
network methods—such as the backpropa-
gation algorithm or self-organizing maps,
the standard techniques for generaliza-
tion—are notoriously slow, fast pattern-
learning techniques are becoming increas-
ingly necessary.

Standard artificial neural networks can
serve as models of biological memory
embodied as strongly connected and lay-
ered networks of processing units. These
feedback (Hopfield with delta learning)
and feedforward (backpropagation) net-
works learn patterns slowly: the network
must adjust weights connecting links
between input and output layers (see Fig-
ure 1) until it obtains the correct response
to the training patterns. But biological
learning is not a single process: some
forms are very quick and others relatively
slow. Short-term biological memory, in
particular, works very quickly, so slow
neural network models are not plausible
candidates in this case.

Over the past few years, my colleagues
and I have developed new neural network
designs that model working memory in
their ability to learn and generalize instan-
taneously.1–3 These networks are almost as
good as backpropagation in the quality of
their generalization.4 With their speed
advantage, they will work in many real-
time signal-processing, data-compression,
forecasting, and pattern-recognition ap-
plications. In this report, I describe the
networks and their applications to two
problems: time-series prediction and an
intelligent Web metasearch engine design.

My descriptions should indicate how these
designs could work in other situations.

Different kinds of memory
To provide a context for examining in-

stantaneous learning, let’s first consider
different types of biological memory. Al-
though described separately, different
memory types appear to be fundamentally
interrelated. The classification of memory
types can take a variety of forms.5

First, many kinds of sensory memory
systems help us perceive the world. For
example, visual memory includes compo-
nents that let a memory trace persist for
about one-tenth of a second. This persis-
tence lets us see continuous motion in the
discrete frames of a television broadcast.
Another component to this memory, more
sensitive to shape than brightness, in-
tegrates information arriving from the two
retinas. Like visual persistence, a memory
related to auditory persistence creates an
echo that lingers after the item has been
spoken. That’s why we remember the later
words in a series better if we hear them
rather than read them.

There are memories about facts, events,
skills, and habits as well. Some are based
on language, others aren’t. Fact and event
memory is distinct from other kinds of
memory, such as the memory forming the
basis of skills and habits. Declarative (ex-
plicit) memory refers to facts and events.
Such memory can form after single events.
Although we generally acquire nondeclara-
tive (implicit) memory across several pre-

sentations of the stimulus, in situations such
as taste aversion, a person might acquire it
after a single event. Declarative memory is
flexible and can be readily applied to novel
situations, while nondeclarative memory
tends to be inflexible and defined in the
context of the learning situation. Implicit
knowledge is not readily accessed by
response systems that did not participate in
the original learning.

Implicit memory lets us recall and make
judgments about words, objects, and im-
ages without any conscious recall of prior
experience. That is, we have an aspect of
memory that is not a component of con-
scious recall. Consequently, we cannot
view memory as something that is stored
somewhere. Rather, we need to see it as
part of the brain’s reorganization process.

When a subject sees or hears a word or
object several times, that subject will see or
hear it more readily on second or later occa-
sions. This priming phenomenon operates
across a wide range of sensory and motor
systems, at various levels of processing.
Implicit memory is a manifestation of prim-
ing. In perceptual representational learning,
the experience of an object on one occasion
facilitates the perception of the same or a
similar object on a subsequent occasion.

Semantic memory represents the individ-
ual’s general knowledge of the world,
whereas episodic memory structures our
personal experiences. Thus semantic mem-
ory includes the meaning of words, formu-
las of different kinds, and geographical
knowledge, whereas episodic memory
deals with particular incidents, such as a
visit to the doctor last week.

If we consider the distinction between
short- and long-term memories, we note
that in human amnesia, short-term memory
is usually intact. The problem therefore
relates to the storage of the information and
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not an impairment in perception or rule
learning.

Working memory
More than 100 years ago, psychologists

used the digit span to estimate working
memory capacity.6 To determine digit span,
the subject views a sequence of digits that
are to be repeated back in the same order.
The length of the sequence is increased to
the point where the subject always fails.
The sequence at which the subject is right
half the time is the digit span. For most
people, the digit span is seven digits plus or
minus two, with the actual values distrib-
uted from four or five to 10 or more.

If the digits are parceled into chunks, the
number of digits memorized can increase
greatly. Apparently, the number of chunks
rather than the number of digits determines
the capacity of immediate memory. By
clever chunking of the parts of a digit
sequence, a subject can memorize a very
large sequence, running into thousands of
digits.

If the immediate memory has many com-
ponents, there must be a central executive
where the processing by the subsystems
comes together. The central executive is an
attentional system that controls various
visual and auditory subsystems, relating
them to long-term memory. One auditory
system is the phonological loop, which
involves some process of rehearsal with sub-
vocal speech to maintain the memory trace.
Likewise, there appears to be a visio-spatial
sketchpad that helps us memorize images.

The ability to remember also depends on
mood and the level of physiological
arousal. Performance appears to improve
as arousal increases, up to some peak,
beyond which it deteriorates. Different
tasks are optimally performed at different
levels of arousal.

Memories are also lost with time.
Although learning appears to be linearly
related to time, forgetting has a logarithmic
relationship: the information loss is very
rapid at first, then it slowly levels off.
Short-term retention is influenced by
events experienced during the retention
interval (retroactive interference) and those
occurring prior to the event that is to be
remembered (proactive interference).
Retroactive interference involves memory
impairment caused by events between
learning and testing—a new memory can
supersede or otherwise impact an older

one. In proactive inhibition, the reverse
process occurs: an old memory interferes
with our ability to learn new information.

A model for instantaneously
learned working memory

For our purposes here, the most signifi-
cant aspects of biological working memory
are its instantaneous or near-instantaneous
nature and its limited capacity.

Our model of an instantaneously trained
neural network (ITNN) builds on the idea of
the dedicated “hardware” of the phonologi-
cal loop or visio-spatial sketchpad. We take it
that the sketchpad-type system faithfully
represents all the training samples by allocat-
ing a unique neuron to each training sample.
Such an allocation implies that the memory
will be limited by the sketchpad’s size.

Basically, to achieve this allocation, we
need a network in which each hidden node
acts as a sharp filter for its training sample.
This node’s output should be correlated
with this sample and anticorrelated with all
other training samples.

Consider the mapping Y = f(X), where X
and Y are n- and m-dimensional binary
vectors. We consider binary neurons that
output 1 if and only if the sum of the inputs
exceeds 0. To realize the filter, we have it
act as a hyperplane to separate the corner
of the n-dimensional cube represented by
the training vector. That’s why we call our
technique a corner-classification (CC)
technique.7 We have various versions of

the method, one of the more effective of
which is called CC4.8,9 The weight is –1 if
the input is 0 and +1 if the input is 1.

To provide for effective nonzero thresh-
olds to the hyperplane realized by the node,
our technique assumes an extra input xn + 1 =
1. The weight of the link from this node to a
hidden neuron is r – s +1, where r is the
radius of generalization and s is the number
of ones in the input sequence. The weights
in the output layer are equal to 1 if the out-
put value is 1 and –1 if the output value is 0.
This amounts to learning both the input
class and its complement. By assigning an
input vector in the training sample to a
unique hidden neuron, we can claim that the
hidden neuron “stores” the training vector.

That the value of r defines the radius of
generalization can be seen by considering
the all-zero input vectors for which wn + 1 = 
r + 1. Because all the other weights are –1
each, at most there can be r different +1s in
the input vector for this vector to be recog-
nized by its hidden neuron. 

The choice of r will depend on the
nature of generalization sought. If no gen-
eralization is needed, r = 0. For exemplar
patterns, the choice of r defines the degree
of error correction. But the choice will also
depend on the number of training samples.
Figure 2 shows a network that maps three
five-component input vectors into two-
component output vectors.

I have described the algorithm for binary
inputs; we have also devised versions that

Hidden
layer

X1

Input
layer

Output
layer

X2 Y2

Xn+1= 1 Ym

Y1

Figure 1. A general network architecture.



work directly for analog inputs. Likewise,
we have created versions where the radius
of generalization changes adaptively for
different points of the training routine,
necessitating some recursive training.

Forecasting a time series
Time-series prediction is useful for error-

suppression in audio and video signals, in
control, and for a variety of business appli-
cations. Part of the time series serves for
finding the weights; the rest operates in a
real-time application involving the time
series. In most cases, the active size of the
network remains fixed, just like the sketch-
pad of human working memory.

A sliding window of w preceding points
serves to predict the next point in the time
series. Figures 3 and 4 present results for a
chaotic time series based on the logistic
map.

In these examples, which are part of an
ongoing study in my group, the data was
quantized and unary-coded. Analog ver-
sions of the algorithms produce even better
performance.

Design of an intelligent
metasearch engine

Recent studies have shown that as index-
able Web pages have increased to about 800
million (early 1999), the coverage of single
standard search engines has decreased.10,11

This coverage ranges from the lows of
2.2% for Euroseek and 2.5% for Lycos, to a
high of 16% for Northern Light.

Standard search engines provide unequal
access to Web pages, picking out those that
have more links to them and preferring
commercial sites to educational ones.
Because they are also out of date, indexing
new or modified pages can take months.

Metasearch engines have emerged for
just this reason. A metasearch engine sub-
mits the query term to several standard
search engines, obtains the search results,
throws away the redundant results, and
combines and displays the rest in a consis-
tent user interface.

But metasearch engines inherit the main
drawbacks of limited precision and vulner-
ability to keyword spamming that plague
the standard engines. Besides, they display
their returns bunched in terms of the re-
turns from the standard engines. So, irrele-
vant returns of Engine A appear above the
more relevant returns of Engine B, solely
because of the sequencing chosen.

In a recent study, we proposed a method
of merging the returns using a classifica-
tion method based on CC4.12 Because CC4
learns instantaneously, it lets us classify a
metasearch engine’s responses in terms of
different relevance values.

In the metasearch neural network, the
relevant Web pages obtained from different
standard search engines are more similar to
each other than to irrelevant pages and vice
versa. The similarity could be best deter-
mined if the complete contents of the Web
pages were reviewed. But this would be too
complex and time-consuming, so we built a
system that uses the titles and the summaries
alone. This system considers two Web pages
as similar in content if there are more com-
mon keywords in their titles and contents.

The method begins by taking the top few
Web pages and the last few Web pages
from each search engine; it assumes that
their classification—relevant or
irrelevant—is already known. The neural
network is built using keywords from the
Web pages. Each keyword maps into a 0 or
1, so the length of the input vector equals
the number of the keywords chosen. The
output is 1 if the Web page comes from the
top of the list and 0 if it comes from the
bottom. The neural network can assign all
the Web pages to either of these two classes
or assign a relevancy value that is a frac-
tion between 1 and 0.

This method’s performance would
improve if we used HTML keywords and
description metatags as well as the Dublin
Core metadata standard in the classifica-
tion. Currently, only about a third of all
home pages use any keywords or descrip-
tion tags, and less than a percent use the
Dublin Core metadata standard. But a
neural-network-based system that gener-
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ates based on the full text information
could be devised.

We expect that instantaneously
trained neural networks will find increas-
ing uses in engineering and business appli-
cations. As a model of working or short-
term memory, it can help provide a closer
linkage with the findings of psychologists
and neuroscientists, demonstrating that AI
techniques that combine quick generaliza-
tion with rule-based processing are power-
ful and versatile.

Further research on the use of ITNNs in
prediction and intelligent Web search is
continuing in my group at LSU. Neural
Technologies, LLC, based in Kansas City,
Missouri, is developing commercial prod-
ucts based on this technology. These will
include LocateWhatever.com, a new
metasearch engine.
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Figure 3. Prediction of an undulatory logistic map with a chaotic time series of which the last 60 points are shown and
30 points (broken line) predicted.
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Figure 4. Prediction of a logistic map with a chaotic time series of length 567 for which the last 30 points are predicted
(broken line).


