A Class of Instantaneously Trained Neural
Networks

Subhash Kak*
Department of Electrical & Computer Engineering,

Louisiana State University,
Baton Rouge, LA 70803-5901

May 7, 2002

Abstract

This paper presents FC networks that are instantaneously trained
neural networks that allow rapid learning of non-binary data. These
networks, which generalize the earlier CC networks, have been com-
pared against Backpropagation (BP) and Radial Basis Function (RBF)
networks and are seen to have excellent performance for prediction of
time-series and pattern recognition. The networks can generalize us-
ing soft or hard decisions.

1 Introduction

The popular Backpropagation (BP) and Radial Basis Function (RBF) neural
networks require iterative training. BP networks sometimes don’t converge
or take too long to train to be useful in real-time applications. BP networks
have been proposed as models of biological memory, but given the time it
takes these networks to learn, it is clear they could never learn short-term,
instantaneously-learned, memory.

*E-mail address: kak@ece.lsu.edu



Short-term and long-term memories form a complementary pair in bio-
logical functioning. Similarly, quick learning using artificial neural networks
should be useful for many engineering applications. It was the motivation
to model short-term memory that led to the development of the corner clas-
sification (CC) family of networks [1,2] that learn instantaneously and have
very good generalization performance. Further work was motivated by an
invitation from Karl Pribram to speak on different languages of the brain
which led me to analyze the associative apects of memory at some length [3].
Further development of these ideas followed in due course [4,5,7].

These networks learn example patterns and then generalize points that
lie in a sphere of fixed range around them, without a specific strategy for
other points that lie outside the sphere. It has been shown that these net-
works are hardware friendly and suited for implementation in reconfigurable
computing using fine grained parallelism [9]. Although the CC networks have
found many applications in engineering and business [5], they suffer from the
disadvantage that their input and output must be discrete.

Another disadvantage of the CC networks is that the input is best pre-
sented in a unary code, which increases the number of input neurons consid-
erably. Furthermore, the degree of generalization achieved at each trained
node is, in the non-adaptive version of the CC network, kept constant. In
reality, the data might require that the amount of generalization vary from
node to node. These characteristics somewhat limit the applicability of CC
networks.

In the present paper we describe a generalization of the CC network
that we call the FC network [6]. This network can operate on real data
directly and offer great flexibility as compared to the CC networks. The FC
networks are described in detail elsewhere [6,8]. Here our objective is to focus
on their fundamental structure to highlight how they are distinct from other
approaches to neural network design and learning.

2 The Network

The FC network maps data to the nearest neighbor within whose sphere
of generalization the data falls, and if that is not the case it performs an
interpolation based on k nearest neighbors. As k becomes large, the FC gen-
eralization can be shown to approach the Bayes performance [6]. It uses



the fully-connected feedforward network architecture consisting of a layer of
input nodes, a layer of hidden neurons, a rule base, followed by an output
layer (Figure 1). The number of output neurons is determined by the prob-
lem specifications. A network with multiple output neurons can always be
separated into multiple single-output networks.

An instantaneously trained neural network must, by definition, convert
the incoming pattern into corresponding weights without intensive compu-
tations. This rules out any technique that is based on reduced-dimension
representation, and the network must depend on a linear mapping of the
data. It is this linearity requirement that compels the use of unary mapping
in CC networks. However, the transformation of the data within the network
cannot be entirely linear because that would make it impossible for the net-
works to generalize. The networks have a nonlinear generalizing region and
elsewhere they perform nonlinear interpolation mapping.

Making a transition from binary to non-binary networks, we find that
abandoning the inefficient unary mapping of data we are able to use real
values as they stand. Surprisingly, this generalization allows us to cut down
on the size of the network. The price that is paid is in terms of the extra
computations necessary to separate patterns in the signal space.

We want the network to work in two steps:

1. A basic architecture based on the exemplar patterns

2. A tuning of the network to make the patterns consistent

The CC networks merely learn the exemplar patterns without a system-
atic procedure for tuning of the generalization process.

In the FC networks, input data are normalized to the range [0, 1] and
presented to the network in the form of an R-element long continuous-valued
vector x = (x1,23,...,xr), where R is determined by the problem specifi-
cation. Like the CC network, the number of hidden neurons S in an FC
network is equal to the number of training samples the network is required
to learn.

Each hidden neuron i (i = 1,2, ...,.5) is associated with a weight vector
w; = (Wi 1, W; 2, ..., w; g), Where w; ; is the weight from source z; in the vector
to the ith hidden neuron.



XZO >< RULE
F

BASE

Figure 1: An FC Network. The square boxes, F, adjust the generalization
radii

Each hidden neuron ¢ first computes the normalized Euclidean distance
d; between its weight vector w; and the test vector x. This distance together
with r;, the radius of generalization for this hidden neuron, constitute the
inputs to the activation function F' which determines the hidden neuron
output h;. The output of all hidden neurons taken together forms the distance
vector h = (hq, ho, ...hg) that gives a measure of similarity between the test
vector and each of the training vectors the network has already learned.

The rule base enables the FC network to generalize. It consists of a
set of IF-THEN rules that operates on the distance vector h to produce a
membership grade vector u = (u1, pa..., ps) that indicates to what degree
the test vector x belongs to each of the network output classes. The out-
put neuron then computes the dot product between output weight vector
u = (uy,us, ..., ug) and the membership vector u to produce the generalized
network output y corresponding to test vector x. Training of an FC net-
work involves two distinct steps. The first step determines the input and
output weights while the second step finds the radius of generalization for
each hidden neuron.

Unlike the neurons in a CC4 network, the input vector z, the weight



vector w, as well as the scalar output A in the FC neuron are all continuous-
valued quantities. Quantity d is the Euclidean distance between z and w.
The parameter r is called the radius of generalization, a term borrowed from
the CC4 network. Its purpose is to allocate to this hidden neuron, an area
of generalization in the input space with radius r and its center at w. Unlike
the CC4 network where the same r applies to the whole network, the radius
of generalization in an FC network is individually determined for each hidden
neuron during training.

The network can be trained with just two passes of the training samples.
The first pass assigns the synaptic weights for the input and output layers.
The second pass determines the radius of generalization r for each training
sample. The notion of radius of generalization for each training vector pro-
vides a basis for the network to switch between a 1NN classifier and a kNN
classifier during generalization. The network behaves like a 1NN classifier
when the input vector falls within the area of generalization of a training
vector, and a kNN classifier otherwise. This enables the network to benefit
from the strength of both classifiers.

The network can generalize in a variety of ways. In earlier work [6,8],
we have considered soft generalization which makes it possible to interpolate
outside of the generalization spheres. This is shown in Fig 2(a) for three
learned examples labeled 1, 2, and 3. The radius of these spheres is exactly
one-half of the distance to the nearest other exemplar pattern. But the entire
space can be divided into specific classes, using hard decision boundaries, as
in Figure 2(b). As to which of the two methods to use would depend on the
nature of the problem and the geometry of the output values.

Example Consider the following input-output training samples:

Sample | Input Output
1 2 3 4 -1 7
2 1 -1 2 -3 4
3 3 0 1 8 9

The Euclidean distances between the samples are: dio = 5, di3 = 10, dagz =
11.27. The radius of generalization for a node is one-half the least distance
to the other samples. Therefore, the radii to be associated with the three
hidden nodes are 2.5, 2.5, 5, respectively.



3

(a) (b)

Figure 2: (a) Soft generalization together with interpolation, (b) hard gen-
eralization with separated decision regions



Now, consider an input vector X = (1,2,3,4), whose output we wish
to compute. This vector is at the Euclidean distance of dy = 5.29, dy =
7.68, and d3 = 5.29 from the three stored vectors. Since these distances are
larger than the radii of generalization of the three vectors, we compute the
interpolation weights p; = M%

This gives us pu; = 0.372, po = 0.256, pusz = 0.372. So, the output is:
0.372 x 74 0.256 x 44 0.372 x 9 = 6.976.

This is an example of the use of soft generalization.

The FC network possesses generalization characteristics that compare fa-
vorably with other neural networks such as the BP and RBF networks [6,8].
The design of an FC network for any real-world problem is very easy com-
pared to BP and RBF networks. Therefore, it offers an attractive alternative
to the other networks.

3 Concluding Remarks

The paper has presented the outline of a method for instantaneous learning of
patterns by a neural network that works both for binary and non-binary data.
This method is a direct generalization of the CC family of networks where
the actual distances between the exemplars are computing to determine the
radius of generalization to be associated with each hidden node.

The generalization strategy must depend on the nature of the data. Fur-
ther research on soft generalization options related to problem geometry
needs to be carried out since the earlier work [6,8] has only considered a
specific method.

The method described in this paper has the interesting property that the
tuning of the generalization procedure is carried out later. The tuning could
include reduction in the dimensions of the problem space, which are not
described in this paper. It can also be enhanced by means of node pruning
techniques. Perhaps, it is tuning of this kind that transforms a short-term
memory into a long-term one.



Acknowledgement

This paper is a summary of the plenary lecture delivered at the JCIS 2002
in Durham, North Carolina, in March 2002.

References

1]

2]

[6]

[7]

S. Kak, On training feedforward neural networks. Pramana -J. of
Physics 40 (1993) 35-42.

S. Kak, New algorithms for training feedforward neural networks. Pat-
tern Recognition Letters 15 (1994) 295-298.

S. Kak, The three languages of the brain: quantum, reorganizational,
and associative. In Learning as Self-Organization, K. Pribram and J.
King (eds.). Lawrence Erlbaum, Mahwah, 1996, pp. 185-219.

S. Kak, “On generalization by neural networks,” Information Sciences
111 (1998) 293-302.

S. Kak, “Better web searches and prediction with instantaneously
trained neural networks,” IEEE Intelligent Systems 14(6) (1999) 78-81.

K.W. Tang, Instantaneous Learning Neural Networks. Ph.D. Disserta-
tion, LSU, 1999.

K.W. Tang and S. Kak, “A new corner classification approach to neural
network training,” Clircuits, Systems Signal Processing 17 (1998) 459-
469.

K.W. Tang and S. Kak, “Fast classification networks for signal process-
ing,” Circuits, Systems Signal Processing 21 (2002) 207-224.

J. Zhu and G. Milne, “Implementing Kak neural networks on a reconfig-
urable computing platform,” In FPL 2000, LNCS 1896, R.W. Harten-
stein and H. Gruenbacher (eds.), Springer-Verlag, 2000, pp. 260-269.



