
Compiler Support for Software Libraries

Calvin Lin

Samuel Guyer

University of Texas at Austin

June 22, 2002

2

Motivation

◆ Numerous libraries exist

◆ There’s a huge benefit to providing compiler support for libraries

Performance

compiler

compiler + library-
specific info

B = Inverse(A);

C = Inverse(B);

B = Inverse(A);

C = A; compilerlock(x)

lock(x)

. . .

lock(x)

lock(x)

. . .

compiler + library-
specific info

Error!

3

Outline: Compiler Support for Libraries

◆ Requirements

◆ Our Solution

◆ Conclusions

4

for (i=0; i<n; i++){

T1[i] = A[i] * B[i];

}

for (i=0; i<n; i++){

2T[i] = T1[i]* C[i];

}

◆ Consider a common transformation to improve locality

dot-product(T1,A,B);

dot-product(T2,T1,C);

void dot-product(X,Y,Z){

for (int i=0,i<n; i++){

X[i] = Y[i]* Z[i];

}

}

Optimization Example

◆ Consider a dot product routine

for (i=0; i<n; i++){

t1 = A[i] * B[i];

2T[i] = t1 * C[i];

}

5

Syntactic Manipulation is Limited

◆ We must preserve data dependences

dot-product(T1,A,B);

A[0] = 10;

dot-product(T2,T1,C);

for (i=0; i<n; i++){

t1 = A[i] * B[i];

T2[i] = t1 * C[i];

}

A[0] = 10;

?

6

Syntactic Manipulation is Limited

◆ We must recognize aliases

dot-product(T1,A,B);

*p = 10;

dot-product(T2,T1,C);

for (i=0; i<n; i++){

t1 = A[i] * B[i];

T2[i] = t1 * C[i];

}

*p = 10;

?

◆ We must correctly handle interactions between the library and
the application program

7

What Do We Need?

◆ Barriers to optimization

◆ Data dependences

◆ Pointers and aliasing

◆ Control flow

◆ Complex data structures

◆ We need the same analyses that traditional compilers use
◆ Control flow analysis

◆ Data-flow analysis

◆ Pointer and dependence analysis

8

Are Traditional Compilers Suff icient?

◆ Libraries are lightweight domain-specific languages

⇒ Compilers need to understand the semantics of these languages

◆ Each library has its own semantics

⇒ We’d like one compiler for all li braries

◆ Each domain specific language is embedded in a base language

⇒ We’d like our compiler to understand both languages and the

interactions between them

9

Compiler

C
program

Broadway optimized
program

Library
Annotations Source code

Our Solution: The Broadway Compiler

◆ One compiler for all libraries

◆ Common theme:

◆ Expose traditional compiler facilities so that they can be
easily configured

◆ Integrate the use of these facilities to apply to both libraries
and the base language

◆ Annotations provide
library-specific
knowledge

10

Optimization Opportunities

I. Traditional optimizations on library operators

II. Specializations of library routines

III. Extensions of traditional optimizations to library
operators

requires increasing
library-specific

information

11

I. Traditional Optimizations

◆ Trivial example

◆ Loop invariant code motion

while (c)

{

CheckState(x);

. . .

}

CheckState(x);

while (c)

{

. . .

}

◆ Requires dependence analysis (or annotations)

12

II. Library Specialization

◆ Idea

◆ Analyze dynamic program properties

◆ Use this information to specialize routines

◆ Consider a parallel matrix computation

◆ Submatrices can have special properties

◆ Can replace a parallel algorithm with a sequential one

◆ Requires library-specific data-flow analysis

Processor grid

13

III. Extensions of Traditional Optimizations

◆ Example

◆ Constant propagation

◆ Objects often store state and libraries provide routines to
access this state

◆ If we can statically determine the state of this object, we
can replace function calls with the constant itself

◆ Requires dependence analysis

◆ Requires annotations if the state is not stored in an easily
accessible form

14

The Broadway Compiler

◆ Two configurable mechanisms

◆ Configurable dependence analysis

◆ Procedure side effects

◆ Pointer relationships

◆ Configurable data-flow analysis

◆ Configurations specified through annotations

◆ Integrated with built-in mechanisms

◆ Aggressive context- and flow-sensitive pointer analysis

◆ Various standard optimizations

15

Performance Results

Cholesky (3072×3072)

M
FL

O
P

S

Processors

3000

0

Cholesky (3072 x 3072)Cholesky (3072 x 3072)

400

◆ Applied to unmodified PLAPACK parallel dense linear
algebra library [van de Geijn 1997]

◆ Unmodified application and library source code

Broadway
Guru-optimized

Baseline

16

Observations from PLAPACK Results

◆ Interactions among multiple optimizations are essential

◆ Interaction between library and base language are important

◆ There is benefit to optimizing at multiple levels of abstraction

Cholesky (3072×3072)

M
FL

O
P

S

Processors

3000

0

Cholesky (3072 x 3072)Cholesky (3072 x 3072)

400

Broadway
Guru-optimized

Baseline

17

Future Work

◆ Many other uses of domain-specific compilation

◆ Can check for program errors

◆ Broadway has been used to identify security holes
(Format String Vulnerabilities)

◆ More precise than other approaches [Berger,Guyer,Lin 2001]

◆ Can remove overhead of language interoperability for PETSc

18

Conclusions

◆ Aggressive program analysis is important

◆ Significant performance gains possible

◆ The big picture:

Language level

Library level

Application level Integrate
optimizations across

multiple levels of
abstraction

