
FC Networks for Prediction Applications

Subhash Kak∗

February 13, 2001

Abstract

We present a generalization of the corner classification approach
to training feedforward neural networks that allows rapid learning of
non-binary data. These generalized networks, called FC networks, are
compared against Backpropagation (BP) and Radial Basis Function
(RBF) networks and shown to have excellent performance for pre-
diction of time-series and pattern recognition. FC networks do not
require iterative training and they can be used in many business ap-
plications where fast, nonlinear filtering provides an advantage.

∗Department of Electrical & Computer Engineering, Louisiana State University, Baton
Rouge, LA 70803-5901, Email: kak@ee.lsu.edu

1



1 Introduction

The Backpropagation (BP) and Radial Basis Function (RBF) neural net-
works, that are used extensively for a variety of signal processing applica-
tions, require iterative training [1, 9]. BP networks sometimes don’t converge
or take too long to train to be useful in real-time applications. BP networks
have been proposed as models of biological memory, but given the time it
takes these networks to learn, it is clear they could never learn short-term
memory, which is instantaneous. It was the motivation to model such mem-
ory that led to the development of the corner classification (CC) family of
networks [3-7, 14] that learn instantaneously and have very good generaliza-
tion performance [11]. It has been shown that these networks are hardware
friendly and suited for implementation in reconfigurable computing using fine
grained parallelism [16]. Although the CC networks have found many appli-
cations in engineering and business [8, 12], they suffer from the disadvantage
that their input and output must be discrete.

Another disadvantage of the CC networks is that the input is best pre-
sented in a unary code, which increases the number of input neurons consid-
erably. Furthermore, the degree of generalization achieved at each trained
node is, in the non-adaptive version of the CC network, kept constant. In
reality, the data might require that the amount of generalization varies from
node to node. These characterisics somewhat limit the applicability of CC
networks. An interative version of the CC algorithm that does provide vary-
ing degree of generalization has been devised [13] but it is not instantaneous.

In the present paper we present a generalization of the CC network that
we call the FC (for fast classification) network [15]. This network can operate
on real data directly. It reduces to the CC network when the data is binary
and the amount of generalization is fixed.

The FC network maps data to the nearest neighbor within whose sphere
of generalization the data falls, and if that is not the case it performs an
interpolation based on k nearest neighbors. As k becomes large, the FC
generalization can be shown to approach the Bayes performance.

2



2 FC network structure

Figure 1 shows the configuration of a general FC network. It uses the fully-
connected feedforward network architecture consisting of a layer of input
nodes, a layer of hidden neurons, a rule base, followed by an output layer.
The number of output neurons is determined by the problem specifications.
For simplicity, only one output neuron has been shown, although the network
can be easily extended to multiple outputs. In fact, a network with multiple
output neurons can always be separated into multiple single-output networks.

Input data are normalized to the range [0, 1] and presented to the network
in the form of anR-element long continuous-valued vector x = (x1, x2, ..., xR),
where R is determined by the problem specification. Like the CC network,
the number of hidden neurons S in an FC network is equal to the number of
training samples the network is required to learn.

Each hidden neuron i (i = 1, 2, ..., S) is associated with a weight vector
wi = (wi,1, wi,2, ..., wi,R). The convention used in assigning indices to these
weights is as follows. The first index indicates the particular hidden neuron
destination for that weight. The second index indicates the source of the
signal fed to that hidden neuron. Thus, wi,j is the weight from source xj in
the vector to the ith hidden neuron. For the output layer, since there is only
one destination neuron, the destination index is dropped.

Each hidden neuron i first computes the normalized Euclidean distance
di between its weight vector wi and the test vector x. This distance together
with ri, the radius of generalization for this hidden neuron, constitute the
inputs to the activation function F which determines the hidden neuron
output hi. The output of all hidden neurons taken together forms the distance
vector h = (h1, h2, ...hS) that gives a measure of similarity between the test
vector and each of the training vectors the network has already learned.

The rule base enables the FC network to generalize. It consists of a
set of IF-THEN rules that operates on the distance vector h to produce a
membership grade vector µ = (µ1, µ2..., µS) that indicates to what degree
the test vector x belongs to each of the network output classes. The out-
put neuron then computes the dot product between output weight vector
u = (u1, u2, ..., uS) and the membership vector µ to produce the generalized
network output y corresponding to test vector x.

Training of an FC network involves two distinct steps. The first step
determines the input and output weights while the second step finds the

3



radius of generalization for each hidden neuron. It shall be seen that each of
these steps requires just one presentation of the training data set. This gives
the network its instantaneous learning capability.

The Hidden Neurons

Unlike the neurons in a CC4 network [7, 14], the input vector x, the weight
vector w, as well as the scalar output h in the FC neuron are all continuous-
valued quantities. Quantity d is the Euclidean distance between x and w.
The parameter r is called the radius of generalization, a term borrowed from
the CC4 network. As shall be seen later, its purpose is to allocate to this
hidden neuron, an area of generalization in the input space with radius r and
its center at w. Unlike the CC4 network where the same r applies to the
whole network, the radius of generalization in an FC network is individually
determined for each hidden neuron during training. Further, the training
process used in an FC network ensures that there is no overlapping between
the area of generalization for each training sample.

The activation function F takes two scalar inputs, r and d, and produces
a scalar output h for the hidden neuron. Its operation can be described
mathematically as

h = 0 d ≤ r

h = d d > r (1)

The effect of this activation function is to replace any distance between
x and w less than or equal to r by zero. Equivalently, it may be viewed as
a fuzzification of the location occupied by w in the input space from a crisp
point with zero radius into a fuzzy area with radius r. From this point of
view, any test vector x within a distance r from w will be indistinguishable
from w. If w, the weight vector for this hidden neuron, is made identical
to a training vector v, then x will also be indistinguishable from v, and will
therefore be classified into the same output class as v. As shall be seen later,
the training process does make the weight vector for each hidden neuron
equal to its training vector. The process of fuzzification of the location of w
is one of two mechanisms by which an FC network performs generalization.

4



The Rule Base

Another mechanism by which an FC network performs generalization is to
treat a test vector x as having fuzzy membership grades in output classes of
its nearest neighbors. The function of the rule base is to ascertain these mem-
bership grades, i.e., the degree to which x belongs to these output classes.
In an FC network, as in a CC4 network, each training vector is mapped to
an output. However, in a CC4 network, a test vector either belongs to or
does not belong to an output class. In other words, membership grade in
a CC4 network is crisp, taking on only 0 or 1 as its possible values. If the
distance between the test vector and a training sample is less than the ra-
dius of generalization of the network, its membership grade in that output
class is 1. Otherwise, its membership grade in that output class is 0. By
contrast, membership grade in an FC network is fuzzy. It can take on any
value between 0 and 1 depending on the distance from the test vector to
the training sample. Value 0 indicates non-membership while 1 indicates full
membership.

Only the k training samples nearest to the test vector in the Euclidean
sense are considered when assigning membership grades. The value of k is
typically a small fraction of the size of the training set. Membership grades
are normalized, i.e., the sum of all membership grades equals 1. By compari-
son, in a CC4 network, membership grades are not always normalized. If the
test vector falls within the radius of generalization of two or more training
samples, it takes on membership grade of 1 in each of their output classes.
Its total membership grade thus adds up to more than 1. Similarly, if it does
not fall within the radius of generalization of any training sample, its total
membership grade equals zero.

The rule base consists of two IF-THEN rules that assign fuzzy member-
ship grades µi based on the outputs of the hidden neurons. Let m be the
number of hidden neuron outputs hi that equal 0. As shall be seen later,
the training process ensures that the area of generalization for each training
sample does not overlap with that for another sample. A test vector can
therefore fall within the area of generalization of at most one training sam-
ple. This means that m can only be 0 or 1. The two IF-THEN rules within
the rule base are as follows:

5



Rule 1: IF m = 1, THEN assign µi using single-nearest-neighbor (INN)
heuristic

Rule 2: IF m = 0, THEN assign µi using k-nearest-neighbor (kNN) heuris-
tic

Note that, to avoid confusion, the 1NN and kNN rules are referred to as
heuristics. The operation of the rule base shall be discussed in the section
below.

3 Training of the FC Network

Training of the FC network involves two separate steps. In the first step,
input and output weights are prescribed simply by inspection of the training
input/output pairs. For the ith training input (i = 1, 2, ..., S) presented to
the network, input weight wij is made equal to xj (j = 1, 2, ..., R) while the
output weight ui is made equal to the corresponding target output yi; i.e.,

wij = wj, ui = yi, (i = 1, 2, ..., S; j = 1, 2, ..., R) (2)

In the second step of the training process, the radius of generalization
for each hidden neuron is determined. This is accomplished by another pre-
sentation of the training set. When the ith training input is presented, di
will be zero, since the distance from training vector i to itself is zero. The
smallest non-zero distance, dmin, is thus the distance to its nearest neighbor,
say training vector j. The radius of generalization for the ith hidden neuron,
ri, is then set to dmin/2. This will ensure that the area of generalization of
hidden neuron i will not overlap with another hidden neuron. These two
steps complete the training of the FC network. Learning in an FC network is
therefore instantaneous, with each training sample presented to the network
only twice.

Note that although the method used to determine r ensures no overlap-
ping, it does not guarantee complete coverage of the input space. This is
because the nearest neighbor of training vector j is not necessarily training
vector i, in which case rj will be smaller than ri. However, this is of no
concern, as Rule 2 in the rule base is designed to handle its situation.

6



Generalization by Fuzzy Membership

With the completion of the training process, the FC network is ready to be
deployed. When a test vector x is presented to the network, the outputs of
the hidden neurons form the distance vector h = (h1, h2, ..., hs) that gives
a measure of similarity between the test vector and each of the training
vectors the network has already learned. The rule base operates on this
distance vector and produces a set of membership grades µ = (µ1, µ2, ..., µs)
according to the 1NN heuristic or the kNN heuristic. The output neuron then
computes the dot product between the output weight vector u = (u1, u2, ...us)
and the membership grade vector to produce the generalized network output
y corresponding to test vector x. The network output y can thus be written
as

y =
∑

(i=1,S)

µiui (3)

The operation of the 1NN heuristic and the kNN heuristic shall be de-
scribed below.

1NN Heuristic The 1NN heuristic is used when exactly one element in
the distance vector h is 0, i.e., when the test vector falls within the area of
generalization of a training sample. It therefore belongs to the output class
of that training sample with a membership grade of 1 and to all other classes
with a membership grade of 0. Thus, if hj is zero, the membership grades
are assigned as follows:

µi = 1 if i = j(i = 1, 2, ..., S)

µi = 0 if i 6= j (4)

kNN Heuristic The kNN heuristic is used when none of the elements
in the distance vector h is equal to 0, i.e., when the test vector x does
not fall within the area of generalization of any training sample. The test
vector is assigned fuzzy memberships of classes whose training samples are
its k nearest neighbors. These training samples correspond to the k hidden
neurons with the smallest outputs. Membership grades for all other classes

7



whose training samples are not in the set of k nearest neighbors of x are set
to zero. The discussion below begins with k = 2 and then generalizes k to
higher values.

Consider the point X, representing a test vector x, and two points A
and B, representing two training samples, a and b, which are the nearest
neighbors of x. Let the distances from x to a and b be a and b respectively.
The triangular membership functions µclose to a and µclose to b characterize
the change in membership grades of x as its distances from a and b change.
For example, if a = 0, then x falls within the area of generalization of a.
Its membership grade in a’s class is 1 and that in b’s class is 0. The kNN
heuristic then reduces to the 1NN heuristic. A similar situation exists if
b = 0. In between these two extreme cases, x’s membership grades in these
two classes, denoted by µ(x, a) and µ(x, b) respectively, change linearly as

µ(x, a) = b/(a+ b)

µ(x, b) = a/(a+ b) (5)

This is the kNN heuristic for k = 2. Note that, for clarity in presentation,
the notation µi used earlier has been changed to µ(x, a).

The above results can be generalized to higher values of k. The above
equation can be rewritten as

µ(x, a) = (1/a)/(1/a+ 1/b)

µ(x, b) = (1/b)/(1/a+ 1/b) (6)

It is easy to see that, for example, for k = 3 and c as the third nearest
neighbor at a distance c from x, the respective membership grades are

µ(x, a) = (1/a)/(1/a+ 1/b+ 1/c)

µ(x, b) = (1/b)/(1/a+ 1/b+ 1/c)

µ(x, c) = (1/c)/(1/a+ 1/b+ 1/c) (7)

8



Results for higher values of k can be derived in a similar fashion. It is
easy to verify that the membership grades sum up to 1 in each case.

For simplicity, the above discussion is based on the triangular membership
function. Other membership functions are of course possible. It is defined
mathematically as:

µ(x; p, q) =


0 for x < p
2((x− p)/(q − p))2 for p ≤ x < (p+ q)/2
1− 2((x− q)/(q − p))2 for (p + q)/2 ≤ x < q
1 for x ≥ q

(8)

The membership grades µ(x, a), µ(x, b), etc., would vary with the squares
of the respective distances when this quadratic membership function is used.
Similarly, other distance metrics such as the city block distance could be
used in place of the Euclidean distance metric. Preliminary testing indicates
that the performance of the network is not seriously affected by the choice
of distance metric and membership function.

To summarize, the network can be trained with just two passes of the
training samples. The first pass assigns the synaptic weights for the input
and output layers. The second pass determines the radius of generalization r
for each training sample. The network exhibits fuzziness in two regards; (i)
by fuzzification of the location of each training vector in the input space; and
(ii) by assigning fuzzy memberships of output classes to new input vectors.
The notion of radius of generalization for each training vector provides a
basis for the network to switch between a 1NN classifier and a kNN classifier
during generalization. The network behaves like a 1NN classifier when the
input vector falls within the area of generalization of a training vector, and
a kNN classifier otherwise. This enables the network to benefit from the
strength of both classifiers.

Let us view the operation of FC network from various perspectives. It can
be shown that the transformation performed by an FC network is consistent
with Cover’s theorem on separability of patterns. This may be seen with
an example featuring the classic Exclusive-OR problem. The FC network
meets the specification of traditional curve fitting in its strict sense in that
the function implemented by the FC network is constrained to pass through
all data points given in the training set. The FC network operating as a kNN

9



classifier can be viewed as kernel regression if k = S and the weighting func-
tion is chosen as the membership function. Along a similar line of argument,
it may be seen that the FC network operating as a kNN classifier can be
made to behave like an RBF network if k = S and the Gaussian distribution
function is chosen as the membership function.

The performance of the FC network as a 1NN and a kNN classifier may
be cast in probabilistic terms to see its relationship to the Bayes classifier.
Unfortunately, while the analysis is relatively straightforward for a two-class
problem where classification is done by voting, the more general cases where
classification is done by fuzzy membership and where the problem involves
multiple classes are not so amenable to a similar kind of treatment. The
discussion on the FC network as a kNN classifier provides some insight re-
garding the choice of the value of k. While theoretical analysis suggests that
k should be made large to improve performance, practical consideration re-
sulting form finite sample size dictates that k be kept to a small fraction of
the sample size. That the choice of a small k is confirmed in experiments
involving time series prediction and pattern classfication.

Example Consider the following input-output training samples:

Sample Input Output
1 2 3 4 -1 7
2 1 -1 2 -3 4
3 3 0 1 8 9

The Euclidean distances between the samples are: d12 = 5, d13 = 10, d23 =
11.27. Therefore, the radii of generalization to be associated with the three
hidden nodes are 2.5, 2.5, 5, respectively.

Now, consider an input vector X = (1, 2, 3, 4), whose output we wish
to compute. This vector is at the Euclidean distance of d1 = 5.29, d2 =
7.68, and d3 = 5.29 from the three stored vectors. Since these distances are
larger than the radii of generalization of the three vectors, we compute the
interpolation weights µi = 1/di

1/d1+1/d2+1/d3

This gives us µ1 = 0.372, µ2 = 0.256, µ3 = 0.372. So, the output is:
0.372× 7 + 0.256× 4 + 0.372× 9 = 6.976.

10



4 Experimental Results

Although we have tested the FC network for a variety of signal processing
applications, we confine ourselves here to time-series prediction and pattern
recognition.

Time series perdiction

The time-series prediction problem is of interest as in electric load demand
forecast, traffic volume forecast, equalization in communications, and predic-
tion of stock prices, currency and interest rates. Here we describe the per-
formance of the FC network using two benchmark chaotic time-series with
different characteristics. The first is the Henon map [2] time-series, which
is volatile, and the second is the Mackey-Glass time-series, which changes
direction more slowly.

In the examples on chaotic time-series prediction, the value of k that
gave the best performance for a sample size of 500 is 5. Thus k is just
1% of the sample size. The FC network was compared to the RBF and
the BP networks and it was found that the generalization performance was
comparable. Further, the scalability of the performance of the FC network
with respect to the changes in window size and sample size was found to be
superior to the RBF network.

Henon map The one-dimensional Henon map is:

x(t) = 1− ax2(t− 1) + bx(t− 2)

A chaotic regime occurs for a = 1.4 and b = 0.3. This equation is used to
generate a total of 554 points out of which 500 training samples are derived
from the first 504 points while the remaining 50 points are used for out-of-
sample testing of the network after training.

In this experiment, the window size is set to 4 and prediction is made for
one point ahead. In other words, each training sample is formed by a sliding
window consisting of four consecutive points along the time series as input
with the fifth point as the target output. For example, the first training
sample consists of x(1), x(2), x(3), and x(4) as input while the target output
is x(5). The second training sample used x(2), x(3), x(4), and x(5) as input

11



while the target output is x(6), and so on. The last training sample therefore
consists of x(500), x(501), x(502) and x(503) as input with x(504) as target
output. The FC network architecture needed is thus 4-500-1.

The out-of-sample testing points are similarly organized into test vectors.
For example, the first test vector is made up of x(501), x(502), x(503), x(504).
The actual ouput corresponding to this test vector is x(505). After the
network has been trained using the sample set, the fifty test vectors are
presented one at a time and the network is required to predict the output
corresponding to each of the test vectors. The predicted output is then
compared against the actual output and the difference between the two is
used to compute the total prediction error expressed in terms of a sum-of-
squared error (SSE) cumulated over the fifty test points. Table 1 shows the
error for various values of k.

Table 1: Henon map time series prediction using FC network
k SSE
1 0.009054
2 0.007567
3 0.003381
4 0.002971
5 0.002481
6 0.002486
7 0.003401

The table shows that the best performance is obtained when k = 5. It can
be seen that the predicted points match the actual data points very well. In
particular, all turning points in the time series have been correctly predicted.
Points before x(505) are not shown since the mathc between actual data and
network output is exact, i.e., training error is zero in a FC network.

Mackey-Glass time series The Mackey-Glass (MG) equation is a non-
linear time delay differential equation originally developed for modeling whie
blood cell production. Its discrete time representation can be written as

x(t+ 1) = (1−B)x(t) +Ax(t−D)/[1 + xC(t−D)]

where A, B and C are constants and D is the time delay parameter. Under a
suitable choice of these numbers, the resultant time series will exhibit chaotic

12



behavior. The popular case with A = 0.2, B = 0.1 and C = 10, and the delay
parameter D set to 30 is selected here.

In accordance with previously published work, the MG equation is used
to generate a continuous sequence of data points. The first 3000 points
are discarded to allow initialization transients to decay. The remaining data
points are then sampled once every six points to obtain the actual time series
used for this experiment. The window size is 6 and prediction is made for one
point ahead. A total of 500 samples are used for training. The FC network
architecture required to learn this time series is therefore 6-500-1. Here also
our experiments showed that the SSE was minimized for k = 5.

The performance of FC network is excellent. This is seen most clearly
when we consider the question of performance scalability. Here the FC net-
work and RBF network are optimized for the sample size of 500 and window
size of 4. Then the window and the sample size are allowed to change with-
out reoptimization of the k parameter for the FC network and the spread
constant for the RBF network. The results for the SSE are in Table 2.

Table 2. Henon map time series prediction: performance scalability
Window size 4 6 8 10
Sample size=500
SSE for FC 0.00248 0.01 0.07 0.17
SSE for RBF 0.00096 0.40 1.84 9.10
Sample size=400
SSE for FC 0.0077 0.03 0.31 0.70
SSE for RBF 0.0002 0.60 8.15 23.45
Sample size=300
SSE for FC 0.017 0.054 0.28 0.73
SSE for RBF 0.23 4.01 9.51 34.41
Sample size=200
SSE for FC 0.035 0.13 0.44 0.97
SSE for RBF 0.041 3.27 8.35 73.52

13



Table 3 presents the corresponding results for the MG time series predic-
tion performance.

Table 3. Mackey-Glass time series prediction: performance scalability
Window size 4 6 8 10
Sample size=500
SSE for FC 0.90 0.144 0.07 0.08
SSE for RBF 532.77 0.1563 0,13 0.21
Sample size=400
SSE for FC 0.98 0.20 0.13 0.20
SSE for RBF 3510.5 4.28 0.19 0.44
Sample size=300
SSE for FC 1.42 0.50 0.34 0.33
SSE for RBF 33.65 3.39 1.04 2.55
Sample size=200
SSE for FC 1.88 1.20 0.92 1.17
SSE for RBF 443.55 4.25 4.49 6.08

From these tables it can be seen that the performance of the FC network
remains good and reasonably consistent throughout all window and sample
sizes while that of the RBF network is adversely affected by changes in the
window size or sample size or both. Indeed, the performance of the RBF
network can become erratic for certain combinations of these parameters.
This implies that an FC network designed for one window size or one sample
size is generally applicable to other window sizes and sample sizes. One the
other hand, each time the window size or sample size changes a new RBF
network may be required. We expect the same drawback to hold for BP
networks as well, which were not included in the comparisons above because
of the excessive time required to train them. It is clear, therefore, that the
FC network is very much easier to use in practice compared to the other
networks.

Table 3 also reveals another interesting feature that a value of 6 is not the
best window size to use for the FC network in modeling this Mackey-Glass
time series. A window size of 8 gives better performance for all sample sizes
tested. This is probably due to the low volatility in this time series which is
better modeled by a longer window size.

14



Pattern recognition

Another problem on which experiments were done is that of pattern recog-
nition. In one of these experiments, a spiral pattern in a 32-by-32 area was
considered. Input to the network consists of the row and column coordinates
of the training samples which are integers ranging from 1 to 32. The networks
have two output neurons, one for each class. If the training sample belongs
to the white region, the corresponding target output is the two-bit binary
vector (1,0). On the other hand, if the training sample belongs to the black
region, its target output is the vector (0,1). The FC network architecture
required is therefore 2-256-2.

This FC network was compared with BP and RBF networks. For the BP
network, it required search for the best number of hidden neurons to minimize
the error. We tried hidden neurons varying from 20 to 80 and found that the
error was minimized for this number to be 60. Table 4 provides a summary
of the results.

Table 4. Two-class spiral pattern classification
Network Type Network Configuration Error

FC 2-256-2 47
BP 2-60-2 48

RBF 2-256-2 62

We find the FC network performs better than BP and RBF networks.
This superior performance shows up even more clearly in performance scal-
ability tests.

5 Conclusions

We have shown that the FC network possesses generalization characteristics
that compare favorably with other neural networks such as the BP and RBF
networks. We show that the design of an FC network for any real-world
problem is very easy compared to BP and RBF networks. Therefore, given
its fast training speed, it offers an attractive alternative to the other networks.

This paper has described applications of the FC network to the tasks of
pattern recognition and signal prediction. Other applications such as data
compression, equalization in business, nonlinear filtering, and estimation are

15



being researched.

References

[1] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice
Hall, Upper Saddle River, 1999.

[2] M.A. Henon, “Two dimensional map with a strange attractor,” Com-
munications in Mathematical Physics, vol. 50, pp. 69-77, 1976.

[3] S. Kak, On training feedforward neural networks. Pramana -J. of
Physics, 40, pp. 35-42, 1993.

[4] S. Kak, New algorithms for training feedforward neural networks. Pat-
tern Recognition Letters, 15, pp. 295-298, 1994.

[5] S. Kak and J. Pastor, Neural networks and methods for training neural
networks. U.S. Patent No. 5,426,721, June 20, 1995.

[6] S. Kak, The three languages of the brain: quantum, reorganizational,
and associative. In Learning as Self-Organization, K. Pribram and J.
King (eds.). Lawrence Erlbaum, Mahwah, 1996, pp. 185-219.

[7] S. Kak, “On generalization by neural networks,” Information Sciences,
Vol. 111, pp. 293-302, 1998.

[8] S. Kak, “Better web searches and prediction with instantaneously
trained neural networks,” IEEE Intelligent Systems, Vol. 14(6), pp. 78-
81, 1999.

[9] W. Light (ed.), Advances in Numerical Analysis Vol II: Wavelets, Sub-
division Algorithms, and Radial Basis Functions. Oxford Science Publi-
cations, Oxford, 1991.

[10] C.T. Lin and C.S.G. Lee, Fuzzy Neural Systems. Prentice Hall, Upper
Saddle River, 1996.

[11] P. Raina, “Comparison of the learning and generalization capabilities
of the Kak and the backpropagation algorithms,” Information Sciences,
Vol. 81, pp. 261-274, 1994.

16



[12] B. Shu and S. Kak, “A neural network based intelligent metasearch
engine,” Information Sciences, vol. 120, pp. 1-11, 1999.

[13] G.A. Souza and S. Kak, “Dynamic radius allocation in corner classifica-
tion neural networks,” Proceedings of the Third International Conference
on Computational Intelligence and Neuroscience. North Carolina, 1998.

[14] K.W. Tang and S. Kak, “A new corner classification approach to neural
network training,” Circuits, Systems Signal Processing, Vol. 17, pp. 459-
469, 1998.

[15] K.W. Tang, Instantaneous Learning Neural Networks. Ph.D. Disserta-
tion, LSU, 1999.

[16] J. Zhu and G. Milne, “Implementing Kak neural networks on a reconfig-
urable computing platform,” In FPL 2000, LNCS 1896, R.W. Harten-
stein and H. Gruenbacher (eds.), Springer-Verlag, 2000, pp. 260-269.

17


