of 0.2 at |p0(jω0)| = 1 for some ω0 (i.e.,

δν(p0, p) ≤ 0.2) implies that 0.661 ≤ |p(jω0)| ≤ 1.513 and the phase

difference between p0 and p is no more than 23.0739o at ω0.
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Figure 0.40: Uncertainty on the Riemann sphere and the corresponding uncertainty on the Nyquist
diagram
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Figure 0.41: Uncertainty on the Nyquist diagram corresponding to the balls of uncertainty on the
Riemann sphere centered at p0 with chordal radius 0.2
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The Necessity of WNO

‖Ψ(P1, P2)‖∞ on its own without the winding number condition is use-

less for the study of feedback systems.

Consider

P1 = 1, P2 =
s− 1− ε

s− 1
.

It is clear that P2 becomes increasingly difficult to stabilize as ε→ 0 due to

the near unstable pole/zero cancellation. In fact, any stabilizing controller

for P1 will destabilize all P2 for ε sufficiently small. This is confirmed by

noting that bobt(P1) = 1, bobt(P2) ≈ ε/2, and

δg(P1, P2) = δν(P1, P2) = 1, ε ≥ −2.

However, ‖Ψ(P1, P2)‖∞ = |ε|√
4+4ε+2ε2

≈ ε
2 in itself fails to indicate the

difficulty of the problem.
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Extended Loop-Shaping Design

Let P be a family of parametric uncertainty systems and let P0 ∈ P be

a nominal design model. We are interested in finding a controller so that

we have the largest possible robust stability margin; that is,

sup
K

inf
P∈P

bP,K.

Note that by Theorem 0.8, for any P1 ∈ P , we have

arcsin bP1,K(ω) ≥ arcsin bP0,K(ω)− arcsinψ(P0(jω), P1(jω)), ∀ω.

Now suppose we need infP∈P bP,K > α. Then it is sufficient to have

arcsin bP0,K(ω)− arcsin ψ(P0(jω), P1(jω)) > arcsin α, ∀ω, P1 ∈ P ;

that is,

bP0,K(ω) > sin (arcsin ψ(P0(jω), P1(jω)) + arcsinα) , ∀ω, P1 ∈ P.

Let W (s) ∈ H∞ be such that

|W (jω)| ≥ sin (arcsinψ(P0(jω), P1(jω)) + arcsinα) , ∀ω, P1 ∈ P.

Then it is sufficient to guarantee

|W (jω)|
bP0,K(ω)

< 1.

Let P0 = M̃−1
0 Ñ0 be a normalized left coprime factorization and note that

1

bP0,K(ω)
:= σ


 I

K(jω)

 (I + P0(jω)K(jω))−1 M̃−1
0 (jω)

 .

Then it is sufficient to find a controller so that∥∥∥∥∥∥∥∥∥

 I

K

 (I + P0K)−1 M̃−1
0 W

∥∥∥∥∥∥∥∥∥∞
< 1.
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The process can be iterated to find the largest possible α.

Design Procedure:

Let P be a family of parametric uncertain systems and let P0 be a

nominal model.

(a) Loop-Shaping: The singular values of the nominal plant are shaped,

using a precompensator W1 and/or a postcompensator W2, to give

a desired open-loop shape. The nominal plant P0 and the shaping

functions W1,W2 are combined to form the shaped plant, Ps, where

Ps = W2P0W1. We assume that W1 and W2 are such that Ps contains

no hidden modes.

(b) Compute frequency-by-frequency:

f(ω) = sup
P∈P

ψ(Ps(jω),W2(jω)P (jω)W1(jω)).

Set α = 0.

(b) Fit a stable and minimum phase rational transfer function W (s) so

that

|W (jω)| ≥ sin(arcsin f(ω) + arcsinα) ∀ω.

(c) Find a K∞ such that

β := inf
K∞

∥∥∥∥∥∥∥∥∥

 I

K∞

 (I + P0K∞)−1 M̃−1
0 W

∥∥∥∥∥∥∥∥∥∞
.

(d) If β ≈ 1, stop and the final controller is K = W1K∞W2. If β � 1,

increase α and go back to (b). If β � 1, decrease α and go back to

(b).
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Controller Order Reduction

Theorem 0.11 Let P0 be a nominal plant and K0 be a stabilizing

controller such that bP0,K0 ≤ bobt(P0). Let K0 = UV −1 be a normalized

coprime factorization and let Û , V̂ ∈ RH∞ be such that∥∥∥∥∥∥∥∥∥

 U

V

−
 Û

V̂


∥∥∥∥∥∥∥∥∥∞
≤ ε.

Then K := Û V̂ −1 stabilizes P0 if ε < bP0,K0. Furthermore,

arcsin bP,K ≥ arcsin bP0,K0 − arcsin ε− arcsin β

for all {P : δν(P, P0) ≤ β}.

Hence to reduce the controller order one only needs to approximate the

normalized coprime factors of the controller.

Chapter 18: Miscellaneous Topics

• Model Validation

• Mixed µ



277

Model Validation

Question: how one can decide if a model description is appropriate (i.e.,

how to validate a model).

Consider a set of uncertain discrete-time dynamical systems:

∆ := {∆ : ∆ ∈ H∞, ‖∆‖∞ ≤ 1}

where ‖∆(z)‖∞ = sup|z|>1 σ (∆(z)).

experimental data:

u = (u0, u1, . . . , ul−1), y = (y0, y1, . . . , yl−1)

Question: are these data consistent with our modeling assumption?

Does there exist a model ∆ ∈ ∆ such that y = (y0, y1, . . . , yl−1) with

the input u = (u0, u1, . . . , ul−1)?

• No, the model is invalidated.

• Yes, the model is not invalidated.

Let ∆ be a stable, causal, LTI system with

∆(z) = h0 + h1z
−1 + h2z

−2 + · · ·

where hi, i = 0, 1, . . . are the matrix Markov parameters.

Suppose input sequence u = (u0, u1, . . . , ul−1) generates the output

y = (y0, y1, . . . , yl−1) for the period t = 0, 1, . . . , `− 1,

Then 

y0

y1

...

yl−1


=



h0 0 · · · 0

h1 h0
. . . 0

... ... . . . 0

hl−1 hl−2 · · · h0





u0

u1

...

ul−1


.
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• if u0 6= 0 and ∆ is SISO, h0, . . . , h`−1 are uniquely determined by ui

and yi.

• The model is not invalidated if the remaining Markov parameters can

be chosen so that ∆(z) ∈∆.

• Answer: classical tangential Carathéodory-Fejér interpolation prob-

lem

Let π` denote the truncation operator such that

π`(v0, v1, . . . , v`−1, v`, v`+1, . . .) = (v0, v1, . . . , v`−1) =: v.

Denote

Tv :=



v0 0 · · · 0

v1 v0
. . . 0

... ... . . . 0

vl−1 vl−2 · · · v0


.

Theorem 0.12 Given u = (u0, u1, . . . , ul−1) and y = (y0, y1, . . . , yl−1),

there exists a ∆ ∈ H∞, ‖∆‖∞ ≤ 1 such that

y = π`∆u

if and only if T ∗y Ty ≤ T ∗uTu or σ
(
Ty(T

∗
uTu)

−1
2

)
≤ 1 if u0 6= 0.

Note that the output of ∆ after time t = ` − 1 is irrelevant to the test.

The condition T ∗y Ty ≤ T ∗uTu is equivalent to

i∑
j=1
‖yj‖2 ≤

i∑
j=1
‖uj‖2 , i = 0, 1, . . . , `− 1

or

‖πiy‖2 ≤ ‖πiu‖2 , i = 0, 1, . . . , `− 1,

which is obviously necessary.
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Model Validation: Additive Example

f f P (z)

∆(z) W (z)��

?��� �

D(z)

?

?
y

d

u

Figure 0.42: Model validation for additive uncertainty

y = (P + ∆W )u + Dd, ‖∆‖∞ ≤ 1

d ∈ Dconvex

Assume W (∞) is of full column rank. Let

D(z) = D0 + D1z
−1 + D2z

−2 + · · · .
Theorem 0.13 Given data uexpt = (u0, u1, . . . , u`−1) with u0 6= 0,

yexpt = (y0, y1, . . . , y`−1) with d ∈ Dconvex, let

û = (û0, û1, . . . , û`−1) = π`(Wuexpt)

ŷ = (ŷ0, ŷ1, . . . , ŷ`−1) = yexpt − π`Puexpt.

Then there exists a ∆ ∈ H∞, ‖∆‖∞ ≤ 1 such that

yexpt = π` ((P + ∆W )uexpt + Dd)

for some d ∈ Dconvex iff there exists a d = (d0, d1, . . . , dl−1) ∈ π`Dconvex

such that

σ
[
(Tŷ − TDTd)(T

∗
û Tû)

−1/2
]
≤ 1

where

TD :=



D0 0 · · · 0

D1 D0
. . . 0

... ... . . . 0

Dl−1 Dl−2 · · · D0


.
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Proof.

(y − Pu)−Dd = ∆(Wu).

Since P,W,D, and ∆ are causal, linear, and time invariant, we have

π`Dd = π`Dπ`d, π`(y − Pu) = yexpt − π`Pπ`u = yexpt − π`Puexpt and

π`Wu = π`Wπ`u = π`Wuexpt. Denote

d̂ = (d̂0, d̂1, . . . , d̂`−1) = π`(Dd).

Then it is easy to show that

d̂0

d̂1

...

d̂`−1


= TD



d0

d1

...

d`−1


and Td̂ = TDTd. Now note that

Tπ`(y−Pu−Dd) = Tπ`(y−Pu) − Tπ`(Dd) = Tŷ − TDTd, Tπ`Wu = Tû

and π`∆Wu = π`∆π`(Wu) since ∆ is causal. Applying Theorem 0.12,

there exists a ∆ ∈ H∞, ‖∆‖∞ ≤ 1 such that

π` [(y − Pu)−Dd] = π`∆(Wu) = π`∆π`(Wu)

if and only if

(Tŷ − TDTd)
∗(Tŷ − TDTd) ≤ T ∗û Tû

⇐⇒ σ
[
(Tŷ − TDTd)(T

∗
û Tû)

−1
2

]
≤ 1.

Note that Tû is of full column rank since W (∞) is of full column rank and

u0 6= 0, which implies û0 6= 0. 2

Note that

inf
d∈Dconvex

σ
[
(Tŷ − TDTd)(T

∗
û Tû)

−1
2

]
≤ 1

is a convex problem and can be checked numerically.
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Mixed µ Analysis and Synthesis

uncertainties ∆ ⊂ Cn×n is defined as

∆ =
{
diag

[
φ1Ik1, . . . , φsrIksr , δ1Ir1, . . . , δscIrsc ,

∆1, . . . , ∆F ] : φi ∈ R, δj ∈ C, ∆` ∈ Cm`×m`
}
.

Then

µ∆ (M) := (min {σ(∆) : ∆ ∈∆, det (I −M∆) = 0})−1

unless no ∆ ∈ ∆ makes I −M∆ singular, in which case µ∆(M) := 0.

Or, equivalently,

1

µ∆(M)
:= inf {α : det(I − αM∆) = 0, σ(∆) ≤ 1, ∆ ∈∆} .

Let ρR(M) be the real spectral radius (i.e., the largest magnitude of

the real eigenvalues of M). Then

µ∆ (M) = max
∆∈B∆

ρR(M∆)

where B∆ := {∆ : ∆ ∈∆, σ(∆) ≤ 1}.
Define

Q = {∆ ∈∆ : φi ∈ [−1, 1], |δi| = 1, ∆i∆
∗
i = Imi

}

D =


diag

[
D̃1, . . . , D̃sr, D1, . . . , Dsc, d1Im1, . . . , dF−1ImF−1, ImF

]
:

D̃i ∈ Cki×ki, D̃i = D̃∗i > 0, Di ∈ Cri×ri, Di = D∗i > 0, dj ∈ R, dj > 0




G =
{
diag [G1, . . . , Gsr, 0, . . . , 0] : Gi = G∗i ∈ Cki×ki

}
.

Then

µ∆(M) = max
Q∈Q

ρR(QM)

• not necessarily achieved on the vertices for the real parameters

• may not be a continuous function of the data

• NP hard problem
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Upper Bound of Mixed µ

µ∆ (M) ≤ inf
D∈D

σ(DMD−1).

LMI form:

σ(DMD−1) ≤ β ⇐⇒ (DMD−1)∗DMD−1 ≤ β2I

⇐⇒ M∗D∗DM − β2D∗D ≤ 0.

Since D∗D = D2 ∈ D, we have

µ∆ (M) ≤ inf
D∈D

min
β

{
β : M∗DM − β2D ≤ 0

}
.

Theorem 0.14 Let M ∈ Cn×n and ∆ ∈∆. Then

µ∆ (M) ≤ inf
D∈D,G∈G

min
β

{
β : M∗DM + j(GM −M∗G)− β2D ≤ 0

}
.

Proof. Suppose we have a Q ∈ Q such that QM has a real eigenvalue

λ ∈ R. Then there is a vector x ∈ Cn such that

QMx = λx.

Let D ∈ D. Then D
1
2 ∈ D, D

1
2Q = QD

1
2 and

D
1
2QMx = QD

1
2Mx = λD

1
2x.

Since σ(Q) ≤ 1, it follows that

λ2
∥∥∥∥∥D 1

2x
∥∥∥∥∥
2

=
∥∥∥∥∥QD

1
2Mx

∥∥∥∥∥
2
≤

∥∥∥∥∥D 1
2Mx

∥∥∥∥∥
2
.

Hence

x∗(M∗DM − λ2D)x ≥ 0.

Next, let G ∈ G and note that Q = Q∗ and Q∗G = QG = GQ; then

x∗GMx =

1

λ
QMx

∗GMx =
1

λ
x∗M∗Q∗GMx =

1

λ
x∗M∗QGMx
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=
1

λ
x∗M∗GQMx =

1

λ
x∗M∗G(QMx) = x∗M∗Gx.

That is,

x∗(GM −M∗G)x = 0.

Note that j(GM −M∗G) is a Hermitian matrix, so it follows that for

such x

x∗(M∗DM + j(GM −M∗G)− λ2D)x ≥ 0.

It is now easy to see that if we have D ∈ D, G ∈ G and 0 ≤ β ∈ R such

that

M∗DM + j(GM −M∗G)− β2D ≤ 0

then |λ| ≤ β, and hence µ∆ (M) ≤ β. 2
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Interpretation of the Bound

Interpretation: covering the uncertainties on the real axis using possibly

off-axis disks.

Example: M ∈ C and ∆ ∈ [−1, 1]. The off-axis disk is

j
G

β
+

√√√√√√1 +

G

β

2

∆̃, ∆̃ ∈ C,
∣∣∣∣∆̃∣∣∣∣ ≤ 1.

Centered Disk Off-Axis Disk

Re Re

Im

11

βj  
G

-1-1

-j

Im

j

Figure 0.43: Covering real parameters with disks

Hence 1−∆M
β 6= 0 for all ∆ ∈ [−1, 1] is guaranteed if

1−

j
G

β
+

√√√√√1 +

(
G

β

)2

∆̃

 M

β
6= 0, ∆̃ ∈ C,

∣∣∣∆̃∣∣∣ ≤ 1

⇐⇒ 1−

√
1 +

(
G
β

)2
M
β

1− jGβ
M
β

∆̃ 6= 0, ∆̃ ∈ C,
∣∣∣∆̃∣∣∣ ≤ 1

⇐⇒


√

1 +
(
G
β

)2
M
β

1− jGβ
M
β


∗ 

√
1 +

(
G
β

)2
M
β

1− jGβ
M
β

 ≤ 1

⇐⇒ M∗

β

M

β
+ j(

G

β

M

β
− M∗

β

G

β
)− 1 ≤ 0

⇐⇒ M∗M + j(GM −M∗G)− β2 ≤ 0.

The scaling G allows one to exploit the phase information about the

real parameters so that a better upper bound can be obtained. We shall

demonstrate this further using a simple example.
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Example

G(s) =
s2 + 2s + 1

s3 + s2 + 2s + 1
.

Nyquist diagram 1/G       

disk centered at (0,0)    

disk centered at (0,−0.2j)

disk centered at (0, −j)  

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

Figure 0.44: Computing the real stability margin by covering with disks

Find the largest k such that 1 + ∆G(s) has no zero in the right-half

plane for all ∆ ∈ [−k, k].

kmax =
(
sup

ω
µ∆(G(jω))

)−1
= inf

ω


1

|G(jω)| : =G(jω) = 0

 = 0.5.

Now we use the complex covering idea to find the best possible k: find the

smallest |∆| so that 1 + ∆G(jω0) = 0 for some ω0 ↔ ∆ + 1/G(jω0) = 0.

disks covering an interval [−k, k]:

a centered disk: k = 1/ ‖G‖∞ = 0.2970

an off-axis disk centered at (0,−0.2j): k = 0.3984

an off-axis disk centered at (0,−j): k = 0.5.
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Alternative characterization of the upper bound

Theorem 0.15 Given β > 0, there exist D ∈ D and G ∈ G such that

M∗DM + j(GM −M∗G)− β2D ≤ 0

if and only if there are D1 ∈ D and G1 ∈ G such that

σ


D1MD−1

1

β
− jG1

 (I + G2
1)
−1

2

 ≤ 1.

Proof. Let D = D2
1 and G = βD1G1D1. Then

M∗DM + j(GM −M∗G)− β2D ≤ 0

⇐⇒ M∗D2
1M + j(βD1G1D1M − βM∗D1G1D1)− β2D2

1 ≤ 0

⇐⇒ (D1MD−1
1 )∗(D1MD−1

1 )+j(βG1D1MD−1
1 −β(D1MD−1

1 )∗G1)−β2I ≤ 0

⇐⇒
D1MD−1

1

β
− jG1


∗ D1MD−1

1

β
− jG1

− (I + G2
1) ≤ 0

⇐⇒ σ


D1MD−1

1

β
− jG1

 (I + G2
1)
−1

2

 ≤ 1.

2
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Corollary 0.16 µ∆ (M) ≤ rβ if there are D1 ∈ D and G1 ∈ G such

that

σ


D1MD−1

1

β
− jG1

 (I + G2
1)
−1

2

 ≤ r ≤ 1.

Proof. This follows by noting that

σ


D1MD−1

1

β
− jG1

 (I + G2
1)
−1

2

 ≤ r ≤ 1

=⇒
D1MD−1

1

rβ
− j

G1

r


∗ D1MD−1

1

rβ
− j

G1

r

 ≤ I + G2
1 ≤ I +

G1

r

2

.

Let G2 =
G1

r
∈ G. Then

D1MD−1
1

rβ
− jG2


∗ D1MD−1

1

rβ
− jG2

 ≤ I + G2
2

=⇒ σ


D1MD−1

1

rβ
− jG2

 (I + G2
2)
−1

2

 ≤ 1

=⇒ µ∆(M) ≤ rβ.

2
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D, G-K Iteration

Find K so that

min
K

sup
ω

µ∆ (F`(P,K)) ≤ β.

wz
� �

�

-

P

K

Figure 0.45: Synthesis framework

Note that ∃ Dω ∈ D and Gω ∈ G such that

sup
ω

σ


Dω (F` (P (jω),K(jω))) D−1

ω

β
− jGω

 (I + G2
ω)−

1
2

 ≤ 1, ∀ω.

⇓
µ∆ (F` (P (jω),K(jω))) ≤ β, ∀ω

D,G−K Iteration:

(1) Let K be a stabilizing controller. Find initial estimates of the scaling

matrices Dω ∈ D, Gω ∈ G and a scalar β1 > 0 such that

sup
ω

σ


Dω (F` (P (jω),K(jω))) D−1

ω

β1
− jGω

 (I + G2
ω)−

1
2

 ≤ 1, ∀ω.

Obviously, one may start with Dω = I, Gω = 0, and a large β1 > 0.

(2) Fit the frequency response matrices Dω and jGω with D(s) and G(s)

so that

D(jω) ≈ Dω, G(jω) ≈ jGω, ∀ ω.

Then for s = jω

sup
ω

σ


Dω (F` (P (jω),K(jω))) D−1

ω

β1
− jGω

 (I + G2
ω)−

1
2


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≈ sup
ω

σ


D(s) (F` (P (s),K(s))) D−1(s)

β1
−G(s)

 (I + G∼(s)G(s))−
1
2

 .

(3) Let D(s) be factorized as

D(s) = Dap(s)Dmin(s), D∼ap(s)Dap(s) = I, Dmin(s), D−1
min(s) ∈ H∞.

That is, Dap is an all-pass and Dmin is a stable and minimum phase

transfer matrix. Find a normalized right coprime factorization

D∼ap(s)G(s)Dap(s) = GNG−1
M , GN, GM ∈ H∞

such that

G∼MGM + G∼NGN = I.

Then

G−1
M D∼ap(I + G∼G)−1Dap(G

−1
M )∼ = I

and, for each frequency s = jω, we have

σ


D(s) (F` (P (s),K(s))) D−1(s)

β1
−G(s)

 (I + G∼(s)G(s))−
1
2



= σ


Dmin (F` (P,K)) D−1

min

β1
−D∼apGDap

 D∼ap(I + G∼G)−
1
2



= σ


Dmin (F` (P,K)) D−1

min

β1
−GNG−1

M

 D∼ap(I + G∼G)−
1
2



= σ


Dmin (F` (P,K)) D−1

minGM

β1
−GN

 G−1
M D∼ap(I + G∼G)−

1
2



= σ

Dmin (F` (P,K)) D−1
minGM

β1
−GN

 .

(4) Define

Pa =

 Dmin(s)

I

 P (s)

 D−1
min(s)GM(s)

I

− β1

 GN

0


and find a controller Knew minimizing ‖F`(Pa,K)‖∞.



290

(5) Compute a new β1 as

β1 = sup
ω

inf
D̃ω∈D,G̃ω∈G

{β(ω) : Γ ≤ 1}

where

Γ := σ


D̃ωF`(P,Knew)D̃−1

ω

β(ω)
− jG̃ω

 (I + G̃2
ω)−

1
2

 .

(6) Find D̂ω and Ĝω such that

inf
D̂ω∈D,Ĝω∈G

σ


D̂ωF`(P,Knew)D̂−1

ω

β1
− jĜω

 (I + Ĝ2
ω)−

1
2

 .

(7) Compare the new scaling matrices D̂ω and Ĝω with the previous es-

timates Dω and Gω. Stop if they are close, else replace Dω, Gω and

K with D̂ω, Ĝω and Knew, respectively, and go back to step (2).


