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Outline of Talk:

* Functional array programming with SAC.

* Choosing shared memory systems.

* Organization of parallel program execution.

* Architecture-specific pitfalls.

* Conclusion: lessons learned.
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Functional Array Programming in SAC

Characteristics:

* Array: multidimensional abstract data structure.

* Array: data vector + shape vector.

* Creation / projection facilities.

* Call-by-value parameter passing.

* Memory management by compiler / runtime system.

Example:

bool continue( double[+] A, double[+] A_old, double eps)
{
return( any( abs( A - A_old) >= eps));

}
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The With-Loop Construct

Example:

bool[+] >= ( double[+] A, double b)
{
res = with (. <= i_vec <= .) : A[i_vec] >= b ;

genarray( shape( A));

return( res);
}

In general:

res = with index set 1 : expr 1 ;
... ...

index set n : expr n ;
genarray( shp expr );
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Parallelization for Shared Memory

What everyone does:

* Message passing / MPI

What we do:

* Multithreading / PThreads

Pragmatics:

* No explicit data decomposition:

� � adopt sequential memory data layout.

* Only array operations affected:

� � sequential code for I/O, etc. remains as is.

� � focus on compilation of with-loops.

� � partly reuse existing sequential compilation scheme.
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Multithreaded Program Execution

join

fork

fork

join

fork

join
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Multithreaded Program Execution

join

fork

fork

join

fork

join stop barrier

start barrier

stop barrier

stop barrier

start barrier

start barrier

thread termination

thread creation
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Avoiding Synchronization Barriers

start barrier

stop barrier

stop barrier

start barrier

start barrier

stop barrier
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Experimental Evaluation
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Multithreaded Memory Management

Problem Identification:

code
user

free
malloc

code
user

free
malloc

Heap Memory

user data

data

admin

heap

Processor 0

Thread 0

Processor N-1

Thread N-1
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Private Memory Manager

Organization:

* Hierarchy of nested heaps.

* Private subheaps for individual threads.

* Tight integration into runtime system.

* Exploitation of compile time knowledge.

* Exploitation of runtime knowledge.

Sum 2:

0

1

2

3

4

5

6

7

8

9

10

1 2 4 6 8 10S
pe

ed
up

s 
re

la
tiv

e 
to

 s
in

gl
e 

pr
oc

es
so

r 
pe

rf
or

m
an

ce
.

Number of processors involved.

POHLL’02
22.6.02

Clemens Grelck
Institute for Software Technology and Programming Languages
University of Lübeck, Germany



Performance Impact of Cache Memories

* 3-dimensional relaxation kernel.

* Systematic variation of grid size:
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Cache Optimizations

With-Loop Tiling:

Tiling

Array Padding:

Array Placement:
result array

memory
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Performance Impact of Cache Optimizations

* Padding: 25 out of 33 problem sizes

* Tiling: 19 out of 33 problem sizes
* Placement: always

Time to update single grid point:
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Experimental Evaluation
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Conclusion

Fairly simple:

* Non-sequential program execution

Functional approach pays off.

Shared memory architecture pays off.

Fairly difficult:

* Achieving desired speedups

Fine-tuned runtime system.

Tailor-made dynamic memory management.

Various cache optimizations.
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