
Generating Parallel Programs for Fast Signal

Transforms using SPIRAL∗

J. R. Johnson
†

1 Introduction

Algorithms for many important signal processing computations can be ex-
pressed using linear algebra. This allows alternative algorithms to be written
as mathematical formulas. Such formulas can be translated into efficient
programs and optimizing the implementation of an algorithm becomes a
search problem over the space of mathematical formulas representing the
desired computation. The SPIRAL project [9] utilizes this formulation to
automatically implement and optimize fast signal transforms.

SPIRAL can be extended to generate and optimize parallel implemen-
tations of fast signal transforms. Interpreting such formulas as parallel pro-
grams and utilizing formula manipulation to derive and optimize parallel
programs was suggested in [5, 7]. An early implementation of some of these
ideas was presented in [1].

As a precursor to extending SPIRAL to incorporate parallel computa-
tion, we used the Walsh-Hadamard transform (WHT) to develop a proto-
typical implementation. In this talk we review the WHT package, a self-
optimizing package for implementing the WHT, and discuss extensions of
the package used to obtain shared-memory and distributed memory paral-
lel implementations. The WHT transform corresponds to a matrix-vector
product and alternative algorithms can be obtained by factoring the WHT
matrix. By searching over alternate factorizations, we can systematically
explore different sequential and parallel implementations of the WHT.

∗This work was supported by DARPA through research grant DABT63-98-1-0004 ad-

ministered by the Army Directorate of Contracting.
†Department of Mathematics and Computer Science, Drexel University, Philadelphia,

PA 19104. email: jjohnson@mcs.drexel.edu

1



2 WHT Package

The Walsh-Hadamard transform of a signal x, of size N = 2n, is the matrix-
vector product WHTN · x, where

WHTN =
n⊗

i=1

DFT2 =

n
︷ ︸︸ ︷

DFT2⊗ · · · ⊗DFT2 .

The matrix

DFT2 =

[

1 1
1 −1

]

is the 2-point DFT matrix, and ⊗ denotes the tensor or Kronecker product.
Let n = n1 + · · ·+ nt, then

WHT2n =
t∏

i=1

(I
2

n1+···+ni−1⊗WHT2ni⊗I
2

ni+1+···+nt ) (1)

Equation 1 encapsulates Θ(αn/n3/2), where α = 4 +
√

8 ≈ 6.828427120,
alternative algorithms for computing the WHT. This equation provides a
mechanism for exploring different breakdown strategies and combinations
of recursion and iteration.

The WHT package [6] (available at http://www.ece.cmu.edu/∼spiral),
provides an environment for experimenting with alternative algorithms and
implementations for computing the WHT. Algorithm alternatives are repre-
sented syntactically using a grammar for describing the breakdown strategy.

W(n) ::= small[n] |

split[W(n1),...,W(nt)] # n=n1+...+nt

The nonterminal symbol W(n) gets expanded into a string, called a WHT ex-
pression, corresponding to an algorithm for computing WHT2n . Algorithms
are built up from the symbol small[n], which corresponds to a sequence of
unrolled straight-line code for computing WHT2n . Different code genera-
tors are provided to explore different unrolled code sequences. The string
split[W(n1),...,W(nt)] corresponds to an application of Equation 1.

Let N = N1 · · ·Nt, where Ni = 2ni , and let xM
b,s denote the vector

(x(b), x(b + s), . . . , x(b + (M − 1)s)). Then evaluation of x = WHTN · x
using Equation 1 is performed using

R = N ; S = 1;

for i = 1, . . . , t

2



R = R/Ni;

for j = 0, . . . , R− 1

for k = 0, . . . , S − 1

xNi

jNiS+k,S = WHTN · xNi

jNiS+k,S;

S = S ∗Ni;

3 Implementation Alternatives and Cache Utiliza-

tion

Computation of factors of the form (WHTn⊗I2m) access data at stride 2m

and this can lead to poor utilization of cache due to conflict misses and in-
efficient use of the cache line. Techniques to improve this situation involve
dynamically rearranging [11] the data and loop interleaving [2]. Both tech-
niques can be described using mathematical formulas and were introduced
into the WHT package by introducing additional the split nodes splitddl
and smallilw, where 0 ≤ w ≤ 5 is the interleaving factor.

Strided data access can be converted to sequential data access at the cost
of a runtime permutation called a stride permutation. This is accomplished
using the identity (Am⊗Bn) = Lmn

m (Bn⊗Am)Lmn
n , where LN

d is a permu-
tation matrix corresponding to matrix transposition of an N/d × d matrix
(see [8] for a discussion of matrix transposition algorithms expressed as fac-
torizations of the permutation matrix LN

d ). A splitddl node corresponds
to

WHT2n = L2n

2n2 (I2n1⊗WHT2n2 )L2n

2n1 (I2n1⊗WHT2n2 ), (2)

where n = n1 + n2. Alternative permutations P can be used instead of L in
Equation 2 which may lead to better implementations.

WHT2n = P−1(I2n1⊗WHT2n2 )P (I2n1⊗WHT2n2 ) (3)

Using the pseudo code following Equation 1, computation of WHTn⊗Im

repeatedly computes WHTn where data is accessed at stride m. This
may a cache line to be replaced before all elements are used. This sit-
uation can be alleviated by interleaving the computation of WHTn over
several iterations of the loop. In general WHT2n⊗I2m+k can be written as
(WHT2n⊗I2k)⊗I2m where the computation of (WHT2n⊗I2k), smallilk is
interleaved.

3



#begin parallel region
R = N;
S = 1;
id = get thread id();
num = get total thread();
for i = 1, . . . , t

R = R / Ni;
for id = id, . . . , R * S - 1, step = num

j = id / S;
k = id mod S;
xNi

jNiS+k,S = WHTNi
∗ xNi

jNiS+k,S;
S = S * Ni;
#parallel barrier

#end parallel region

Figure 1: Pseudo-code of a simple parallel WHT algorithm

4 SMP Implementation

On a shared-memory parallel computer multiple threads can be used to
compute the WHT tasks arising in the computation of split nodes. The
extension of the WHT package to shared-memory multiprocessors was in-
troduced in [3].

The parallel split node is similar to the split node except that the
work is distributed over a collection of parallel threads. Additional code is
required to create, manage, and synchronize the threads.

Figure 1 lists the pseudo-code, using OpenMP [10], of a simple parallel
WHT algorithm. The inner loop allocates the work (recursive WHT applica-
tions) for each stage in the factorization in Equation 1. Since the input from
each stage depends on the output from the previous stage, a barrier syn-
chronization is inserted between stages. Alternatively, new threads could be
created and joined each iteration of the outer loop with the use of a parallel
region. This would simplify the code, but would add substantial overhead
due to the repeated initialization of threads.

5 Distributed Memory Implementation

A distributed memory implementation of the WHT can be obtained by
partitioning the input vector amongst the processors and interpreting WHT

4



factorizations as distributed computations. The following equation naturally
suggests a distributed algorithm.

WHT2n =
t∏

i=1

L2n

2ni (I2n−ni⊗WHT2ni ) (4)

At the i-th stage, i = 1, . . . , t, each processor computes its share of the
WHT2ni computations arising in (I2n−ni⊗WHT2ni ). After the computa-
tions the data is permuted amongst the processors corresponding to the
permutation L2n

2ni . This computation is denoted by a dsplit node in the
WHT package.

Additional factorizations of the form

WHT2n =
t∏

i=1

Pi(I2n−ni⊗WHT2ni ), (5)

where Pi is a permutation are possible. Different sequences of permutations
Pi, i = 1, . . . , t may lead to different performance characteristics [4] and can
be explored by introducing generalized dsplit nodes in the WHT package.

References

[1] D. L. Dai, S. K. S. Gupta, S. D. Kaushik, J. H. Lu, R. V. Singh,
C.-H. Huang, P. Sadayappan, and R. W. Johnson. EXTENT: A
portable programming environment for designing and implementing
high-performance block recursive algorithms. In Supercomputing 1994,
pages 49–58, 1994.

[2] K.-S. Gatlin and L. Carter. Faster FFTs via architecture-cognizance.
In Proceedings of PACT 2000, October 2000.

[3] J. R. Johnson and K. Chen. A prototypical self-optimizing package
for parallel implementation of fast signal transforms. In International

Parallel and Distributed Processing Symposium, IPDPS 2002, 2002.

[4] J. R. Johnson, R. W. Johnson, C. Marshall, J. Mertz, D. Pryor, and
J. Weckel. Data flow, the fft, and the cray t3e. In SIAM Conference

on Parallel Processing for Scientific Computing, 1999.

[5] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri. A
methodology for designing, modifying, and implementing Fourier trans-
form algorithms on various architectures. Circuits, Systems, and Signal

Processing, 9(4):449–500, 1990.

5



[6] Jeremy Johnson and Markus Püschel. In search of the optimal Walsh-
Hadamard transform. ICASSP, 2000.

[7] R. W. Johnson, C.-H. Huang, and J. R. Johnson. Multilinear algebra
and parallel programming. J. Supercomputing, 5:189–218, 1991.

[8] S. D. Kaushik, C.-H. Huang, J. R. Johnson, R. W. Johnson, and P. Sa-
dayappan. Efficient transposition algorithms for large matrices. In
Supercomputing 1993, 1993.

[9] J. M. F. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna, and
M. M. Veloso. SPIRAL: Portable Library of Optimized Signal

Processing Algorithms, 1998. http://www.ece.cmu.edu/˜spiral.

[10] OpenMP. OpenMP C and C++ Application Pragram Interface, Version

1.0, 1998. http://www.openmp.org.

[11] Neungsoo Park and Viktor K. Prasanna. Cache conscious Walsh-
Hadamard transform. ICASSP, 2001.

6


