
A Parallel Communication Infrastructure for STAPL

Steven Saunders
ssaunders@tamu.edu

Lawrence Rauchwerger
�

rwerger@cs.tamu.edu

Abstract: Communication is an important but difficult as-
pect of parallel programming. This paper describes a parallel
communication infrastructure, based on remote method invo-
cation, to simplify parallel programming by abstracting low-
level shared-memory or message passing details while main-
taining high performance and portability. STAPL, the Stan-
dard Template Adaptive Parallel Library, builds upon this in-
frastructure to make communication transparent to the user.
The basic design is discussed, as well as the mechanisms used
in the current Pthreads and MPI implementations. Perfor-
mance comparisons between STAPL and explicit Pthreads or
MPI are given on a variety of machines, including an HP-
V2200, Origin 3800 and a Linux Cluster.

1 Motivation
Communication is one of the most fundamental aspects of par-
allel programming. Not even the most embarrassingly parallel
application can produce a useful result without some amount
of communication to synchronize results. However, express-
ing efficient communication is also one of the most difficult
aspects of parallel programming.

There are currently two common models of communication
in parallel programming: shared-memory and message pass-
ing. In shared-memory, a group of threads share a global
address space. A thread communicates by storing to a lo-
cation in the address space, which another thread can subse-
quently load. To ensure correct execution, synchronization
operations are introduced (e.g., locks and semaphores). The
shared-memory model is considered easier to program, and is
portable by standards such as Pthreads [10] and OpenMP [22].
However, its lack of manual data distribution mechanisms can
hinder scalability [21]. In addition, many large machines do
not implement shared-memory. One solution has been the
introduction of software distributed shared-memory (software
DSM), which provides a software implementation of a global
address space (e.g., [1]).

In message passing, a group of processes operate using
private address spaces. A process communicates by explic-
itly sending a message to another process, which must use
a matching receive. Synchronization is implied through the
blocking semantics of sends and receives (e.g., a blocking re-
ceive does not return until the message has arrived). The mes-
sage passing model is considered harder to program, although
it is more portable thanks to the Message Passing Interface
standard, MPI-1.1 [16]. Since processes use private address
spaces, data distribution must be manually coded, potentially
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improving scalability. However, because all sends and receives
must appear in matched pairs, dynamic or irregular applica-
tions can be difficult to express.

One-sided communication is another model that combines
some of the strengths of shared-memory and message pass-
ing [26]. A set of processes operate using private address
spaces as well as sections of logically shared-memory. A
process communicates by explicitly putting information into
the shared-memory, which another process can subsequently
get. Because puts and gets operate asynchronously, and hence
memory consistency is relaxed, synchronization operations are
introduced (e.g., a fence blocks processes until all communica-
tion is complete). One-sided communication preserves some
of the ease of shared-memory programming while maintain-
ing the data distribution of message passing. Although it is
still not widely used, several common implementations in-
clude SHMEM, ARMCI [19], LAPI [25] and the updated Mes-
sage Passing Interface, MPI-2 [17].

Remote method invocation (RMI) is another communica-
tion model, often associated with Java [11]. RMI works with
object-oriented programs, where a process communicates by
requesting a method from another object in a remote address
space. Synchronization is implied through the blocking se-
mantics of RMI requests (e.g., Java RMI does not return un-
til it completes [18]). RMI is related to its function-oriented
counterpart, remote procedure call (RPC) [30], which allows
a process to request a function in a remote address space.
Although RMI is easy to program, it is generally associ-
ated with distributed applications, not high performance par-
allel applications [7, 8]. High performance run-time systems
that do support RMI- or RPC-related protocols include Active
Message [29], Charm++ [12, 13], Tulip [2], and Nexus [7].
Whereas Java RMI always blocks until completion to obtain
the return value, many of the high performance implementa-
tions never block and never produce return values. Here, the
only way to obtain the return value is through split-phase exe-
cution, where for example, object A invokes a method on ob-
ject B and passes it a callback. When object B completes the
RMI, it invokes object A again via the callback. Split-phase
execution helps tolerate latency, since object A can do some-
thing else while it waits, but complicates programming.

Recently, we have developed STAPL, a parallel superset to
the C++ Standard Template Library, which provides parallel
containers and algorithms [24, 23]. The goal of the underly-
ing STAPL communication infrastructure is to simplify par-
allel programming while maintaining high performance and
portability. It utilizes both blocking RMI (to alleviate the need
for difficult split-phase execution) and non-blocking RMI (for



high performance) to provide a clean interface for an object-
oriented C++ program. Since RMI’s are asynchronous (i.e.,
don’t require matching operations as in message passing), syn-
chronization similar to one-sided communication is used.

In this paper we introduce the communication abstrac-
tions in STAPL. The communication infrastructure provides
an RMI-based interface to abstract the underlying program-
ming model(s) used to implement it. Parallel containers use
the infrastructure to provide distributed data structures. Paral-
lel algorithms use the containers to abstract some of the neces-
sary communication. Finally, the user can combine containers
and algorithms to express a program, completely unaware of
the underlying communication.

2 STAPL Overview
The C++ Standard Template Library (STL) is a collection of
generic data structures called containers (e.g., vector, list, set,
map) and algorithms (e.g., copy, find, merge, sort) [28]. To
abstract the differences in containers, algorithms are written in
terms of iterators. An iterator is a generalized pointer that pro-
vides operations such as ‘advance to next element’ or ‘deref-
erence current element’. Each container provides a special-
ized iterator (e.g., a vector provides a random access iterator,
whereas a list provides a bi-directional iterator).

The Standard Template Adaptive Parallel Library (STAPL)
is a sequentially consistent, parallel superset to STL [24, 23].
STAPL provides a set of parallel containers and parallel al-
gorithms that are abstracted from each other via parallel iter-
ators, named pContainers, pAlgorithms and pRanges respec-
tively. The pContainers provide a shared-memory view of data
by internally handling data distribution. The pRange presents
an abstract view of a scoped data space, which allows random
access to a partition, or subrange, of the data space (e.g., to
data in a pContainer). The pAlgorithms use pRanges to oper-
ate on data in parallel.

We are designing STAPL to support many different paral-
lel architectures, from small SMP’s to massively parallel su-
percomputers. One goal of STAPL is to allow a single code-
base to operate efficiently on these different systems. Some
architectures provide efficient shared-memory support, while
others are optimized for message passing. Additionally, some
systems may most efficiently be programmed by combining
shared-memory and message passing into mixed-mode par-
allelism [6, 4, 27, 20]. For instance, clusters of SMP’s can
use message passing between nodes in the cluster, and shared-
memory within nodes. In support of this, we have created a
parallel communication infrastructure that abstracts the issues
of shared-memory and message passing programming, allow-
ing for a single interface that may be optimized for specific
machines.

3 Requirements for Parallelism
We recognize two fundamental types of communication in a
parallel program, regardless of programming model:

1. statement - a process needs to tell another process some-
thing (e.g., a result or to perform some action, as in a

produce-consumer relationship). A statement is asyn-
chronous, meaning the sending process does not gener-
ally wait for the receiving process to receive or process
the information.

2. question - a process needs to ask another process for
something (e.g., a result, which may or may not be cal-
culated a priori). A question is synchronous, meaning
the sending process must wait for the receiving process
to process the information and reply.

In both cases, the receiver does not necessarily expect the
communication, as in a dynamic program. Each communica-
tion type can also be abstracted to handle multiple processes at
once, making a statement a broadcast (i.e., tell many processes
something) and a question a collection (i.e., ask a question and
tabulate the answers).

Closely related to communication is synchronization, which
also has two fundamental forms [5]:

1. mutual exclusion - operations to ensure modification to
an object are performed by one process at a time. This
is explicit in shared-memory (e.g., locks), and implicit in
message passing, where all memory is private to a pro-
cess.

2. event ordering - operations to inform a process or pro-
cesses that computation dependencies are satisfied. This
is explicit in shared-memory (e.g., semaphore signal and
wait operations), and implicit in message passing, via the
semantics of message sending and receiving.

Cleanly expressing these types of communication and syn-
chronization are requirements for a parallel programming
model’s success. Shared-memory and message passing both
fulfill all of these requirements, although in slightly different
ways. One goal of the communication infrastructure is to ab-
stract these issues, yielding a clean interface that lends itself to
efficient implementation with either model.

4 Case Study: Parallel Sorting
To illustrate how different parallel programming models affect
communication, we consider a common parallel algorithm for
sorting: sample sort [3]. Sample sort consists of three phases:

1. Sample a set of ����� splitters from the input elements.
2. Given one bucket per processor, send elements to the ap-

propriate bucket based on the splitters (e.g., elements less
than splitter 0 are sent to bucket 0). Because they are dis-
tributed based on sampled data, buckets will have varying
sizes, and hence sample sort is highly dynamic.1

3. Sort each bucket.

Consider the following code fragments, which present im-
plementations using explicit shared-memory or message pass-
ing.2 We assume the input has already been generated, and, in
the case of message passing, distributed.

1Most implementations oversample the input to increase the chance of bal-
anced buckets. We have removed this sub-step for simplicity.

2In general, shared-memory algorithms are sequential until a fork (line 11),
whereas message passing algorithms are always in parallel.



1 / / s h a r e d � memory sample s o r t
2 v o i d s o r t ( i n t � i n p u t , i n t s i z e )

�
3 i n t p = / / . . . number o f t h r e a d s , 0 � p . . .
4 s t d : : v e c t o r � i n t � s p l i t t e r s ( p � 1 ) ;
5 s t d : : v e c t o r � v e c t o r � i n t ��� b u c k e t s ( p ) ;
6 s t d : : v e c t o r � l o c k � l o c k s ( p ) ;
7
8 f o r ( i n t i = 0 ; i � p � 1; i + + )
9 s p l i t t e r s [ p � 1 ] = / / . . . sample i n p u t . . .

10
11 / / . . . f o r k p t h r e a d s . . .
12 i n t i d = / / . . . t h r e a d i d . . .
13 f o r ( i = s i z e / p � i d ; i � s i z e / p � ( i d + 1 ) ; i + + )

�
14 i n t d e s t = / / . . . a p p r o p r i a t e b u c k e t . . .
15 l o c k s [ d e s t ] . l o c k ( ) ;
16 b u c k e t s [ d e s t ] . p u s h b a c k ( i n p u t [ i ] ) ;
17 l o c k s [ d e s t ] . u n l o c k ( ) ;
18 �
19 b a r r i e r ( ) ;
20
21 s o r t ( b u c k e t [ i d ] . b e g i n ( ) , b u c k e t [ i d ] . end ( ) ) ;
22 �

1 / / message p a s s i n g sample s o r t
2 v o i d s o r t ( i n t � i n p u t , i n t l o c a l S i z e )

�
3 i n t p = / / . . . number o f p r o c e s s e s , 0 � p . . .
4 s t d : : v e c t o r � i n t � s p l i t t e r s ( p � 1 ) ;
5 s t d : : v e c t o r � i n t � b u c k e t ( p ) ;
6
7
8 i n t sample = / / . . . sample i n p u t . . .
9 G a t h e r ( & sample , . . . , s p l i t t e r s , . . . ) ;

10
11 f o r ( i = 0 ; i � l o c a l S i z e ; i + + )

�
12 i n t d e s t = / / . . . a p p r o p r i a t e b u c k e t . . .
13 Send ( i n p u t [ i ] , . . . , d e s t , . . . ) ;
14 �
15 w h i l e ( . . . p robe f o r messages . . . )

�
16 i n t tmp ;
17 Recv ( & tmp , . . . ) ;
18 b u c k e t . p u s h b a c k ( tmp ) ;
19 �
20
21 s o r t ( b u c k e t . b e g i n ( ) , b u c k e t . end ( ) ) ;
22 �

The shared-memory code uses a shared STL vector to com-
municate splitters (lines 8-9), as opposed to the message pass-
ing library call (lines 8-9). Shared-memory must fork and
calculate each thread’s local portion (lines 11-13), whereas in
message passing data is manually distributed a priori. Shared-
memory shares the buckets by locking each insertion to ensure
mutual exclusion (lines 15-17), and uses a barrier (line 19) to
ensure proper event ordering of distribution and sorting. Be-
cause message passing does not know the amount and order of
communication (lines 11-14), it must probe for all incoming
messages (lines 15-19), which also ensures proper ordering of
distribution and sorting.

Neither implementation is optimal. Shared-memory makes
extensive use of locking (one lock per element), potentially
causing bucket contention. Message passing sends many small
messages, potentially causing network congestion. These is-
sues are not intrinsic to the sample sort algorithm, only to
the underlying communication model and subsequent imple-
mentation. Improvements can be made at the expense of ad-
ditional lines of code, which are even further removed from
the algorithm. For instance, insertions could be buffered into

groups before locking or sending, reducing the overall number
of locks or sends necessary.

We now contrast shared-memory and message passing code
with STAPL. Since STAPL provides a parallel superset to
STL, it contains a pAlgorithm for sorting, p sort, which a
user can use directly. We illustrate a possible implementation
of p sort in the following code fragment. Note that addi-
tional code is used to wrap the algorithm in a class. The heart
of the algorithm (contained in the execute method) is actu-
ally shorter than the previous implementations.

1 / / STAPL sample s o r t
2 s t r u c t p s o r t : p u b l i c s t a p l : : p a r a l l e l t a s k

�
3 i n t � i n p u t , s i z e ;
4 p s o r t ( i n t � i , i n t s ) : i n p u t ( i ) , s i z e ( s )

� �
5
6 v o i d e x e c u t e ( )

�
7 i n t p = s t a p l : : g e t n u m n o d e s ( ) ;
8 i n t i d = s t a p l : : g e t n o d e i d ( ) ;
9 s t a p l : : p v e c t o r � i n t � g l o b a l S p l i t t e r s ( p � 1 ) ;

10 s t a p l : : p v e c t o r � v e c t o r � i n t ��� b u c k e t s ( p ) ;
11
12 g l o b a l S p l i t t e r s [ i d ] = / / . . . sample i n p u t . . .
13 s t d : : v e c t o r � i n t � s p l i t t e r s ( g l o b a l S p l i t t e r s ) ;
14
15 f o r ( i = 0 ; i � s i z e ; i + + )

�
16 i n t d e s t = / / . . . a p p r o p r i a t e b u c k e t . . .
17 s t a p l : : a s y n c r m i ( d e s t , . . . ,
18 &s t a p l : : p v e c t o r : : p u s h b a c k , i n p u t [ i ] ) ;
19 �
20 s t a p l : : r m i f e n c e ( ) ;
21
22 s o r t ( b u c k e t [ i d ] . b e g i n ( ) , b u c k e t [ i d ] . end ( ) ) ;
23 �
24 �

As seen by the user, this pAlgorithm hides all underlying
communication by appearing as a simple library call. In its
implementation, the pContainers abstract some of the under-
lying communication. For example, the splitter privatization
(line 13) makes a copy of the distributed pVector. This copy
invokes the pVector copy constructor, which in turn uses the
dereference operator to obtain and copy each individual ele-
ment. As shown in the following fragment for the dereference
operator, if the desired element is not local, RMI is used to
obtain it (i.e., a question).

1 t e m p l a t e � c l a s s T�
2 T& p v e c t o r � T � : : o p e r a t o r [ ] ( c o n s t i n t i n d e x )

�
3 i f ( / � . . . i n d e x i s l o c a l . . . � / )
4 r e t u r n / / . . . e l e m e n t . . .
5 e l s e
6 r e t u r n s t a p l : : s y n c r m i ( / � owning node � / , . . . ,
7 &s t a p l : : p v e c t o r � T � : : o p e r a t o r [ ] , i n d e x ) ;
8 �

The explicit RMI on line 17 tells the destination bucket to
add an element (i.e., a statement).3 Because the communica-
tion infrastructure ensures remotely invoked methods execute
atomically, additional code for mutual exclusion is eliminated.
However, a fence is used to ensure proper event ordering (line
19).

3This communication could also be abstracted from the user using the
pVector’s push back method. However, since this is a 2D pVector, a deref-
erence is necessary to obtain the proper sub-vector. As defined above, the
dereference will first try to return the sub-vector, then apply the push back.
We are investigating alternatives to allow the desired behavior.



5 Design
The main goals of the STAPL communication infrastructure
are to provide an easy to use, clean means of expressing par-
allelism in STL-oriented C++ code, while facilitating efficient
implementation on many different parallel machines. To be
successful, the requirements of Section 3 should also be ad-
dressed. Although shared-memory and message passing can
both fulfill the requirements, shared-memory is not yet im-
plemented for large machines, and message passing can make
writing C++ STL code difficult.4 As such, we base our com-
munication infrastructure on a higher level RMI abstraction.
RMI deals directly with an object’s methods, and hence maps
cleanly to object-oriented C++. STL code is composed of
many container-based objects, and algorithms can easily be
written it terms of objects, as seen in our case study. In addi-
tion, RMI can be efficiently implemented using either model,
as we will show in Section 7.

The communication infrastructure provides task-level par-
allelism. Each task is a C++ object and is associated with a
single process or thread. In message passing, an object re-
sides exclusively in a process’s private memory. However, in
shared-memory only a conceptual association can be made be-
tween threads. To help facilitate this association across possi-
ble implementations, we name each unit of execution a node.
Upon startup, all nodes are initialized and begin executing the
same code in parallel, similar to MPI. Nodes independently
create local objects and access other nodes’ local objects via
RMI. We have currently defined two base forms of RMI, which
map directly to the two fundamental types of communication.

1. void async rmi(destNode, localObjPtr,
method, arg1...) - makes a statement. The
call issues the RMI request and returns immediately.
Subsequent calls, such as a rmi fence, are used to
ensure completion of all requests.

2. rtn sync rmi(destNode, localObjPtr,
method, arg1...) - asks a question. The call
issues the RMI request and waits for the answer.

The additional information required compared to a regular
C++ method invocation is minimal (only destNode is ex-
tra). Note that localObjPtr must be local to the destina-
tion node. STAPL is providing a layer on top of the commu-
nication infrastructure to perform address translation to facil-
itate the gathering and usage of such pointers. However, the
infrastructure provides an additional collective function, ex-
ecute parallel task. Each calling node automatically
registers the specified parallel task object and begins
execution using its execute method. This facilitates paral-
lel algorithms, where RMI’s between parallel tasks can
simply use the this pointer as the localObjPtr.

We are also incorporating many-to-one and one-to-many
communication into the infrastructure to support common
communication patterns. We have currently defined two,
based on the fundamental communication types. Currently,

4For example, MPI requires a type identifier for all messages, which can
be difficult to obtain in type-independent C++ templates.

both patterns interact with all nodes, although we are refining
this interaction to node subsets via a scheme similar to MPI
communicators [16]. As development proceeds, we anticipate
adding additional calls for increased performance.

1. void broadcast rmi(localObjPtr,
method, arg1...) - makes a statement to all
nodes. The call issues the RMI requests and returns
immediately. Subsequent calls, such as rmi fence,
are used to ensure completion of the requests on remote
nodes.

2. void collect rmi(localObjPtr, method,
input, output) - asks a question on all nodes and
collects the results (i.e., a reduction). The call issues the
RMI request and waits for the answer. It is a collective
operation in that all nodes must execute it before any
node proceeds.

5.1 Synchronization
The communication infrastructure also addresses both forms
of synchronization. To ensure mutual exclusion, methods in-
voked by RMI execute atomically. Hence, a method invoked
by multiple nodes in parallel preserves thread-safety by acting
as a monitor. We recognize that some applications may not re-
quire mutual exclusion for all remotely invoked methods, and
hence are considering non-atomic RMI for the future.

Event ordering is supported in two ways. An rmi wait
operation is provided to allow a node to wait for any RMI to
be invoked before proceeding. Additionally, the rmi fence
allows nodes to wait until all nodes have arrived and completed
all pending communication. This can be used to satisfy flow
dependencies in a computation. It also allows for straight-
forward implementations of master-slave computations, where
the slaves wait at the fence while the master signals the work
to be performed via RMI.

5.2 Data Transfer
In our scheme, only one instance of an object exists at once,
and it can only be modified through its methods. The granu-
larity of data transfer is the smallest possible, the method ar-
guments, and arguments are always passed-by-value. As such,
the communication infrastructure avoids data coherence issues
common to some DSM systems, which rely on data replication
and merging. In effect, RMI transfers the computation to the
data, allowing the owner to perform the actual work, instead
of transferring the data to the computation.

To support message passing as an implementation model,
the infrastructure requires each class that may be transfered as
an argument to implement a single method, define type.
This method defines the class’s data members in a style simi-
lar to Charm++ [12, 13]. Specifically, each data member is de-
fined as either local (i.e., automatically allocated on the stack)
or dynamic (i.e., explicitly allocated on the heap using mal-
loc or new). This method can be used as needed to adaptively
pack, unpack, or determine the type and size of the class based
on the infrastructure’s underlying implementation.



5.3 Integration with STAPL
Figure 1 shows the layout of STAPL’s basic components. The
communication infrastructure serves as the bottom layer, and
abstracts the actual parallel communication model utilized via
the RMI interface.

pAlgorithms
pRange

Pthreads NativeMPIOpenMP

Address Translator

pContainers

Communication Infrastructure

Figure 1: STAPL Layout

A pContainer is a distributed data structure. Although the
user/programmer sees a single object, at run-time the pCon-
tainer creates one sub-pContainer object per node in which to
actually store data. The contents and location of each of these
sub-containers are maintained using the pRange and address
translator respectively5. The pContainer’s main job then is to
maintain the consistency of the data it stores as the user in-
vokes various methods on it. Three communication patterns
result:

1. access - a node needs access to data on another node (e.g.,
the dereference operation for a vector). The sync rmi
handles this pattern.

2. update - a node needs to update another node’s data (e.g.,
the insert operation). The async rmi handles this pat-
tern.

3. group update - a node needs to update the overall struc-
ture of the container (e.g., the resize operation). The
broadcast rmi handles this pattern.

Since pContainers’ methods use RMI to implement these
communication patterns, they effectively abstract the under-
lying communication seen by the user. A library supporting
both shared-memory and message passing might need to pro-
vide two versions of each container, one for shared-memory
and the other for message passing. STAPL needs just one ver-
sion of each pContainer by pushing the details and decision
between shared-memory and message passing into the com-
munication infrastructure. In addition, message passing is a
difficult model to implement data structures with, since it re-
quires matching sends and receives. RMI abstracts the under-
lying message passing to an asynchronous interface, suitable
for arbitrary, un-matched insertions and deletions. As such,
the implementor can stay focused on the fundamental issues
of a distributed data structure.

5We are currently defining the address translation operations for the vari-
ous pContainers. One example is the pVector, which can maintain the range
of indices contained in each sub-pVector, along with the corresponding node
ID and local pointer.

A pAlgorithm expresses a parallel computation in terms of
parallel task objects. These objects generally do not use
the communication infrastructure directly. The specific input
data per parallel task are defined by the pRange, just
as iterators define the input to an STL algorithm. Interme-
diate or temporary results that are used across nodes can be
maintained using pContainers within the parallel task.
As their methods are used to modify and store the results, the
pContainers will internally generate the necessary RMI com-
munication.

In the event that pContainers do not offer the necessary
methods, RMI communication between parallel tasks is
facilitated by the automatic address translation described in
section 5. Some algorithms require such facilities, such as a
depth-first search on a distributed graph. One node begins the
search on its local vertexes while the other nodes wait. As the
search progresses to remote vertexes, RMI can be used to tell
the owning nodes to continue the search on their local data.
In addition to this event ordering based communication, two
other common patterns result:

1. data parallel - the same operation needs to be applied
in parallel, possibly with a parallel reduction at the end.
A large percentage of STAPL algorithms utilize this pat-
tern. For instance, in a find, each node searches its lo-
cal data for an element. Since multiple nodes may find
a match, a reduction is used to combine the results (i.e.,
node 0’s result has precedence over node 1’s, etc.). The
collect rmi handles this pattern.

2. bulk communication - a large number of small messages
are needed. A smaller percentage utilize this pattern, with
sorting being a common example. The async rmi op-
erations handles this pattern.

As described, each level of STAPL serves to further remove
the user from the underlying communication issues. The com-
munication infrastructure provides the fundamental abstrac-
tion between shared-memory and message passing. The pCon-
tainers build upon this to create distributed data structures. The
pAlgorithms generally use pRanges, pContainers, and RMI
when necessary, to create useful parallel algorithms. The user
combines pContainers and pAlgorithms to write a program,
without worrying about the underlying communication.

6 Implementation
We have currently implemented the communication infras-
tructure using two different underlying programming mod-
els: Pthreads (shared-memory) and MPI-1.1 (message pass-
ing). Since the interface remains the same, all that is required
to use a different implementation is to re-compile.

In the rest of this section, we describe the mechanisms used
to implement the basic communication infrastructure opera-
tions.

6.1 Request Format
Regardless of implementation, all RMI requests are encapsu-
lated internally by a functor [9]. A functor stores an RMI’s



class, method and argument information, and allows the re-
quest to be stored, communicated, and subsequently executed.
The base functor class only provides a method to execute itself,
whereas derived functors are specialized based on number of
arguments and whether the return value is needed. To preserve
C++’s strong typing system, all functors make extensive use of
C++ templates.

6.2 Request Scheduling
RMI requests do not require matching operations on the des-
tination node. As such, we must introduce mechanisms to
schedule the processing of incoming requests. The two issues
that must be balanced are ensuring a timely response of incom-
ing requests, which may be blocking the caller, and allowing
the local computation to proceed. This is not a new problem,
and we are aware of four solutions:

1. explicit polling - the code explicitly polls for incoming
requests [29, 2, 7, 25]. This approach is successful if polls
do not dominate the local computation, but are frequent
enough to yield a timely response.

2. interrupt-driven - a hardware interrupt is used to notify a
node of incoming requests [29, 2, 7, 25, 19]. Although
this solution is often avoided due to the high cost of inter-
rupts, it does guarantee a timely response with minimal
user interruption (i.e., no extraneous polls).

3. blocking communication thread - a separate communi-
cation thread posts a blocking receive for incoming re-
quests [7]. Upon arrival, a request is immediately pro-
cessed. This solution is successful if other threads can
execute while the receive is blocking, and control returns
to the communication thread soon after the receive com-
pletes.

4. non-blocking communication thread - a separate commu-
nication thread performs a poll for incoming requests,
processes any available requests, then yields [7]. This
solution is successful if the thread scheduler is effective.
For example, the communication thread is scheduled at
times when no computation is available, or the times-
lice is a good balance between computation and polling.
Since typical timeslices are 1/10 of a second, this is often
a problem.

Our current solution for both implementations is explicit
polling. Although communication threads have the potential
to yield better performance, creating an efficient implementa-
tion is much more involved, and often requires platform depen-
dent knowledge (e.g., thread scheduling policies). Our current
focus is on general implementations that can be further opti-
mized for specific platforms. As such, we will consider com-
munication threads in the future.

Both implementations perform polls within communication
infrastructure calls. This has the advantage of being transpar-
ent to the user, and the drawback of poor response if no com-
munication occurs for a long period of time. In cases where
the user is aware of this, an explicit rmi poll operation is
available. To handle the alternative case of frequent communi-
cation, every � th communication call will internally perform

a poll, where � may be set by the user. Low values for � will
yield more timely responses, but slow the progress of the com-
putation.

6.3 async rmi
The async rmi is the most complicated operation to imple-
ment because it is completely asynchronous (i.e., it neither
waits for a return value nor requires the destination node to ex-
pect the operation). In addition, multiple async rmi’s will
often be issued at once (e.g., the distribution phase of sam-
ple sort). Sending many small messages individually causes
traffic and limits bandwidth. A well-known alternative is to
buffer messages and issue them in groups, with the extreme
case being a single communication at the end of the compu-
tation phase of an algorithm. async rmi’s are automatically
buffered internally, and issued in groups based on a default
or user-defined aggregation factor. Requests are copied into
an internal aggregation buffer until the aggregation factor is
reached. The buffer is then transfered to the destination node,
and each stored request is executed in FIFO order. The ap-
propriate aggregation buffer size can be configured for each
machine during installation.

The Pthreads implementation actually utilizes a form of
message passing with shared-memory, since the semantics of
RMI imply one node telling another node to do something.
This message passing is much simpler than standard MPI how-
ever, and hence has several opportunities for higher perfor-
mance. Each node has a request queue, which holds RMI re-
quests from other nodes. Instead of copying the entire request
from the origin to the destination, only the request pointer
is enqueued. As such, the only buffer copies performed are
by the underlying cache system when the destination actually
starts traversing the buffer. The request queue has a specific
entry for each node, and each entry can hold only one re-
quest pointer. This design alleviates the need for expensive
lock operations during access. Instead, the owner can check
for non-null entries during a poll, and the requester can busy-
wait until its specific entry returns to null if it needs to send a
second request. We found busy-waiting to perform faster than
Pthreads conditionals for event ordering. The request queue
can be a bottleneck since it can only hold one request per-node
at a time. To alleviate this, we pipeline requests by using two
aggregation buffers per possible destination node. While one
buffer is enqueued at the destination, the other can be filled.

The MPI implementation is similar to Pthreads, although
MPI internally handles the request queue. Each node ap-
plies the same pipelined sending scheme as in Pthreads, and
uses non-blocking sends to facilitate filling one buffer while
the other is sending. Since the implementation is not multi-
threaded, only one incoming request can be processed at a
time. We use a single non-blocking receive from any node,
which allows good implementations of MPI to overlap the
communication with computation. The receive is posted and
the computation started. Polls simply check to see if the re-
ceive completed, in which case the request is processed. MPI
must copy incoming messages into a user-defined buffer. We
allocate this buffer to be large enough for all possible com-
munications a priori. We chose this static allocation scheme



versus an on-demand, dynamic allocation scheme for perfor-
mance.

6.4 sync rmi

The sync rmi operation builds upon the foundation of
async rmi. Requests are sent in the same fashion, and the
sender blocks until the return value is returned. The block
performs continuous polling, enabling quick response of re-
turn messages. However, request scheduling on the destination
node becomes even more of a concern for sync rmi, since it
does block computation until the return value is obtained. In
some instances, the algorithm requires this. For others, we are
planning a non-blocking version that returns an opaque han-
dle. When the return value is actually needed, the handle can
be queried.

The Pthreads implementation uses a separate response
queue, similar to its request queue, for the computing node
to enqueue the return value. The MPI implementation uses
the exact same facilities as async rmi, and differentiates be-
tween requests and responses by the message tag, contained in
the message’s header.

6.5 rmi fence

The rmi fence is a collective operation similar to a barrier.
It does not release until all nodes arrive and complete all out-
standing communication requests. There are two complicating
issues for a fence versus a barrier. First, to ensure correct ex-
ecution, nodes waiting at the fence must continue to poll for
RMI requests. Second, the fence protocol must correctly de-
termine when all RMI request transfers have completed. This
issue is further complicated by the fact that one RMI request
could invoke a second request, which in turn invokes a third
request, etc.

Most vendors provide blocking barriers, which are unsuit-
able for incorporating polling [2]. As such, we were forced
to implement our own fence. To address the second issue, we
overlay a distributed termination detection algorithm [14]. In
short, the algorithm tracks the number of sends and receives
performed by each node, performs a distributed summation,
and declares termination as soon as the sum equals zero.

We implemented two different fences for Pthreads, a cen-
tralized barrier with sense reversal [5] and the tree-based bar-
rier proposed as Algorithm 11 in [15]. Both fences busy-wait,
where each iteration of the busy-wait performs a poll. It was
straightforward to incorporate the termination detection sum
within both fence’s arrival protocol.

We implemented a tree-based barrier for MPI, where nodes
notify their parents upon arrival, wait for a release message
while polling, then propagate the release to their children. This
communication pattern can easily include the termination de-
tection sum within the arrival/release messages. We currently
have implemented three different tree patterns: a flat tree with
a root and all other nodes as leaves, a standard binary tree (0’s
children are 1 and 2, 1’s children are 3 and 4, etc.), and a binary
tree optimized for a hypercube.

7 Performance
We tested our two communication infrastructure implementa-
tions (Pthreads and MPI) on a number of different machines,
including a Hewlett Packard V2200, an SGI Origin 3800, and
a Linux cluster. The V2200 is a shared-memory, crossbar-
based symmetric multiprocessor consisting of 16 200MHz
PA-8200 processors with 2MB L2 caches. The O3800 is a
hardware DSM, hypercube-based CC-NUMA (cache coherent
non-uniform memory access) consisting of 48 500MHz MIPS
R14000 processors with 8MB L2 caches, arranged with 4 pro-
cessors per node of the hypercube. The cluster consists of 5
distributed memory nodes connected with a private 1Gb/s Eth-
ernet switch. Each node contains 2 1GHz or 1.1GHz Pentium
III processors with 256KB or 512KB L2 caches.

7.1 async rmi and sync rmi
We tested the latency of STAPL versus explicit shared-
memory or message passing code using a ping-pong bench-
mark. One node sends a message, and upon receipt, the re-
ceiver immediately sends a reply. We measured the time be-
tween issuing the ping and receiving the pong. STAPL uses
two benchmarks. The first uses async rmi to invoke a re-
ply async rmi. The second uses a single sync rmi. The
Pthreads benchmark uses an atomic shared variable update as
the message, with ordering preserved by busy-waiting. The
MPI benchmark explicitly matches sends and receives.

The resulting wall clock times are shown in Table 1. Since
STAPL is implemented on top of Pthreads or MPI, it necessar-
ily adds overhead. For Pthreads, the increase is noticeable, due
to the overhead of an RMI request being buffered, enqueued at
the destination, then subsequently processed, whereas the ex-
plicit Pthreads code simply performs an update. Both codes
preserve ordering through busy-waiting.

For MPI, the overhead is typically negligible, with the one
exception being the V2200. Upon investigation, we identi-
fied that HP’s MPI incurs extra startup overhead for using
nonblocking sends and receives versus their blocking counter-
parts. However, as the number of processors increase, the non-
blocking versions tend to perform better. The HP receive also
appears to take time proportional to the expected size. Since
STAPL uses a size large enough to hold the largest possible
message, it takes more time to receive than the explicitly writ-
ten MPI code, which never overestimates.

Although some codes require only a few isolated communi-
cations, others require many. As described in Section 6.3, the
communication infrastructure buffers async rmi requests
internally based on an aggregation factor to optimize message
transfer size and minimize network traffic. To measure toler-
ance to this traffic, we re-timed the ping-pong benchmark us-
ing multiple consecutive pings before a single pong. STAPL’s
aggregation factor was varied from 8 to 512 messages.

Figures 2 and 3 show the results for MPI and Pthreads on the
O3800. For Pthreads, STAPL is faster after 1000 pings, yield-
ing a 70% improvement with an optimal aggregation buffer
of 128 messages (4KB). Similarly, the V2200 yields a 16%
improvement with a 256 message buffer (8KB). The variance
between aggregation factors is smaller than with MPI. This is



V2200 O3800 Cluster
Explicit STAPL Explicit STAPL Explicit STAPL

Pthreads 15 22/22 4 16/15 N/A N/A
MPI 16 35/37 17 17/21 197 197/201

Table 1: Latency (us) of explicit communication and STAPL (async rmi/sync rmi).

because the cost of message transfer in the Pthreads implemen-
tation is low compared to the cost of sending an MPI message.
As such, less overhead can be amortized with increased buffer-
ing.

For MPI, STAPL is significantly faster after just 10 mes-
sages, yielding a 6.4-fold improvement for 10,000 pings, with
an optimal aggregation buffer of just 128 messages (4KB).
Similarly, the V2200 yields a 2.5-fold improvement with a
32 message buffer (1KB). On the cluster, where communica-
tion is especially expensive, a 2100-fold improvement with a
512 message buffer (16KB) is possible. Our findings confirm
that multiple small messages should be avoided when using
message passing. Since the communication infrastructure per-
forms such optimizations internally, the user is able to focus
on simply expressing their algorithm.
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Figure 2: Pthreads (log-log scale)
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Figure 3: MPI (log-log scale)

7.2 rmi fence
We measured the overhead of rmi fence against vendor-
optimized barriers. For message passing, we compared against
MPI Barrier. For shared-memory, we compared against
the OpenMP barrier directive when available (O3800), and
the MPI barrier when not (V2200). For Pthreads, we found
STAPL’s tree-based fence to perform best. For MPI, we found
STAPL’s hypercube-tree barrier to perform best on the V2200
and the O3800. The flat-tree performed best on the cluster,
since message transfer latency is much higher than message
startup costs.

Figure 4 show the results for shared-memory. Since STAPL
uses a platform independent fence, which continues to poll for
RMI requests while waiting for termination, we expect it to
incur some overhead. Although typically much less, we have
found the overhead of polling and termination detection to be
as high as 23% for STAPL’s Pthreads fence. Since this does
not account for all the time difference shown in Figure 4, we
attribute the rest of the overhead to our platform independent
implementation.

Figure 5 shows the results for message passing. STAPL
scales competitively on the O3800 and cluster, with only a
slight increase in overhead, due to polling and termination
detection. The V2200 is the exception, where the nearly
flat curve implies HP’s MPI Barrier implementation uses
shared-memory optimizations that are not available to STAPL.
These results confirm the findings of [2], which demonstrate
the utility of pollable, instead of just blocking, barriers for use
in libraries such as STAPL.
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Figure 4: Shared-Memory Fence (log-log scale)

7.3 Algorithm Performance
We have implemented several parallel algorithms using the
communication infrastructure, such as our case study, sam-
ple sort. We compared our 30-line RMI-based code against a
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Figure 5: Message Passing Fence (log-log scale)

100-line hand-tuned shared-memory implementation that uses
Pthreads for communication on the V2200 and OpenMP on
the O3800. This hand-tuned version is significantly optimized
compared to the shared-memory case study described in Sec-
tion 4. Specifically, it buffers elements locally, then performs
a merge before the final sorting phase. The merge is receiver-
driven, such that each processor copies its portion contained in
the other processors’ buffer to a local array. This method has
the benefit of filling each processors’ cache just before begin-
ning the sorting phase.

We tested sample sort using both STAPL communication
infrastructure implementations. We found the Pthreads imple-
mentation performed best on the V2200, as expected, since it
is a shared-memory machine. On the O3800, we found the
MPI implementation performed best. Our experience on the
O3800 shows that OpenMP outperforms Pthreads for shared-
memory communication, and hence are pursuing an OpenMP
implementation as well.

Figure 6 shows the wall clock times for both machines.
STAPL requires more time to perform the sort, largely due to
async rmi’s need to construct request objects with each call.
This effect is not nearly so pronounced on the O3800 however,
and we attribute this to the Origin’s faster, superscalar proces-
sors, which may be utilized more effectively with the extra
work.

Figure 7 shows the scalability versus running on one pro-
cessor. STAPL scales very competitively, and at times even
out-scales the hand-tuned codes. This is because communi-
cation is occurring incrementally throughout the computation,
instead of one large merge at the end. However, as the number
of processors increase, the per-processor data sets get nearer
to the cache size. Since the hand-tuned codes’ merge brings
data into cache, their scalability improves. Note the especially
pronounced improvement from 4-8 processors on the O3800,
during which the data does completely fit into its 8MB cache
for the first time.

We have also implemented a parallel version of the STL
inner product algorithm. Each processor uses the sequential
algorithm to compute its local contribution, then applies a
global reduction to combine the results. STAPL uses col-
lect rmi to perform the reduction. Explicit MPI uses

1 2 4 8 16 32
Number of Processors

4

8

12

16

20

24

28

32

36

40

44

T
im

e 
(s

)

Explicit (V2200)
STAPL (V2200)
Explicit (O3800)
STAPL (O3800)

Figure 6: Time to sort 1M integers
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MPI Allreduce. On the V2200, explicit shared-memory
uses Pthreads, and a sequential summation. On the O3800,
explicit shared-memory uses OpenMP and the parallel reduc-
tion directive. All experiments calculate the inner product of a
40 million element vector with itself.

As shown in Tables 2 and 3, there is negligible differ-
ence between explicit shared-memory, message passing and
STAPL. This is expected, since the majority of STAPL’s over-
head is the time to package the reduction into an RMI request,
which occurs only once per reduction. We attribute the mi-
nor variances in time, such that STAPL is occasionally faster
than the explicit versions, to machine fluctuations because the
differences are not statistically significant.

Number of V2200 O3800
Processors Explicit STAPL Explicit STAPL
1 10.658 10.218 2.123 2.290
2 5.329 5.287 1.086 1.159
4 2.665 2.736 0.544 0.578
8 1.309 1.355 0.287 0.294
16 0.667 0.705 0.146 0.159
32 0.076 0.075

Table 2: Time (s) to compute the inner product of 40M element
vectors using shared memory.



Number of V2200 O3800 Cluster
Processors Explicit STAPL Explicit STAPL Explicit STAPL
1 10.008 10.558 2.301 2.300 .964 .964
2 4.996 5.149 1.165 1.164 .577 .574
4 2.678 2.567 0.583 0.581 .285 .284
8 1.301 1.326 0.343 0.330 .142 .142
16 0.752 0.702 0.171 0.170
32 0.088 0.084

Table 3: Time (s) to compute the inner product of 40M element vectors using message passing.

8 Conclusions and Future Work
We have developed a parallel communication infrastructure
that abstracts the details of the underlying communication
models, allowing the parallel programmer to focus on cleanly
expressing their algorithm. STAPL builds upon this abstrac-
tion using pContainers and pAlgorithms to make communi-
cation transparent to the user. Preliminary results show low
overhead and scalable performance on a wide variety of ma-
chines.

We are actively pursuing additional implementations of the
infrastructure, including OpenMP and a mixed-mode version
using MPI and OpenMP. Since STAPL is making the transition
to exclusively using the primitives for communication, we are
currently in the integration phase. This will produce nearly
one hundred pAlgorithms and pContainer methods using the
infrastructure, enabling us to continue to tune its performance.
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