Indian Journal of History of Science, 21(1): 62—71 (1986)
COMPUTATIONAL ASPECTS OF THE ARYABHATA ALGORITHM
Susuasun Kak

Department of Electrical and Computer Engineering
Leuisiana State University
Baton Rouge, LA 70803

( Recetved 30 March 1985)

This paper investigates the Aryabhata algoritbm from the point of view of
computational complexity. It is also shown that this algorithm is as efficient
as the popularly used Chinesc Remainder algorithm in solving a system
of congruences.

INTRODUCTION

The solution to the problem of a system of congruences where the moduli are
pairwise prime is normally obtained by the Chinese Remainder (CR) algorithm. This
algorithm is of particular interest to compuler and communication scientists because
systems of congruences arise frequently in coding, cryptography, signal processing,
and in computer design. The significance of an alternate efficicnt algorithm cannot be
overstated especially since one may obtain an elegant implementation structure even
if the complexity remained unchanged. An algorithm (o solve congruences in a manner
different to the CR method is presented in Aryabhatiye. Recently I have brought this
method to the attention of computer scientists.! I believe the reason this algorithm
has rot been described earlier in computer literature is because history books often
state it only in the context of the solution of the linear indeterminate equation ax—by
=¢ for x, y in positive integers, where a4, b, ¢ are given integers.

In Aryabhatiya, this method is called kuffeka (the pulverizer). Even though I have
sometimes called it the Aryabhata algorithm, to conform to the convention of associat-
ing a person with a result, the traditional name is very appropriate. Considering that
Aryabhata’s system was a modification of the earlier Paitdmaha Siddhdnta it is likely
that this method, like other results in his book, was already well known before him.
Commentaries on this method were given by Bhaskara I (522 A.p.), Brahmagupta
(628 a.p.), Mahavira (850 aA.p.), Bhiskara 11 (1150 A.p.) and others.? This algorithm
for the solution of a linear indeterminate equation appears to be the earliest recorded
anywhere. Diophantos of Alexandria (250 A.p.) had described determinate and in-
determinatc problems but provided no methods of solutions; furthermore, he was only
concerned with rational solutions.
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THE ALCORITHM

The Aryabhata problem, in its simplest form, is: Find a number x less than
ddg=n which, when divided by 4, and d,, leaves the residues x, and x,, respectively,
where x,—x,=¢, and 4, and d, are relatively prime. In other words, find x so that

xmod d; = x; .. (la)
xmod dy = x, = c+x, .. (1b)

The pulverizer 10 solve this problem is given in A2, 32-33. There are several
difficulties in translating these stanzas described in the literature.? One uses the
commentary and the methods of the later mathematicians to help in the translation.
The following is the translation by Clark based on Paramesvara’s interpretation and

of Brahmagupta’s pulverizer :

A2.32-33. Divide the divisor which gives the greatest agra (agra: remainder?) by
the divisor which gives the smaller agra. The remainder is reciprocally divided
(thay is to say, the remainder becomes the divisor of the original divisor, and
the remainder of this second division becomes the divisor of the second divisor,
etc.). (The quotients are placed below each other in the so-called chain.) (The
last remainder) is multiplied by an assumed number and added to the difference
between the agras. Mulitiply the penultimate number by the number above it
and add the number which is below it. (Continue this process to the top of the
chain). Divide (the top number) by the divisor which gives the smaller ggra.
Multiply the remainder by the divisor which gives the greater agra. Add this
product to the greater agra. The result is the number which will satisfy both
divisors and both agras.

Clark quotes another translation by Ganguly that leads to a method differing
somewhat in detail. Since our objective is to emphasize the essential method we express
it in the following modern form :

Theorem :  Let d, >d, and let
dy=a dy+ 1, y 7y < dy
dy=qa;1r, + 14
7y = as73 + 73

Tk = %1 Tke1 T Tre2 .- (2)
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and 7, 4 = 1, then write the a’s in a column, appending ¢ = x, — ,, and reduce this
as shown :

a a a . . . . a

ay ay ay . . . . b

ag ag ag . . . .
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where to obtain column i+ 1, we drop thé last entry of column #, and replace the last
but two entry by its product with the last but one entry, plus the entry being dropped.

Let (-l)k- a’ mod d; = a, and
-0 ' mod d; m b, @
.tben
X = adl + x!
= bdz + x’ b (5)

This x is the least positive solution ; other solutions will be x + constant [l.c. m. (4,, d,)].

Proof : The proof of the theorem is elementary and it is stated in Datta and Singh.®
We provide the outline of this proof below.

The operations in (2) represent division of dy by d,, d; by the remainder in the
previous step, and so on in sequence. The a’s are the quotients obtained in this process.
-Since (1) can be rewritten as x = ad; + x, = bd, + %4, thercfore, the problem is
transformed to the solution in terms of 4 and b of

adl—bd’ = (.

Use of the equations of (2) repeatedly in this equation until the last r;, which is 1,
sets up a sequence of equations where working backwards amounts to a reduction of
the column of a's and ¢ into the values a’, b’ which yield a, 5.

Comment 1 : It should be noted that the Aryabhata algorithm provides the solution
to the class of problems defined by xy—zx, = ¢, which is more general than the Chinese
Remainder prolblem described first in Sun Tzu Swan Ching (Master Sun’s Arithmetical
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Manual) which, according to Needham,® was written between 280 a.p. and 473 a.p.
The problem reads :

We have a number of things, but do not know exactly how many. If we count them
by threes we have two left over. If we count them by fives we have three left over.
If we count them by sevens we have two left over. How many things are there?

Sun Tzu determined the ‘use numbers’ 70, 21 and 15, these are multiples of 5x 7, 3x 7
and 3 X5, and have the remainder 1 when divided by 3, 5 and 7, respectively. The sum
2X7043x21 42515 = 233 is one answer, and by casting out a multiple of 3 x5x7
(=105) as many times as possible (in this case, twice) the least answer, 23, is cbtainec.
In the eighth century a.p. I-Hsing used the method for solving calendar problems,
and in the thirteenth century A.n. Chhin Chiu-Shao gave a full explanation.

Sun Tzu’s problem also occurs in identical words as Problem 5 of the ‘supple-
mentary problems’ printed by Hoche in his edition of the ‘Introducticn to Arithmetic’
of Nikomachos of Gerasa. According to Needham this problem occurs in only twe or
three of the nearly fifty extant manuscripts of Nikomachos. Three of the five ‘supple-
mentary problems’ are ascribed to the monk Isaac Argyros (14th century a.n.), so it
seems reasonable to assume that Problem 5 was also added by Argyros or his contem-
poraries,?

The stanza (A2. 31) immediately preceeding the pulverizer presumably represents
the motivation for the method. It deals with an astronomical problem:

2:31. The two distances between two planets moving in opposite directions is
divided by the sum of their daily motions. The two distances between two planets
moving in the same direction is divided by the difference of their daily motions.
The two results (in each case) will give the time of meeting of the two in the past
and in the future.®

This represents a concern different to that of Sun Tzu.

Brahmagupta in his Siddkdnta describes a similar problem: “What number, divided
by 6 has a remainder of 5, and by 5 a remainder of 4, and by 4 a remainder of 3, and
by 3 a remainder of 2?” Brahmagupta and Bhaskara II showed how Aryabhata’s
general method to solve linear indeterminate equations cculd be used to solve the
problem. As mentioned before, Aryabbata’s algorithm can solve problems more
general than the Chinese Remainder problem,

We note that Aryabhata example is very different from that of Sun Tzu or
Nikomachos. The main motivation to consider such problems in India was the cyclic
cosmological system related to the Sarnkhya School (700 B.c.). It appears, therefore,
that the Indian tradition of solving congruence problems was independcnt of the
Chinese and was perhaps older,
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The recent demonstration® that the quotients can be combined in the forward
direction (in contrast to the backward direction as described above) resulting in a
faster procedure raises the question if Aryabhata’s stanzas admit the new interpretation.
This question deserves a thorough investigation.

Some examples of the application of the algorithm are now described.

Example 1 : Solve for x when :

xmod 63 = x,
xmod 100 = x,,
and xg—x, = 70.

Solution : 63)100(1
63
37) 63(1
37
26)37(1
26
11) 26(2
22
4)11(2
8

—3) 4(1
3

1

The sequence of quotientsis 1, 1, 1, 2, 2, 1. We can now apply the Aryabhata algorithm.

1 1 1 1 1 l 1890
1 1 1 1 1 1190 1190
1 1 1 1 700 700
2 2 2 490 490
2 2 210 210
1 70 70
70 70
0

Thus 2’ = 1890, " = 1190
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Now using (4) :
¢ = 1990 mod 100 = 90
b = 1190 mod 63 = 56,

x = 90.63 4+ 2;
= 56.100 4 x,.

Lets;, = 2,2, = n,tﬁcn
x = 5672,
Exampls 2 : Solve for x when :

xmod 26 = |8
xmod 37 m 1}

Sointion : The sequence of quotients is 1, 2, 2, 1. The value of ¢ is 11—18 = —7. We
form the tabie (3) :

1 1 1 -1 =70
2 2 2 -4 -4
2 2 21 21
1 —7 -7

-7 -7
0

Therefore,

a = —~70 mod 37 == 4

x = 4.26 4 18
= 337 4 11 = 122,

There is no need to introduce negative numbers in this example if one changed
the order of the congruences; we have done 50 t0 show that the algorithm works irres-
pective of the sign of numbers.

Aryabhata’s algorithm was generally used to solve problems in astronomy. The
following problem by Brahmagupta (born 398 A.p.) which appears in his Braime-
sphuta-siddhania (628 A.p.) (The Revised System of Brahma) is an example:
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Suppose that viewed from the earth the sun, moon, etc. have travelled for the
following number of days after completing full revolutions since the beginning
of the Kalpa (when the sun and the planets were collinear):

Sun Moon Mars Mercury Jupiter  Saturn
1000 41 315 1000 1000 1000

Given that the sun completes 3 revolutions in 1096 days, the moon 3 revolu-
tions in 137 days, Mars 1 in 685 days, Mercury 13 in 1096 days, Jupiter 3 in 10960
days, Saturn 1 in 10960 days, find the number of days elapsed since the beginning
of the Kalpa.

The solution to this probiem can be easily seen to be 11960.

Comment 2:.1t can be easily established that in algorithm (3), the multiplication by ¢
can be made at the very end in the last column. This reduces the computationai effort
considerably. We describe the modified Aryabhata’s algorithm:

Step 1 : Replace ¢ by | in column 1 in (3).
Step 2 : Compute a’ and 5’ by algorithm (3).
Step 3 : Replace 4’ and b’ by ca’ and ¢b’ in (4). Compute x as in (5). . (6)

Comment 3 : Aryabhata’s algorithm can be used repeatedly to solve for more than two
congruences. Thus if one has three congruences 4, B, C where the moduli are pairwise
prime, solve 4 and B first and then use this solution with C to get the final answer.

Moduli not relatively prime

Aryabhata’s algorithm can solve simultaneous congruences with nonrelatively
prime moduli (where a solution exists) if one can reduce the congruences to a linear
indeterminate equation, where the common factors of the moduli can be divided out.

Example : Consider Brahmagupta’s problem:

x = 5mod 6
x = 4mod 5
x = 3mod 4
x = 2 mod 3,

where we want to solve for smallest x.

Solution : The moduli of the first and the second pair are relatively prime. Applying
the Aryabhata algorithm :

x = 29 mod 30
x = 11 mod 12.
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We convert this into a linear indeterminate equation by :

x =302 + 29 = 126 4 11
or 126 — 30a = 18,

which reduces to :

26 — 3a = 3.
Using Aryabhata’s algorithm, the least positive solution is :
x = 59,

COMPLEXITY OF THE ALGORITHM

We count the number of multiplication, division and addition operations in the
Aryabhata algorithm and compare that with those in the standard Chinese Remainder
(CR) algorithm. .

Aryabhata Algorithm
Let N be the order of the moduli 4, and d,. Step (2) requires roughly log,V

divisions. Step (3) requires about log,N' multiplications and the same number of addi-
tions. Step (4) requires 2 divisions, while step (5) requires 1 division and 1 multiplication.
This adds up to approximately

3 4 logg/V divisions

1 4 log, N multiplications, and

1 + log,/N additions. _ . N

CR Algorithm

In this algorithm we first compute y;, such that d; y; mod d, = 1, and d, y, mod
dg = 1. Then
x =dyy%, + d,y;x, mod dyd, = n. .. (8)

If ¢ (d,) and ¢ (d,) are known then y, and y, can be obtained in about log, ¢ (d,)
¢ (d;) = log,;N multiplications and divisions (where the size N is taken to be the same
as n), by using Euler’s generalization of Fermat’s theorem. This complexity is of the
same order as in Aryabhata’s algorithm.

If ¢ (d,) are not known, one can use an extension of Euclid’s algorithm for comput-
ing the greatest common divisor. The number of operations performed in this algorithm
is roughly 2 log,d, multiplications, log.d, divisions and log.4, additions (see Knuth or
Denning for details). The total number of operations, considering that we must obtain
7, and y, and compute (8), is therefore

1 -+ log,/V divisions
4 4 2 log,N multiplications, and
1 + log,V additions. . (9)
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We conclude that the Aryabhata and the CR algorithms have about the same
complexity.

It appears that algorithmic ideas have pervaded Indian mathematics since the
earliest times. The fulvasitra rules on altar construction amount to arithmetic and
algebraic procedures. The logic behind these procedures must have been well under-
stood which would explain why irrational numbers resulting from the use of these
procedures were readily accepted.!® Some of the constructions require solution to
simultaneous equations. The Meru Prastara is a procedure to find combinations that
was described by Pingala in 200 B.c.1! Algebra that appears in Aryabhatiya can be seen
to be an extension of the algebra of the sulvasitras.

ConNcLupING REMARKS

In the late nineteenth century considerable attention was given to the contribu-
tions of the ancient Indian mathematicians. That was the age when classical
mathematics itself was being formalized, and historians found the Indian sources, in
contrast to the greatest concern of the mathematics of the day, lacking in formalization
and proof. Ancient Indian mathematics emphasized algorithms and computational
techniques, which are constructive procedures. The nineteenth century historians did
not consider computational issues and, therefore, many results derived using novel
procedures were forgotten as mathematical curiosities.

The motivation for the development of clever algorithms by the ancient Indians
was presumably the urge te algorithmize knowledge in the spirit of Panini. A corro-
boration of this hypothesis is provided by the recent work of C.-O. Selenius!? who
has shown that chakravala method of Jayadeva and Bhaksara II for solving the in-
determinate equation of the multiplied square

XDy = | .. (10)

lead to a2 minimum number of steps; in other words, the chakravala method is an
optimum algoritbm. Selenius notes that ‘“‘the method represents a best approximation
algorithm of minimal length that, owing to several minimization properties, with minimal effort
(“‘economization’) and avoiding large numbers, always wutomatically (without trial
processes) produces the least solutions to the equation, and thereby the whole set of solutions. ..
It is accepted that the chakravale method here explained anticipated the European
methods by more than a thousand years. But, as we have seen, no European perfor-
mances in the whole field of algebra at a time much later than Bhaskara’s, nay nearly
up to our times, equalled the marvellous complexity and ingenuity of chakravala”.

This shows that the efficiency of kuffaka is no accident, and there must have been
a deliberate search for powerful computing methods.
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