
Lessons Learned from the Shared Memory Parallelization

of a Functional Array Language

Clemens Grelck
University of Lübeck, Germany

Outline of Talk:

* Functional array programming with SAC.

* Choosing shared memory systems.

* Organization of parallel program execution.

* Architecture-specific pitfalls.

* Conclusion: lessons learned.

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Functional Array Programming in SAC

Characteristics:

* Array: multidimensional abstract data structure.

* Array: data vector + shape vector.

* Creation / projection facilities.

* Call-by-value parameter passing.

* Memory management by compiler / runtime system.

Example:

bool continue(double[+] A, double[+] A_old, double eps)
{
return(any(abs(A - A_old) >= eps));

}

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

The With-Loop Construct

Example:

bool[+] >= (double[+] A, double b)
{
res = with (. <= i_vec <= .) : A[i_vec] >= b ;

genarray(shape(A));

return(res);
}

In general:

res = with index set 1 : expr 1 ;
... ...

index set n : expr n ;
genarray(shp expr);

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Parallelization for Shared Memory

What everyone does:

* Message passing / MPI

What we do:

* Multithreading / PThreads

Pragmatics:

* No explicit data decomposition:

� � adopt sequential memory data layout.

* Only array operations affected:

� � sequential code for I/O, etc. remains as is.

� � focus on compilation of with-loops.

� � partly reuse existing sequential compilation scheme.

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Multithreaded Program Execution

join

fork

fork

join

fork

join

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Multithreaded Program Execution

join

fork

fork

join

fork

join stop barrier

start barrier

stop barrier

stop barrier

start barrier

start barrier

thread termination

thread creation

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Avoiding Synchronization Barriers

start barrier

stop barrier

stop barrier

start barrier

start barrier

stop barrier

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Experimental Evaluation

Sum 1:

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10S
pe

ed
up

s
re

la
tiv

e
to

 s
in

gl
e

pr
oc

es
so

r
pe

rf
or

m
an

ce
.

Number of processors involved.

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Experimental Evaluation

Sum 1:

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10S
pe

ed
up

s
re

la
tiv

e
to

 s
in

gl
e

pr
oc

es
so

r
pe

rf
or

m
an

ce
.

Number of processors involved.

Sum 2:

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10S
pe

ed
up

s
re

la
tiv

e
to

 s
in

gl
e

pr
oc

es
so

r
pe

rf
or

m
an

ce
.

Number of processors involved.

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Multithreaded Memory Management

Problem Identification:

code
user

free
malloc

code
user

free
malloc

Heap Memory

user data

data

admin

heap

Processor 0

Thread 0

Processor N-1

Thread N-1

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Private Memory Manager

Organization:

* Hierarchy of nested heaps.

* Private subheaps for individual threads.

* Tight integration into runtime system.

* Exploitation of compile time knowledge.

* Exploitation of runtime knowledge.

Sum 2:

0

1

2

3

4

5

6

7

8

9

10

1 2 4 6 8 10S
pe

ed
up

s
re

la
tiv

e
to

 s
in

gl
e

pr
oc

es
so

r
pe

rf
or

m
an

ce
.

Number of processors involved.

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Performance Impact of Cache Memories

* 3-dimensional relaxation kernel.

* Systematic variation of grid size:

� � �

(32KB) � � ��� �

(1.2GB)

Time to update single grid point:

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

T
im

e
to

 r
ec

om
pu

te
 o

ne
 in

ne
r

ar
ra

y
el

em
en

t i
n

ns
ec

Problem size, edge length of cubic array.

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Cache Optimizations

With-Loop Tiling:

Tiling

Array Padding:

Array Placement:
result array

memory

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Performance Impact of Cache Optimizations

* Padding: 25 out of 33 problem sizes

* Tiling: 19 out of 33 problem sizes
* Placement: always

Time to update single grid point:

100

125

150

175

200

225

250

275

300

325

350

375

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

T
im

e
to

 r
ec

om
pu

te
 o

ne
 in

ne
r

gr
id

 p
oi

nt
 in

 n
se

c

Problem size, edge length of cubic grid.

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Experimental Evaluation

NAS Benchmark MG:

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10

S
pe

ed
up

 r
el

at
iv

e
to

 s
eq

ue
nt

ia
l e

xe
cu

tio
n.

Number of processors involved.

NAS Benchmark FT:

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10
S

pe
ed

up
 r

el
at

iv
e

to
 s

eq
ue

nt
ia

l e
xe

cu
tio

n.

Number of processors involved.

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

Conclusion

Fairly simple:

* Non-sequential program execution

Functional approach pays off.

Shared memory architecture pays off.

Fairly difficult:

* Achieving desired speedups

Fine-tuned runtime system.

Tailor-made dynamic memory management.

Various cache optimizations.

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany

