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Quantum Theory
ON INFORMATION ASSOCIATED WITH AN OBJECT
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This paper presents an exploratory study of the significance of the notion of
information and that of the fundamental uncertainty in a quantum description
for object classification. Assuming that the correspondence principle applies
to information, we have been able to relate this uncertainty to the number of
symmetries in a quantum description. If space-time is considered a discrete
lattice the number of interaction symmetries turns out to be finite and close
to the currently accepted value.
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INTRODUCTION

IF one should ask the question why are quantum and classical phenomena different
there are three ways one could attempt an answer. First, one could ascribe the
difference to the uncertainty principle becoming operative at the atomic distances.
Second, one may attribute - the difference to the existence of two new forces in the
nuclear domain, viz. the strong and the weak forces. Third, one may look at
classical phenomena as a limit of quantum phenomena. It is also reasonable to view
the above three reasons as being related. If that assumption is correct then the
short-range forces (strong and weak) should be variants of the long-range forces
(electromagnetic and gravitational) resulting from the mediation by the uncertainty
principle.

In recent years a unification of the short-range and the long-range forces has
been sought in the above manner and achieved to a certain degree. All the four
forces are now described by theories that have the same general form. It has also
been found how the weak force and electromagnetism can be understood in the
context of a single theory. This development has proceeded by studying aspects of
quantum electrodynamics as well as properties of elementary particles. - While it is
clear that this is how a detailed theory should evolve it seems justified to ask if any
limits or bounds are associated with the interaction symmetries in a quantum
description. In other words, is it possible to predict the amount of information in
strong and weak interaction symmetries using the uncertainty principle alone? The
fact that we have taken the uncertainty relations to represent the divide between
classical mechanics and quantum mechanics suggests that such a prediction should
be possible provided we extend the applicability of the correspondence principle to
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information as well. Such an extension would imply the following equation (Kak,
1976, 1977 and 1982) '

I (classical m.) = I(q.m.) 4+ uncertainty ()

where I denotes information. Now since uncertainty implies negative information,
the above equation would require a positive information to be assomated with a
quantum description. :

Section 2 reviews some elementary properties of information. In section 3 we
indicate the combinatorial aspects of particle statistics. The significance of attributes
of an ‘object has been taken up in section 4. Different approaches to the study of
particle structure are discussed. Thus, an object could be taken to be a system
consisting of different subjects or a specific structure (topologically different from the -
structures for other objects) built out of a collection of the same subobject. Section
5 presents a calculation on the amount of information associated with an object
under the assumptions of eqn. (1) and a discrete space-time lattice.

MEASURE OF INFORMATION

We shall briefly describe a measure of information frequently used in communication
theory that seems appropriate for our purpose. Let us consider a box that is filled
with 2 kinds of particles in equal number. Supposing the particles are identical
excepting for their charge, clearly a single measurement of charge suffices to deter-
mine the kind of the particle being observed. An information of 1 bit will be
associated with such a measurement of the object. In general if the probability
of the measurement x is P(x), the information /(x) is

- I(x) = log, [1/P(x)] )
Hence when P(x) = 1/2, for example, the information is 1 bit.
“The average information with the systém of measurements is called the entropy
H (x) and given by :
H(X) = ZP(x) ]og[]/P(x)] -..(3)
. What significance could our information measure have in object classification?

If a total of n bits were necessary to identify an object, quite clearly each of these
bits represents an attribute. Furthermore, the total number of distinguishable

.elementary objects would then equal 27,

Let us now consider an object with spin . Any measurement of spin for such
an object will yield one of two states : parallel or anti-parallel to the object’s motion.
While such a measurement will not aid in the object classification it defines an
internal attribute of the object.

Every measurement requires expenditure of some energy. According to statis-
tical considerations the entropy corresponding to M number of equally likely
states of the system is

k loga M
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where k is the Boltzmann’s constant. At the same time the energy input E brings

ab
Cl

t an entropy change of E/T, where T is the temperature in degrees Kelvin.
rly, then, the energy required to obtain 1 bit of information is k7 log, 2.

Let us now determine the probability density functions that maximize average

information subject to appropriate constraints,
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se I. Let us maximize the expression

I= _Z p(x) log p(x) dx

ject to the conditions that
[ ] .
f px)dx =1 --(4)
—
[ o] . .
f x®p(x) dx = o? C (3
—

i3 a given constant.
We form the expression

Fy=F+ MF, + AFy =plogp + Ap+ XX -

ere A, and A, are Lagrangian multipliers. Using the Enler-Langrage equation on
above : , :

%='0= 1+logp + A 4 Ax?

P = exp (— (A + 1)) exp (—Ax¥) . ‘ -(6)

e inultipliers A, and ); are evaluated by substituting equation 6 into equations
d 5, from which we obtain finally.
P(x) = afiln_c’ exp (—x%/26%), — o0 < x < 0o -'-.(7)

words, therefore, for fixed variance the normal distribution has the largest
iropy. An easy calculation shows that its value equals '

H = } log, 2nea® .(8)

Case 2. If we maximize H(X) for a limited peak value ¥, the constraint is

M
—'!W px)ydx =1

is can be shown to lead to the uniform distribution
. , .
ry vl l X l < M .
px) =4 2M° " .:(9)
0 |x|>M
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for which the associated entropy is log 2M.

Case 3. Let us maximize H(X) for x limited to non-negative values and a given
average value. The constraints are

?p(x) dx = 1
0

[« o]
I xp(x) dx = u
0
The density function p(x) is found from
L (—plogp + hp + s =0

or p(x) = exp (A, — 1) exp (&x)
As before A, and A, may be eliminated by substituting into the constraint equations
to give us ’

!’ 0 , X <0

1 ...(10)
1 ~ C*P (—x/w),x 20

p(x) =

The entropy associated with this distribution is. 1n (ue).

The choice of a specific distribution-to compute maximum entropy would there-
fore depend on the physical problem. If an object in free space is being studied one
should consider the Gaussian distribution. An object in a potential well would be
governed by the uniform distribution. Processes characterized by an asymmetric
variable like time would, on the other hand, be governed by the exponential distribu-
tion. . ‘

The cases governed by the uniform and the exponential distributions will not be
considered further in this paper.

When the variable x is discrete : 0, 4 Xy, 4 2x,,..., the determination of the
probability distribution which maximizes the entropy subject to appropriate cons-
traints can be carried oat similarly. As example for the discrete analog of Case 1.

Z P(nxg) =1

X n*x3 P(nx,) = o*
the probability distribution maximizing entropy is discrete Gaussian:

P(nxg) = exp (—(1 + A,)) exp (—Agnix?) 11)
where A, and A, are solutions 6f :

exp (—(1 + A,)) Z exp (—Ay®x3) = 1 .

exp (—(1 + X)) T n3x: exp (—Anx3) = of ...(12)
The analogs for Case 2 and Case 3 can be derived similarly.
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PROBABILITY DISTRIBUTION OF STATES

is section is a review of the different probability functions that arise owing to the
erent physical assumptions about the objects. Consider a system charaterized by

b

Ok

Bz

states numbered 1, 2, ..., N. Consider further n objects (n < N) numbered 1,
..., n that occupy some of the states of the system. Assuming that all the states
¢l equally likely we wish to determine the probability that states numbered 1 through

v

will have one object each. Such a pattern will be denoted by E.
The probability of E depends on two things:

(i) Are the objects distinguishable or indistinguishable?
(i) Can more than one object be placed in the same state?

This gives rise to four possibilities, which will be considered one by one.

OZy'ec}s distinguishable; Any number in a state

Total number of batterns = N®

Number of patterns of E = nl

P(E) = —"Nl; (13)

Th j: distribution is the Maxwell-Boltzmann statistics.

cts distinguishable; Only one in each state

Total number of patterns = yPa = W —n)

Number of patterns of E = nl

p(E) = ’f!(NN-!— 1 - L
(x) |

This case is assumed not to arise in any physical process.

Objects indistinguishable; Any number in a state

Total number of patterns = '(N +nn - 1)
Patterns of E = 1
P(E) = b ...(15)

")

ThH; is the Bose-Einstein statistics. -
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Objects indistinguishable; Only one in a state

Total number of patterns = (‘Z)

Patterns of E = 1

P(E) = ...(16)

(%)
n
This is the Fermi-Dirac statistics. Note that the result is the same if only one object

is allowed to occupy a state no matter whether the objects are distinguishable or
indistinguishable. T

When N is very large and the states are approximately equally likely (as at high
temperatures) the Fermi-Dirac and Bose-Einstein statistics give results that are
essentially the same as for the classical Maxwell-Boltzmann statistics. At low
temperatures, the low-energy states are more likely than the high-energy states and
therefore the expressions given above must be modified. ‘

The determination of entropy associated with an object would depend on the
statistics obeyed by the object.

ON THE STRUCTURE OF AN OBJECT

Consider that we are given a variety of objects each of which is characterized by &
attributes. If each of these attributes defines a choice between two possibilities the
total number of different objects, without counting compounds composed of more
than one object, will be 2 — 1. These objects can be represented as k-long binary
strings :

00..001
00..010
00..011
11..111 . (17

An object with k-attributes can be viewed, in its structural aspects, in three
different ways which we describe briefly.

Model 1

Each object is considered as being formed out of upto k different sub-objects.
The locations of ones in the binary string representation shown above would
represent the sub-objects constituting the object. The vacuum state may be re-
presented by the null string 00 ... 000.

Model 2

Each object is formed out of a single fundamental entity which combines with
itself to form different patterns, with each topological category representing the
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object and its excitation states. To illustrate this we consider patterns formed out
of 2,3, and 4 entities as shown below :

" 2'entities: e——e

Jentities: e——os—s A _ , S
4 entities: e—e—e—s * £ WA

patterns have been formed subject to the condition that at best only one

More than one branch may, therefore, represent enhanced interaction or,
equivalently, excited object state. The number of different patterns depends also
on Ii ¢ dimensionality of the basis space : the patterns sketched above are valid . for

he graphs shown above are only to illustrate the idea of this construction and
ot meant as serious models. A different set of construction rules will doubt- -

enerate other families of graphs.

Model 3

Each object is a complex structure built out of different entities, some of which
may| occur more than once. In other words, this model combines aspects of both
of the preceding models. It also defines varieties of structures much richer than in
models 1 and 2. : : .

As an illustration of this model we consider the followmg hierarchical structure

00..01
‘00...10
11..11
00..013
00..120

00..1%12

etc.

whmje 1* represents that the entity in question occurs i times. More complex
hietarchical structures where the topology of the system itself is considered (as in
model 2) can also be furnished (Bastin et al., 1979).
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In- any of the above models a choice of a suitable grammer can be used to
furnish more complex strings (sentences) starting from the primitives of the basic
2% — 1 strings (words). Such a procedure would then define the potentially infinite
variety in matter. Each complex super-object would be a grammatically correct
statement in this language. This grammar can, however, be found only by means
of axioms that must be empirically validated. It is possible, furthermore, that for
systems where observations can only be indirect, as in sub-atomic physics, theories
based on any of the three models could be shown to be isomorphic and thus equally
effective.

UNCERTAINTY RELATIONS AND INFORMATION

State preparation and measurement in quantum mechanics have a statistical basis.
In fact no matter what care is taken there is a limitation to the accuracy with
which the state of an object can be prepared. As this limitation is probabilistic it is
natural to investigate the significance of information (entropy) associated with it.

It is also clear that if we assumed the space variable to be continuous then the
entropy associated with an object in a quantum mechanical description would be
infinite. This would imply that the energy to be expended in order to extract all the
information about the object would also be infinite. This is clearly unsatisfactory;
we, therefore, postulate that the fineness of the measurement of two conjugate vari-
ables y, and y, satisfies the constraint y,y, = /2. This postulate has the following
pleasing aspects. First, the information associated with an object is finite and one
may extend the correspondence principle to equate information in the quantum
numbers with the uncertainty inherent in a quantum description. Second, the
spacetime variables are defined in terms of discrete lattices, which also implies that
products like px (angular momentum) should vary in steps of /2.

As we are interested in a statistical average of the state function, the non-statis-
tical variables shall be of no interest to us. In physical terms this implies that
entropy does not depend on variables that are deterministic, because one can, in
principle, design experiments to evaluate them. However, once again, for reasons
that are related to a continuous variable having infinite entropy, all variables like
spin, charge and mass should also vary in steps.

For convenience of our analysis we take the state function in one dimension
only. The state function may be represented as ¢(x, p). That x and p are random.
variables is evident by the fact that the uncertainty principle relates to state prepara-
tion and the maximum uncertainty, for a fixed variance, will be defined when x and
p have Gaussian distributions. The variance of x and p will also be defined by our
discreteness postulate through relations of the type ssap = /2.

The entropy will be calculated for |{|? and not ¢ because it is the former that is
of measurable significance besides being a probability density function. Other random
variables associated with the object can be generated by appropriate (linear, measure-
preserving) transformations on the random variables defined by the state function,
and hence the entropy of these variables will be the same value. This follows from
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act that a hermitian transformation ona random variable does not change

tropy.
Let us now consider a probabilistic discrete model which follows when one

given below :
" Hy= —ZP(x)log P(x) o : ~(18)

Hy = —[dx w(x) log o(x) + log% ...(19)

P(x) = w(x) x,. The logarithms are to the base 2 so that entropy of » bits
can be directly interpreted as uncertainty between 27 equally likely alternatives.
Thus) «(x) is a probability density function and x, is the elemental distance. Note that
X, can, a priori, be taken either as the fineness of measurement or as a fundamental
attribute of space, We opt for the latter meaning, however, owing to the limitations
of the measurement explanation. In fact, from the symmetry of spacetime :

Xo = Yo = Zp = Cly _ ...(20)
et us consider the state function {(x) of the object to be such that it leads to

maximum entropy. As shown in the previous section the probability density for
such an unrestrained particle will be Gaussian*. Thus

U(x) = a exp [—x%/2q2] ..(2D

where a is an appropriate constant. The expression for w(x) is therefore
' o(x) = |$(x)[* = (2no2) 22 exp (—x2/02) _ «(22)

If a measurement is made of the mometum, the probabitity of a result p is given
of the overlap integral ¢(p): :

#(p) =_ [ exp (—ipx/B) ¥(x) dx, @3

and the probability of momentum p is

o(p) = [$(p)P. 24
Calculating (14) we obtain for ¢(p). '
#(p) = b exp [—p*c}/2H7]. -.(25)

Defining o5, by the relation
Ga0p = E/Z

*We have made an approximation that can be avoided. One can use the probability distribution
function ithat maximizes entropy for a discrete space instead of the Gaussian function of eqn. (7).

. The change is so small that there is no significant effect on the nature of our conclusions, however.
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¢ have : , ‘ .
#(p) = b exp [—p’/SU:] ‘ ...(26)
nd - ‘
w(p) = (4nc?) exp [~ p?/4c] ' «.(2D
We assume that the momentum variable also has an elemental value which
equals p,, such that x,p, = /2.
We now calculate the uncertainty (negative information) associated with the

distribution of the x and p variables and take its mean to represent the particle in-
formation Hj,.

H, = % [entropy of x 4 entropy of p] ' ...(28)
Using (8) and (10) in (13) and (18) this results in »

H, = ;[; lognea® + } log 4red® + log | + log L]
Xo Po

= } [log 2re + log =0, — log x,pq] ..:(29)
Since oz6p = Xxop, = $/2, we finally obtain
H, = }log2re o ..(30)

as the entropy due to the uncertainty along the x coordinate. The fact that the
uncertainty due to the cell size cancels out with a corresponding term owing to the
Gaussian probability of the variable may appear unsatisfactory at first sight, yet
such a connection is inherent in mathematical information theory. Whether a
continuous distribution can be used without approximation when the variance and
the discrete variable separation are of the same order is a question that needs to be
explored further, however.

The entropy, considering all the three spat1a1 directions, is now
H, = % log 2ne = 6.38

It may also be argued that a particle with spin 1/2.has another degree of
freedom, since the spin polarization is unknown. This would cause the total degrees
of freedom to increase to about 7.38 for a spin 1/2 particle.

If the time variable is taken on the same footing as the space variables, as oné
may using special theory of relativity, then this variable would also have the same
uncertainty as each space variable and therefore H, shall equal 2log 2rwe == 8.4. And
as spin is a consequence of reconciling relativity and quantum theory, one may not
consider it separately anymore. :

As the quantum-mechanical object has an entropy owing to the uncertainty
relation, it follows on application of the correspondence principle that at most 8.4
(or about 9) bits, or quantum numbers, will have to be associated with a . particle in
a quantum-mechanical description. These may be identified as the mternal
symmetry attnbutes that remain invariant in all interactions.
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To build a complete theory along the above lines, however, requires clarifica-

tion lof several issues. We shall enumerate some of them.

1. Is charge a quantum effect? If it is indeed so then the eight quantum

numbers due to uncertainty include it.

P, Is it valid to include quantum numbers as being due to spin polarization

uncertainty?

crit

"B. What is the significance of the space-time lattice with respect to the reality
erion? Does the lattice exist prior to measurement or is it a result of the inter-

action of the observer with the object?

We

CONCLUDING REMARKS

ave made an exploratory study of the significance of the fundamental uncer-

tainty inherent in a quantum description for object classification. We have argued
that it is, in principle, possible to relate the number of symmetries in quantum
interactions to uncertainty if the correspondence principle were assumed to apply to
information as well. The most significant result of the study is that the object
classification numbers (quantum numbers) turn out to be finite, which indicates
that as energies in the elementary particle experiments go up, we should not keep
on getting new symmetries. It is also significant that the number of object attributes

obt

cen

ained corresponds to the currently accepted value. The calculation in section 5

is lzj:fd on several assumptions, however, and is meant to merely illustrate the

thesis of the paper, viz., the principle embodied in egn. (1).
The programme outlined in this paper can be extended along several directions.

Some of these are :

. Determine if the measure of information used in this paper is the most

appropriate.

2. Explore further the object structures using the different models of section 4.

F4

3. Make the calculation of section 5 rigorous.
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