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1 Introduction

We address the problem of building high-performance uniprocessor implementations of sparse trian-
gular solve (SpTS) automatically. This computational kernel is often the bottleneck in a variety of
scientific and engineering applications that require the direct solution of sparse linear systems. Per-
formance tuning of SpTS—and sparse matrix kernels in general—is a tedious and time-consuming
task, because performance depends on the complex interaction of many factors: the performance gap
between processors and memory, the limits on the scope of compiler analyses and transformations,
and the overhead of manipulating sparse data structures. Consequently, it is not unusual to see
kernels such as SpTS run at under 10% of peak uniprocessor floating point performance.

Our approach to automatic tuning of SpTS builds on prior experience with building tuning
systems for sparse matrix-vector multiply (SpM×V) [21, 22, 40], and dense matrix kernels [8, 41]. In
particular, we adopt the two-step methodology of previous approaches: (1) we identify and generate
a set of reasonable candidate implementations, and (2) search this set for the fastest implementation
by some combination of performance modeling and actually executing the implementations.

In this paper, we consider the solution of the sparse lower triangular system Lx = y for a single
dense vector x, given the lower triangular sparse matrix L and dense vector y.1 We refer to x as the
solution vector and y as the right-hand side (RHS). Many of the lower triangular factors we have
observed from sparse LU factorization have a large, dense triangle in the lower right-hand corner of
the matrix; this trailing triangle can account for as much as 90% of the matrix non-zeros. Therefore,
we consider both algorithmic and data structure reorganizations which partition the solve into a
sparse phase and a dense phase. To the sparse phase, we adapt the register blocking optimization,
previously proposed for sparse matrix-vector multiply (SpM×V) in the Sparsity system [21, 22],
to the SpTS kernel; to the dense phase, we make judicious use of highly tuned BLAS routines by
switching to a dense implementation (switch-to-dense optimization). We describe fully automatic
hybrid off-line/on-line heuristics for selecting the key tuning parameters: the register block size and
the point at which to use the dense algorithm. (See Section 2.)

We then evaluate the performance of our optimized implementations relative to the fundamental
limits on performance. Specifically, we first derive simple models of the upper bounds on the
execution rate (Mflop/s) of our implementations. Using hardware counter data collected with the
PAPI library [10], we then verify our models on three hardware platforms (Table 1) and a set of
triangular factors from applications (Table 2). We observe that our optimized implementations can
achieve 80% or more of these bounds; furthermore, we observe speedups of up to 1.8x when both
register blocking and switch-to-dense optimizations are applied. We also present preliminary results
confirming that our heuristics choose reasonable values for the tuning parameters.

These results support our prior findings with SpM×V [40], suggesting two new directions for
performance enhancements: (1) the use of higher-level matrix structures (e.g., matrix reordering
and multiple register block sizes), and (2) optimizing kernels with more opportunities for data reuse
(e.g., multiplication and solve with multiple vectors, multiplication of ATA by a vector).

1We focus on the lower triangular case for concreteness; these results apply in the upper triangular case as well.
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Property Sun Ultra 2i IBM Power3 Intel Itanium

Clock rate 333 MHz 375 MHz 800 MHz

Peak Main Memory Bandwidth 500 MB/s 1.6 GB/s 2.1 GB/s

Peak Flop Rate 667 Mflop/s 1.5 Gflop/s 3.2 Gflop/s

DGEMM (n = 1000) 425 Mflop/s 1.3 Gflop/s 2.2 Gflop/s

DGEMV (n = 2000) 58 Mflop/s 260 Mflop/s 345 Mflop/s

DTRSV (n = 2000) 59 Mflop/s 270 Mflop/s 320 Mflop/s

STREAM Triad Bandwidth [27] 250 MB/s 715 MB/s 1.1 GB/s

No. of FP regs (double) 16 32 128

L1 size / line size / latency 16 KB/16 B/2 cy 64 KB/128 B/1 cy 16 KB/32 B/2 cy (int)

L2 size / line size / latency 2 MB/64 B/7 cy 8 MB/128 B/9 cy 96 KB/64 B/6-9 cy

L3 size / line size / latency N/A N/A 2 MB/64 B/21-24 cy

TLB entries / page size 64/8 KB 256/4 KB 32 (L1), 96 (L2)/16 KB

Memory latency (≈) 36-66 cy 35-139 cy 36-85 cy

sizeof(double) / sizeof(int) 8 B/4 B 8 B/4 B 8 B/4 B

Compiler Sun C v6.1 IBM C v5.0 Intel C v5.0.1

Table 1: Evaluation platforms: Basic characteristics of the computing platforms on which we
performed our performance evaluations. Most of these data were obtained from processor manuals
[23, 4, 38]; memory access latencies were measured using the Saavedra microbenchmark [35]. Dense
BLAS numbers are reported for ATLAS 3.2.0 [41] on the Ultra 2i, IBM ESSL v3.1 on the Power3,
and the Intel Math Kernel Library v5.2 on Itanium.

Nnz Dense Trailing Triangle
Name Application Area Dimension in L Dim. Density % Total Nnz

1 dense Dense matrix 1000 500500 1000 100.0% 100.0%

2 memplus Circuit simulation 17758 1976080 1978 97.7% 96.8%

3 wang4 Device simulation 26068 15137153 2810 95.0% 24.8%

4 ex11 Fluid flow 16614 9781925 2207 88.0% 22.0%

5 raefsky4 Structural mechanics 19779 12608863 2268 100.0% 20.4%

6 goodwin Fluid mechanics 7320 984474 456 65.9% 6.97%

7 lhr10 Chemical processes 10672 368744 104 96.3% 1.43%

Table 2: Matrix benchmark suite: The LU factorization of each matrix was computed using
the sequential version of SuperLU 2.0 [14] and Matlab’s column minimum degree ordering. The
number of non-zeros in the resulting lower triangular (L) factor is shown. We also show the size
of the trailing triangle found by our switch-point heuristic (column 6: see Section 2.3), its density
(column 7: fraction of the trailing triangle occupied by true non-zeros), and the fraction of all matrix
non-zeros contained within the trailing triangle (column 8).

2 Optimizations for Sparse Triangular Solve

The triangular matrices which arise in sparse Cholesky and LU factorization frequently have the
kind of structure shown in Figure 1, spy plots of two examples of lower triangular factors. The lower
right-most dense triangle of each matrix, which we call the dense trailing triangle, accounts for a
significant fraction of the total number of non-zeros. In Figure 1 (left), the dimension of the entire
factor is 17758 and the dimension of the trailing triangle is 2268; nevertheless, the trailing triangle
accounts for 96% of all the non-zeros. Similarly, the trailing triangle of Figure 1 (right), contains
approximately 20% of all matrix non-zeros; furthermore, the remainder of the matrix (the leading
trapezoid) appears to consist of many smaller dense blocks and triangles.

We exploit this structure by decomposing Lx = y into sparse and dense components:(
L1

L2 LD

)(
x1

x2

)
=
(
y1

y2

)
(1)
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Figure 1: Triangular matrix examples: (Left) Matrix 2 (memplus) from Table 2 has a dimension
of 17758. The dense trailing triangle, of size 1978, contains 96% of all the matrix non-zeros. (Right)
Matrix 5 (raefsky4) from Table 2 has a dimension of 19779. The dense trailing triangle, of size
2268, accounts for 20% of all the matrix non-zeros.

where L1 is a sparse n1×n1 lower-triangular matrix, L2 is a sparse n2×n1 rectangular matrix, and
LD is a dense n2×n2 trailing triangle. We can solve for x1 and x2 in three steps:

L1x1 = y1 (2)
ŷ2 = y2 − L2x1 (3)

LDx2 = ŷ2 (4)

Equation (2) is a SpTS, (2), equation (3) is a SpM×V, and equation (4) is a call to the tuned
dense BLAS routine, DTRSV. (This process of splitting into sparse and dense components could be
repeated for equation (2), but we do not consider this possibility in this paper.)

For reference, Figure 2 shows two common implementations of dense triangular solve: the row-
oriented (“dot product”) algorithm in Figure 2 (left), and the column-oriented (“axpy”) algorithm in
Figure 2 (right). The row-oriented algorithm is the basis for our register-blocked sparse algorithm;
the column-oriented algorithm is essentially the reference implementation of the BLAS routine,
DTRSV, and its details are important in our analysis in Section 3.

2.1 Improving register reuse: register blocking

The register blocking optimization [22] improves register reuse by reorganizing the matrix data
structure into a sequence of “small” dense blocks; the block sizes are chosen to keep small blocks of
the solution and RHS vectors in registers. An n×n sparse lower-triangular matrix in b×b register
blocked format is divided logically into n

b×
n
b submatrices, where each submatrix is of size b×b. (In

this paper, we consider only square block sizes.) For simplicity, assume that b divides n. For sparse
matrices, only those blocks which contain at least one non-zero are stored. The computation of
SpTS proceeds block-by-block. For each block, we can reuse the corresponding b elements of the
RHS vector and b elements of the solution vector by keeping them in registers.

We use a blocked variant of the CSR storage format (BCSR).2 Blocks within the same block
row are stored consecutively, and the elements of each block are stored consecutively in row-major
order. We store the diagonal blocks as full b×b blocks with explicit zeros above the diagonal.3 A
2×2 example of BCSR is shown in Figure 3. When r = c = 1, BCSR reduces to CSR.4 BCSR can
store fewer column indices than CSR implementation (one per block instead of one per non-zero),
reducing both storage and data structure manipulation overhead. Furthermore, we fully unroll the
b×b submatrix computation, reducing loop overheads and exposing scheduling opportunities to the
compiler. An example of the 2×2 code appears in Figure 4.

Figure 3 also shows that creating blocks may require filling in explicit zeros. We define the fill
ratio to be the number of stored values (i.e., including the explicit zeros) divided by the number of

2See Saad [34] or Barrett, et al. [6], for a survey of common sparse matrix formats.
3No computation is performed using these explicit zeros, however.
4The performance of our 1×1 code is comparable to that from the NIST Sparse BLAS [31].
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true (or “ideal”) non-zeros. We may trade-off extra computation (i.e., fill ratio > 1) for improved
efficiency in the form of uniform code and memory access.

2.2 Using the dense BLAS: switch-to-dense

To support the switch-to-dense optimization, we reorganize the sparse matrix data structure for L
into two parts: a dense submatrix for the trailing triangle LD, and a sparse component for the leading
trapezoid. We store the trailing triangle in dense, unpacked column-major format as specified by
the interface to DTRSV, and store the leading trapezoid in BCSR format as described above. We
determine the column index at which to switch to the dense algorithm—the switch-to-dense point s
(or simply, the switch point)—using the heuristic described below (Section 2.3).

2.3 Tuning parameter selection

In choosing values for the two tuning parameters—register block size b and switch point s—we first
select the switch point, and then select the register block size. The switch point s is selected at
run-time when the matrix is known. We choose s as follows, assuming the input matrix is stored
in CSR format. Beginning at the diagonal element of the last row, we scan the bottom row until
we reach two consecutive zero elements. The column index of this element marks the last column
of the leading trapezoid.5 Note that this method may select an s which causes additional fill-in of
explicit zeros in the trailing triangle. As in the case of register blocking, tolerating some explicit
fill can lead to some performance benefit. We are currently investigating a new selection procedure
which evaluates the trade-off of gained efficiency versus fill to choose s.

To select the register block size b, we adapt the Sparsity v2.0 heuristic for SpM×V [40] to
SpTS. There are 3 steps. First, we collect a one-time register profile to characterize the platform.
For SpTS, we evaluate the performance (Mflop/s) of the register blocked SpTS for all block sizes on a
dense lower triangular matrix stored in sparse BCSR format. These measurements are independent
of the sparse matrix, and therefore only need to be made once per architecture. Second, when the
matrix is known at run-time, we estimate the fill for all block sizes. A recent paper [40] discusses
a random sampling scheme for performing this step accurately and efficiently. Third, we select the
block size b that maximizes

Estimated Mflop/s =
Mflop/s on dense matrix in BCSR for b×b blocking

Estimated fill for b×b blocking
. (5)

In principle, we could select different block sizes when executing the two sparse phases, equations
(2) and (3); we only consider uniform block sizes in this paper.

The overhead of choosing the switch point, picking a register block size, and converting into our
data structure, can all be performed once per triangular factor and amortized over multiple solves
that use the same matrix non-zero pattern. This run-time overhead is the same amount of work
as the analgous preprocessing step in Sparsity, whose cost is between 10–30 executions of näıve
SpM×V on the Itanium platform [40]. Thus, the optimizations we propose are most suitable when
SpTS must be performed many times.

3 Performance Bounds and Evaluation

In this section, we derive upper bounds on the performance (in Mflop/s) of SpTS. We then evaluate
both the accuracy of these bounds (Section 3.1) and the quality of our implementations with respect
to these bounds (Section 3.2). We assume the notation of equations (1)–(4).

In deriving an analytic model of performance, we consider the sparse equations (2) and (3)
separately from the dense solve, equation (4). We count the number of loads and stores required for

5Detecting the no-fill switch point is much easier if compressed sparse column (CSC) format is assumed. In fact,
the dense trailing triangle can also be detected using symbolic structures (e.g., the elimination tree) available during
LU factorization. However, we do not assume access to such information. This assumption is consistent with the
latest standardized Sparse BLAS interface [9], earlier interfaces [34, 31], and parallel sparse BLAS libraries [15].
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void dense_trisolve_dot( int n,
const double* L, const double* y,
double* x )

{
int i, j;

1 for( i = 0; i < n; i++ ) {
2 register double t = y[i];
3 for( j = 0; j < i; j++ )
4 t -= L[i+n*j]*x[j];
5 x[i] = t / L[i+n*i];

}
}

void dense_trisolve_axpy( int n,
const double* L, const double* y,
double* x )

{
int i, j;

1 for( j = 0; j < n; j++ ) x[j] = 0;
2 for( j = 0; j < n; j++ ) {
3 register double t = (y[j] - x[j]) / L[j*n+j];
4 for( i = j+1; i < n; i++ )
5 x[i] = x[i] + L[i+n*j]*t;
6 x[j] = t;

}
}

Figure 2: Dense triangular solve. Reference implementations in C of (left) the row-oriented
formulation, and (right) the column-oriented formulation of dense lower-triangular solve: Lx = y.
In both routines, the matrix L is stored in unpacked column-major order. (For simplicity, the leading
dimension is set to the matrix dimension, n, and the vectors are assumed to be unit-stride accessible.)

A =


a00
a10 a11
a20 0 a22
a30 a31 a32 a33
a40 a41 0 0 a44
a50 a51 0 0 0 a55


b row ptr =

(
0 1 3 5

)
, b col ind =

(
0 0 2 0 4

)
, b values =(

a00 0 a10 a11 a20 0 a30 a31 a22 0 a32 a33 a40 a41 a50 a51 a44 0 0 a55
)

Figure 3: Block compressed sparse row (BCSR) storage format. Here, we see how a 6×6
sparse lower-triangular matrix is stored in 2×2 BCSR format. BCSR uses three arrays. The elements
of each dense 2×2 block are stored contiguously in the b values array. Only the first column index
of the (0,0) entry of each block is stored in b col ind array; the b row ptr array points to block row
starting positions in the b col ind array. Each 2×2 block of values is stored in row-major order.

void sparse_trisolve_BCSR_2x2( int n, const int* b_row_ptr,
const int* b_col_ind, const double* b_values,
const double* y, double* x )

{
int I, JJ; assert( (n\%2) == 0 );

1 for( I = 0; I < n/2; I++) { // loop over block rows
2 register double t0 = y[2*I], t1 = y[2*I+1];
3 for( JJ = b_row_ptr[I]; JJ < (b_row_ptr[I+1]-1); JJ++ ) {
4a int j0 = b_col_ind[ JJ ];
4b register double x0 = x[j0], x1 = x[j0+1];

4c t0 -= b_values[4*JJ+0] * x0; t1 -= b_values[4*JJ+1] * x1;
4d t0 -= b_values[4*JJ+2] * x0; t1 -= b_values[4*JJ+3] * x1;

}
5a x[2*I] = t0 / b_values[4*JJ+0];
5b x[2*I+1] = (t1 - (b_values[4*JJ+2]*x[2*I])) / b_values[4*JJ+3];

}
}

Figure 4: Register-blocked sparse triangular solve. A 2×2 register-blocked example of sparse
lower triangular solve, assuming BCSR format. For simplicity, the dimension n is assumed to be
a multiple of the block size in this example. Note that the matrix blocks are stored in row-major
order, and the diagonal block is assumed (1) to be the last block in each row, and (2) to be stored
as an unpacked (2×2) block. Lines are numbered as shown to illustrate the mapping between this
implementation and the corresponding dense implementation of Figure 2 (left).
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b×b register blocking as follows. Let k be the total number of non-zeros in L1 and L2,6 and let fb
be the fill ratio after register blocking. Then the number of loads required is

Loadssparse(b) = kfb +
kfb
b2

+
⌈n
b

⌉
+ 1︸ ︷︷ ︸

matrix

+
kfb
b︸︷︷︸

soln vec

+ n︸︷︷︸
RHS

= kfb
(
1 + 1

b2 + 1
b

)
+ n+

⌈
n
b

⌉
+ 1 . (6)

We include terms for the matrix (all non-zeros, one column index per non-zero block, and dn/be+ 1
row pointers), the solution vector, and the RHS vector. The number of stores is Storessparse = n.

To analyze the dense part, we first assume a column-oriented (“axpy”) algorithm for DTRSV.
We model the number of loads and stores required to execute equation (4) as

Loadsdense =
n2 (n2 + 1)

2︸ ︷︷ ︸
matrix

+
n2

2

(n2

R
+ 1
)

︸ ︷︷ ︸
solution

+ n2︸︷︷︸
RHS

, Storesdense =
n2

2

(n2

R
+ 1
)

︸ ︷︷ ︸
solution

, (7)

where the 1/R factors model register-level blocking in the dense code, assuming R×R register
blocks.7 In general, we do not know R if we are calling a proprietary vendor-supplied library;
however, we estimate R by examining load/store hardware counters when calling DTRSV.

We model execution time as follows. First, we assume that the entire solve operation is memory-
bound so that we can hide the cost of flops. Let hi be the number of hits at cache level i during the
entire solve operation, and let mi be the number of misses. Then we model execution time T as

T =
κ−1∑
i=1

hiαi +mκαmem, (8)

where αi is the access time (in seconds) at cache level i, κ is the level of the largest cache, and αmem

is the memory access time. This model assumes we must incur the cost of a full access latency for
each load and store. The number of L1 hits h1 is given by

h1 = Loadssparse(b) + Storessparse(b) + Loadsdense + Storesdense −m1 . (9)

Assuming a perfect nesting of the caches, we define hi+1 = mi −mi+1 for 1 ≤ i < κ.
Counting each division as 1 flop, the total number of flops is 2(k − n) multiplies and adds plus

n divisions, or 2k − n flops. The performance in Mflop/s is therefore (2k − n)/T · 10−6.
Next, we count the number of misses mi, starting at L1. Let l1 be the L1 line size, in doubles.

We incur compulsory misses for every matrix line. The solution and RHS vector miss counts are
more complicated. In the best case, these vectors fit into cache with no conflict misses; we incur
only the 2n compulsory misses for the two vectors. Thus, a lower bound M

(1)
lower on L1 misses is

M
(1)
lower(b) =

1
l1

[
kfb

(
1 +

1
γb2

)
+

1
γ

(⌈n
b

⌉
+ 1
)

+
(

2n+
n2 (n2 + 1)

2

)]
. (10)

where the size of one double-precision value equals γ integers. The factor of 1/l1 accounts for the
L1 line size. To compute M (i)

lower(b) at cache levels i > 1, we simply substitute the right line size. In
the worst case, we miss on every access to a line of the solution vector; thus, a miss upper bound is

M (1)
upper(b) =

1
l1

[
kfb

(
1 +

1
γb2

)
+

1
γ

(⌈n
b

⌉
+ 1
)

+
(
kfb
b

+ n+ Loadsdense + Storesdense

)]
. (11)

Finally, we calculate an upper bound on performance, in Mflop/s, by substituting the lower bound
on misses, equation (10), into equation (8). Similarly, we compute a lower bound on performance by
substituting equation (11) into equation (8). Interaction with the TLB complicates our performance
model. We incorporate the TLB into our performance upper bound by letting αmem be the minimum
memory access latency shown in Table 1. This latency assumes a memory access but also a TLB
hit. For the lower bound, we assume αmem is the maximum memory access latency shown in Table
1, a memory access and a TLB miss.

6For a dense matrix stored in sparse format, we only need to call DTRSV; in the model, n1 and k would be 0.
7The terms with R in them are derived by assuming R vector loads per register block. Assuming R divides n2,

there are a total of
n2/R(n2/R+1)

2
blocks.
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3.1 Validating the cache miss bounds

We used our heuristic procedure for selecting the switch point s. Keeping s fixed, we then performed
an exhaustive search over all register block sizes up to b = 5, for all matrices and platforms, measuring
execution time and cache hits and misses using PAPI. Figures 5–7 validate our bounds on misses,
equations (10) and (11). In particular, for the larger cache sizes, the vector lengths are such that the
true miss counts are closer to equation (10) than (11), implying that conflict misses can be ignored.

3.2 Evaluating optimized SpTS performance

Figures 8–10 compare the observed performance of various implementations to the bounds derived
above (Section 3). In particular, we compare the following:

• Reference (1×1) implementation (shown as asterisks).
• The best implementation using only register blocking for all 1 ≤ b ≤ 5 (solid squares).
• An implementation using only the switch-to-dense optimization (hollow triangles).
• The combined register blocking and switch-to-dense implementation (solid circles).
• Our analytic lower and upper performance bounds (Mflop/s) as computed in Section 3 (upper

bound shown as dash-dot lines, lower bound as dashed lines). In particular, at each point we
show the best bound over all b, with the switch point s fixed at the heuristic-selected value.
• A PAPI-based performance upper bound (solid triangles). This bound was obtained by substi-

tuting measured cache hit and miss data from PAPI into equation (8) and using the minimum
memory latency for αmem.

The switch points found by the heuristic are shown for each matrix in Table 2. The heuristic does
select a reasonable switch point—yielding true non-zero densities of 85% or higher in the trailing
triangle—in all cases except Matrix 6 (goodwin). Also, although Figures 8–10 show the performance
using the best register block size, the heuristics described in Section 2.3 chose the optimal block size
in all cases on all platforms except for Matrix 2 (memplus) running on the Ultra 2i and Itanium.
Nevertheless, the performance (Mflop/s) at the sizes chosen in these cases was within 6% of the best.

The best implementations achieve speedups of up to 1.8 over the reference implementation.
Furthermore, they attain a significant fraction of the upper bound performance (Mflop/s). On the
Ultra 2i, the implementations achieve 75% up to 85% of the upper bound performance; on the
Itanium, 80–95%; and about 80–85% on the Power3. On the Itanium in particular, we observe
performance that is very close to the estimated bounds. The vendor implementation of DTRSV
evidently exceeds our bounds. We are currently investigating this phenomenon. We know that the
compiler (and, it is likely, the vendor DTRSV) uses prefetching instructions. If done properly, we
would expect this to invalidate our charging for the full latency cost in equation (8), allowing us to
move data at rates approaching memory bandwidth instead.

In two cases—Matrix 5 (raefsky4) on the Ultra 2i and Itanium platforms—the combined effect of
register blocking and the switch-to-dense call significantly improves on either optimization alone. On
the Ultra 2i, register blocking alone achieves a speedup of 1.29, switch-to-dense achieves a speedup
of 1.48, and the combined implementation yields a speedup of 1.76. On the Itanium, the register
blocking-only speedup is 1.24, switch-to-dense-only is 1.51, and combined speedup is 1.81.

However, register blocking alone generally does not yield significant performance gains for the
other matrices. In fact, on the Power3, register blocking has almost no effect, whereas the switch-to-
dense optimization performs very well. We observed that Matrices 3 (wang4), 4 (ex11), 6 (goodwin),
and 7 (lhr10), none of which benefit from register blocking, all have register blocking fill ratios
exceeding 1.35 when using the smallest non-unit block size, 2×2. The other matrices have fill ratios
of less than 1.1 with up to 3×3 blocking. Two significant factors affecting the fill are (1) the choice
of square block sizes and (2) imposition of a uniform grid. Non-square block sizes and the use of
variable block sizes may be viable alternatives to the present scheme.

Note that our upper bounds are computed with respect to our particular register blocking and
switch-to-dense data structure. It is possible that other data structures (e.g., those that remove the
uniform block size assumption and therefore change the dependence of fb on b) could do better.
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Figure 5: Miss model validation (Sun Ultra 2i): Our upper and lower bounds on L1 and L2
cache misses compared to PAPI measurements. The bounds match the data well. The true L2
misses match the lower bound well in the larger (L2) cache, suggesting the vector sizes are small
enough that conflict misses play a relatively minor role.
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cache misses compared to PAPI measurements. The bounds match the data well. As with Figure
5, equation (10) is a good match to the measured misses for the larger (L3) cache.
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Figure 7: Miss model validation (IBM Power3): Our upper and lower bounds on L1 and L2
cache misses compared to PAPI measurements. Note that two matrices have been omitted since
they fit approximately within the large (8 MB) L2 cache.
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Figure 8: Performance summary (Sun Ultra 2i): Performance (Mflop/s) shown for the seven
items listed in Section 3.2. The best codes achieve 75–85% of the performance upper bound.
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Figure 9: Performance summary (Intel Itanium): Performance (Mflop/s) for the seven imple-
mentations listed in Section 3.2. The best implementations achieve 85–95% of the upper bound.
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Figure 10: Performance summary (IBM Power3): Performance (Mflop/s) of our SpTS imple-
mentations relative to various performance bounds (see Section 3.2). Register blocking evidently
does not yield any significant performance improvements. The switch-to-dense optimization, how-
ever, tightens the performance gap. Note that two matrices have been omitted since they fit ap-
proximately within the large (8 MB) L2 cache.
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4 Related work

Sparse triangular solve is a key component in many of the existing serial and parallel direct sparse fac-
torization libraries (e.g., SuperLU [14], MUMPS [2], UMFPACK [13], PSPASES [24], and SPOOLES
[5], among others). These libraries have focused primarily on speeding up the factorization step, and
employ sophisticated methods for creating dense structure. Efforts to speedup the triangular solve
step in these and other work [33, 32, 25, 18, 26, 36, 19, 1, 30] have focused on improving parallel
scalability, whereas we address uniprocessor tuning exclusively here.

For dense algorithms, a variety of sophisticated static models for selecting transformations and
tuning parameters have been developed [12, 17, 28, 11, 42]. However, it is difficult to apply these
analyses directly to sparse matrix kernels due to the presence of indirect and irregular memory
access patterns. Nevertheless, there have been a number of notable modeling attempts in the sparse
case. Temam and Jalby [39], Heras, et al. [20], and Fraguela, et al. [16] have developed sophisticated
probabilistic cache miss models, but assume uniform distribution of non-zero entries. These models
vary in their ability to account for self- and cross-interference misses. In this study, we see that on
current and future machines, whose cache sizes continue to grow, conflict misses do not contribute
significantly to accurate miss modeling.

Work in sparse compilers, e.g., Bik et al. [7] and the Bernoulli compiler [37], complements our
own work. These projects focus on the expression of sparse kernels and data structures for code
generation, and will likely prove valuable to generating our implementations. One distinction of our
work is our use of a hybrid off-line, on-line model for selecting transformations (tuning parameters).

5 Conclusions and Future Directions

The results of this paper raise a number of questions for future work in tuning sparse triangular
solve, and future sparse matrix kernels.

• The performance of our implementations approaches upper-bounds on a variety of architec-
tures, suggesting that additional gains from low-level tuning (e.g., instruction scheduling) will
be limited. Instead we are examining other algorithmic ways of improving reuse, for instance,
via the use of multiple right-hand sides [29, 16, 22]. Preliminary results on Itanium for sparse
matrix-multiple-vector mltiplication show speedups of 6.5 to 9 over single-vector code [40].
• Register blocking with square blocks on a uniformly aligned grid appears to be too limiting

to see appreciable performance benefits. Encouraged by the gains from the switch-to-dense
algorithm, we expect variable blocking or more intelligently guided use of dense structures (e.g.,
using elimination trees) to be promising future directions. Existing direct solvers make use of
such higher-level information in their forward and backward substitution phases; comparisons
to these implementations is forthcoming.
• The success of the switch-to-dense optimization on our test problems may be particular to our

choice of fill-reducing ordering. We are currently investigating other contexts—namely, under
other ordering schemes, and in incomplete Cholesky and incomplete LU preconditioners.
• At present, we treat selection of the dense triangle as a property of the matrix only, and

not of the architecture. We are investigating whether there is any benefit to making this
platform-dependent as well, by off-line profiling of performance as a function of density, and
incorporating that information into switch point selection.
• Our execution time model assumes that our solver does not run at peak memory bandwidth

speeds, and therefore charges for the full latency. The performance results on Itanium, which
are very close to the upper bound model, raise the issue of whether we can abandon this
assumption in practice and approach memory bandwidth speeds, perhaps via prefetching.
• The model of operation in both this work and prior work on the Sparsity system assume

one-time, off-line preprocessing, run-time searching, and amortizing the cost of run-time pre-
processing over many solves. Furthermore, we make assumptions about the format of the input
matrix. These issues raise general questions about what the interface between applications—
either user code or existing solver libraries—and automatically tuned libraries should be.
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