A C++ Implementation of the
Co-Array Programming Model

Maria Eleftheriou Siddhartha Chatterjee José E. Moreira
IBM Thomas J. Watson Research Center

POHLL-02 Workshop
New York, NY

Outline

m Background

m Co-Array C++ library motivation
m Implementation of Co-Array C++
m Performance of Co-Array C++

m Future work

Programming Models

m Research on programming models for
the Blue Gene/L project

m Message passing model
e MPI - will be implemented in BG/L
m Global address space model
o Titanium
e Unified Parallell C (UPC) - under way
® Globall Arrays
e Co-Array Fortran

Co-Array Fortran

m Language extension to F95 [Numrich and Reid]
e Based on earlier F-- work
m Global address space model
® Shared memory semantics + locality
® integer A(10) [*]
» Each node has a one-dimensional array of
ten integers named A
m Two-level addressing
o A) INTEGE]
® image is the rank of the node
° Is| the position of the local data

Co-Array Fortran (continued)

m Program directly stores and loads local and
remote data

ev(i) = A(offset) [image]

oA (offset) [image] = wv (1)

Significantly higher level semantics than MPI

e Subscripting implies communication between
images

e Compiler/RTE responsible for synthesizing
and managing communication

Relevant Features of BG/L

m 65,536 dual processor nodes interconnected in torus
topology
® Processors are symmetric in access to memory/devices
® Non-coherent shared memory on node
m |nterconnection network
e High bandwidth, low latency
® Nodes can send and receive at aggregate rate of 2GB/s
m Preferred programming model

o Dedicate one processor to handle inter-node
communication

e Dedicate other processor to run user. application
e Other models are possible

C++ Library for Co-Array Model

m C++ features allow most of Co-Array notation to be
implemented naturally
e Operator overloading (for [] and () operators)
® Generic programming (CoArray<T>)

m Library implementation is faster to prototype and
faster to deploy

m Easier to motivate users to experiment with new
library than new language

m Portable across variety of systems
m We wanted to have some fun with C++

Example: Relaxation Code

image i-1 image i+1 W Grid represented as one-dimensional
- - " CoArray

M The elements of the CoArray are
vectors of size "nrows"

W Each image has (ncols+2) elements
o It "owns the middle ncols
o Left and right shadows

W Before relaxation step, image i has to
update shadows of images i-1 and/i+1

W Synchronize at the end of update

W After' update, relaxation step.is a
strictly local operation

-

image | ncols

Co-Array Relaxation Code

typedef double vector_t[VECTOR_SIZE];
void laplace (int nrow, int ncol, CoArray<vector_t>& u)
{
int me = this_image();
int images = num_images () ;
Array<vector t> new_u(ncol+2);
int left = me == 0 ? images-1 : me-1;
int right = me == images-1 ? 0 : me+l;
int list[2] = { left, right };
u[left] (ncol+1) u(l); // communication (put)
u[right] (0) u(necol); // communication (put)
sync_al | (I'ist, 2);
for (int j = 1; 3j < ncol+l; J++) {
new_u(3) [0] = u(3) [nrow-1] + u(3)[1] + u(3-1) [0] + u(F+1)[0];
for (int i = 0; i < nrow-2; i++)
new_u (J) [i+1] = u(g) [i] + u(g) [i+2] + u(j-1) [i+1l] + u(j+1) [i+1];
new_u(J) [nrow=1] = u(3) [0] + u(3g) [nrow-2] + u(j-1) [nrow-1] +
u(J+1) [nrow—1];
}
for (int j| = 1; 3 < ncol+l; J++)
for (ant i = 0; I< nrow; i++)
u(3)[L] = new_u(3)[i] - 4.0 * u(3) [i];

Co-Array C++ Implementation

m Computation and communication agents
m Co-Array declaration and operations

m Point-to-point communication

m Group synchronization

Implementing Computation
and Communication Agents

m multithreading within a node
m MPI between nodes (prototype)

Computation = Communication Communication Computation
Thread Thread Thread

Implementing Co-Arrays

m Declare as a C++ object
e CoArray<double> A (100);

m Collective operation

remote

Implementing Co-Arrays

m CoArray<T>::operator() implements access to
elements of the local portion of Co-Array
® u = A(i);

m CoArray<T>::operator[] implements access to
elements of remote portions of Co-Array
® Al node] is a Rennt eArray<T>
® Al node] (i) Isa RenotePtr<T>

W Renpt ePt r<T>: : operat o = handles inter-image
communication for put operation
® A[nodel] (i) = u;

B RemotePtr<T>::operator T() handles inter-image
communication for: get operation
® ul = Alnodel &)

Implementing Point-to-Point
Communication

m Local computation thread initiates

e remote write by enqueueing a PutRequest on its
comp2comm queue

e remote read by enqueueing a GetRequest on its
comp2comm queue

m Local communication thread
e dequeues the request
® sends message to remote communication thread
> Put message
> Get message

Implementing Point-to-Point
Communication (continued)

Remote communication thread takes the following
actions on receiving a message

® Put, enqueues a PutRequest on its comm2comp
queue and sends Ack message back to local
communication thread

e Get, enqueues a GetRequest on its comm2comp
queue

® Remote computation thread dequeues requests and
takes the following actions

e Put, completes remote write

® Get, reads specified memory location andisends
Put request

Put Operation

local node remote node

Get Operation

local node remote node

Group Synchronization

m sync_all();
e barrier among all images
M sync_all(list of images) ;
® barrier among all images
e not all images need to wait for all others!

m Synchronization is implemented primarily by
communication thread

Synchronization Operation

local node remote node

Speedup of Jacobi Relaxation

[#+]
[=]

ha
on
T

Parallel epeedup

Farallel speedup for Jacobi relaxation, different global grid sizes

=3 1000 x 16000
== 1000 x 8000
~= 1000 x 4000
-5 1000 x 2000

v}
=}
T

10 15 20
Number of images

Speedup of Matrix Transposition

Parallel speedup for matrix transpositicn, different block sizes

— 100100
- 50%50 |

Parallel speedup

15 20
Number of images

Future Work

Features

® Array section operations

e Multiple co-dimensions (process topologies)
m Program transformations with ROSE
m Scalability issues

o Fill remote array information on demand

® More scalable synchronization

Improve performance

e Eliminate copies (even with cache coherence problem)

e Use basic packet operations in BG/L

Better performance characterization

® On BG/L simulator

o Eventually onjrealthardware (2008)

Example: Matrix Transposition

typedef double block t[BLOCK_SIZE] [BLOCK SIZE];
void MatrixTranspose (CoArray<block t>&u, int nrow, int ncol) {
int me = u.this_image(), comm _size = u.num images();
CoArray<block t> b(nrow, ncol);
block t temp;
CoArray<block t>::sync all();
for (int I = 0; I < nrow; I++) {
int 1 = (I+me*ncol) % nrow;
for (int j = 0; Jj < ncol; j++) {
transposeBlock (u (i, j),temp); // transpose local block
b[i/ncol] (j+me*ncol, i%ncol) = temp;//comm (put)

}

CoArray<block t>::sync all();
}
void transposeBlock (block t& srce, block t& dst)
1

for (int i = 0; i < BLOCK SIZE; it+)

for (int j = 0; Jj < BLOCK. STZE; J++)
dst el [Fil = srelFifFL];

