EE 3140 Homework \#3

1. Let the random variables X, Y, and Z be independent random variables. Find the following probabilities in terms of $F_{X}(x), F_{Y}(y)$, and $F_{Z}(z)$.
a. $P\left[X<6,|Y|<2, Z^{2}>2\right]$
b. $P[X<5, \mathrm{Y}=0, \mathrm{Z} \leq 1]$
c. $P[\min (X, Y, Z)>0]$
2. A die is tossed twice; let X_{1} and X_{2} denote the outcome of the first and second toss, respectively.
a. What is the joint pmf for $\left(X_{1}, X_{2}\right)$ if the tosses are independent and if the outcomes of each toss are equiprobable?
b. Let $X=\min \left(X_{1}, X_{2}\right)$ and $Y=\max \left(X_{1}, X_{2}\right)$. Find the joint pmf for $\left(X_{1}, X_{2}\right)$.
c. Find the marginal pmf's for X and Y in part b.
3.

a. Find the marginal pmf's for the pairs of random variables with the indicated joint pmf.
pmf.

Y^{X}	-1	0	1
-1	$1 / 6$	0	$1 / 6$
0	0	0	$1 / 3$
1	$1 / 6$	0	$1 / 6$

Y^{X}	-1	0	1
-1	0	$1 / 8$	$1 / 8$
0	$1 / 2$	0	0
1	0	$1 / 8$	$1 / 8$

Y^{X}	-1	0	1
-1	0	0	0
0	0	$1 / 3$	0
1	$1 / 3$	0	$1 / 3$

b. Find the probability of the events $\mathrm{A}=\{X \leq 0\}, \mathrm{B}=\{X \leq Y\}$, and $\mathrm{C}=\{X=-Y\}$ for the above joint pmf's
4. The random vector (X, Y) has the joint pdf

$$
f(x, y)=2 e^{-x} e^{-2 y} \quad x>0, y>0
$$

a. Find the joint cdf.
b. Find $P[X>Y]$
c. Find the marginal pdf's
5. The random vector variable (X, Y) has the joint pdf

$$
f(x, y)=k(x+y) \quad 0<x<2,0<y<2 .
$$

a. Find k.
b. Find the joint cdf of (X, Y).
c. Find the marginal pdf of X and Y.
6. The random vector (X, Y) is uniformly distributed inside the regions shown in the figure below, and zero elsewhere. Find the value of k and the marginal pdf's.

7. The random vector (X, Y) is uniformly distributed inside the regions shown in the figure below, and zero elsewhere. Find the value of k and the marginal pdf's.

8. The random vector (X, Y) has a joint pdf

$$
f_{X, Y}(x, y)=2 \mathrm{e}^{-x} \mathrm{e}^{-2 y} \quad \mathrm{x}>0, y>0
$$

Find the probability of the following events:
a. $\{X+Y \leq 5\}$
b. $\{X<Y\}$
c. $\{X-Y \leq 8\}$
d. $\left\{\mathrm{X}^{2}<Y\right\}$
9. Let (X, Y) have the joint pdf

$$
f_{X, Y}(x, y)=x e^{-x(l+y)} \quad x>0, y>0
$$

Find the marginal pdf of X and of Y.
10. Are X and Y independent random variables in Problem 3?
11. Are X and Y independent random variables in Problem 4?
12. Are X and Y independent random variables in Problem 5?
13. Consider a sequence of $n+m$ independent Bernoulli trials with probability of success p in each trial. Let N be the number of successes in the first n trials and let M be the number of successes in the remaining m trials.
a. Why are N and M independent random variables?
b. Find the joint pmf of N and M and the marginal pmf's of N and M.
c. Find the pmf for the total number of successes in the $n+m$ trials.
14. Find the conditional pmf's of Y given $X=-1$ for all three cases in Problem 3.
15. Find $f_{Y}(y \mid x)$ in Problem 5.
16. Let (X, Y, Z) have joint pdf

$$
f_{X, Y, Z}(x, y, z)=k(x+y+z) \quad 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1
$$

a. Find k
b. Find $f_{Z}(z \mid x, y)$.
17. Show that $f_{X, Y}(x, y, z)=f_{Z}(z \mid x, y) f_{Y}(y \mid x) f_{X}(x)$.
18.
a. Find $E\left[(X+Y)^{2}\right]$
b. Find the variance of $X+Y$.
c. Under what condition is the variance of the sum equal to the sum of the individual variances?
19. Find $E[|X-Y|]$ if X and Y are independent exponential random variables with parameter $\alpha=1$.
20. Find $E\left[X^{2} Y\right]$ where X is a zero-mean, unit-variance Gaussian random variable, and Y is a uniform random variable in the interval $[-1,3]$, and X and Y are independent.

