EE 3140 Homework 2

1. Suppose that a point is selected at random from inside the unit circle. Let Y be the distance of the point from the origin.
a. Find the sample space of Y, S_{Y}
b. Find the equivalent event in S for the event $\{Y \leq y\}$
c. Find $P[Y \leq y]$
2. Plot the cdf of the radius Y in Problem 1. Specify the type of Y.
3. The cdf of the random variable X is given by

$$
\begin{aligned}
F_{X}(x) & =1 / 3+(2 / 3)(x+1)^{2} & & -1 \leq x \leq 0 \\
& =0 & & x<-1
\end{aligned}
$$

Find the probability of the events $A=\{X>1 / 3\}, B=\{|X| \geq 1\}, C=\{|X-1 / 3|<1\}, D=$ $\{X<0\}$
4. The cdf of a random variable X is shown below
a. What type of random variable is X
b. Find the following probabilities in terms of the cdf of X

$$
\begin{array}{lll}
P[X<-1 / 2] & P[X<0] & P[X \leq 0] \\
P[1 / 4 \leq X<1] & P[1 / 4 \leq X \leq 1] & P[X>1 / 2] \\
P[X \geq 5] & P[X<5] &
\end{array}
$$

5. A random variable Y has the cdf

$$
\begin{aligned}
F_{Y}(y) & =0 & & y<1 \\
& =1-y^{-n} & & y \geq 1
\end{aligned}
$$

where n is a positive integer.
a. Plot the cdf of Y.
b. Find the probability $P[k<Y \leq k+1]$ for a positive integer k.
6. A continuous random variable X has cdf

$$
\begin{aligned}
F_{X}(x) & =0 \\
& =c[1+\cos (x)] \\
& =1
\end{aligned}
$$

a. Find c.
b. Plot $F_{X}(x)$
7. A random variable X has pdf
$f_{X}(x)=c x(1-x) \quad 0 \leq x \leq 1$
a. Find c.
b. Find $P[3 / 4 \leq X \leq 1]$
c. Find $F_{X}(x)$
8. A random variable X has pdf

$$
\begin{aligned}
f_{X}(x) & =c\left(1-x^{4}\right) & & -1 \leq x \leq 1 \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

a. Find c
b. Find the cdf of X
c. Find $P[|X|<1 / 2]$
9. A random variable X has pdf shown below
a. Find $f_{X}(x)$.
b. Find the cdf of X
c. Find b such that $P[|X|<\mathrm{b}]=3 / 4$

10. Messages arrive at a computer at an average rate of 15 messages per second. The number of messages that arrive in 1 second is known to be a Poisson random variable.
a. Find the probability that no messages arrive in 1 second
b. Find the probability that more than 10 messages arrive in a 1 -second period.

Hint: Use Eq. (3.33a)
11. The pdf of X is as shown below. Find the pdf of Y where $Y=X^{2}$.

12. For the random variable X whose pdf is shown below find the pdf of Y, if $Y=X^{3}$

13. Find the pdf for the cdf given below.

$$
\begin{array}{rlrl}
F_{X}(x) & =x^{2} / 2 & & 0 \leq x \leq 1 \\
& =1 / 2 & 1<x \leq 2 \\
& =1 / 2(x-1) & & 2<x \leq 3 \\
& =1 & & 3 \leq x
\end{array}
$$

14. Find $\operatorname{Var}[X]$ for the random variable shown below.

15. Find $\operatorname{Var}[X]$ for the random variable shown below.

16. Find the variance of the data
$3,2,2,4,5,3,1,0,3,1,6,1$
17. Find the mean and variance of a random variable uniformly distributed in the interval [a,b]
18. Find the mean and variance of a discrete random variable that takes on the values for the set $\{1,2, \ldots, n\}$ with equal probability.
19. Derive the mean and variance of the binomial random variable.
20. Derive the mean and variance of the poisson random variable.
