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1 Introduction

Algorithms for many important signal processing computations can be ex-
pressed using linear algebra. This allows alternative algorithms to be written
as mathematical formulas. Such formulas can be translated into efficient
programs and optimizing the implementation of an algorithm becomes a
search problem over the space of mathematical formulas representing the
desired computation. The SPIRAL project [9] utilizes this formulation to
automatically implement and optimize fast signal transforms.

SPIRAL can be extended to generate and optimize parallel implemen-
tations of fast signal transforms. Interpreting such formulas as parallel pro-
grams and utilizing formula manipulation to derive and optimize parallel
programs was suggested in [5, 7]. An early implementation of some of these
ideas was presented in [1].

As a precursor to extending SPIRAL to incorporate parallel computa-
tion, we used the Walsh-Hadamard transform (WHT) to develop a proto-
typical implementation. In this talk we review the WHT package, a self-
optimizing package for implementing the WHT, and discuss extensions of
the package used to obtain shared-memory and distributed memory paral-
lel implementations. The WHT transform corresponds to a matrix-vector
product and alternative algorithms can be obtained by factoring the WHT
matrix. By searching over alternate factorizations, we can systematically
explore different sequential and parallel implementations of the WHT.
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2 WHT Package

The Walsh-Hadamard transform of a signal x, of size N = 2", is the matrix-
vector product WHT y - x, where

n

n
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is the 2-point DFT matrix, and ® denotes the tensor or Kronecker product.
Let n=nq 4+ -+ 4+ ny, then
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Equation 1 encapsulates ©(a”/n3/?), where a = 4 + /8 ~ 6.828427120,
alternative algorithms for computing the WHT. This equation provides a
mechanism for exploring different breakdown strategies and combinations
of recursion and iteration.

The WHT package [6] (available at http://www.ece.cmu.edu/~spiral),
provides an environment for experimenting with alternative algorithms and
implementations for computing the WHT. Algorithm alternatives are repre-
sented syntactically using a grammar for describing the breakdown strategy.

W(n) ::= small[n] |
split[W(nl),...,W(nt)] # n=nl+...+nt

The nonterminal symbol W(n) gets expanded into a string, called a WHT ex-
pression, corresponding to an algorithm for computing WHTo». Algorithms
are built up from the symbol small[n], which corresponds to a sequence of
unrolled straight-line code for computing WHT2». Different code genera-
tors are provided to explore different unrolled code sequences. The string
split[W(n1),...,W(nt)] corresponds to an application of Equation 1.

Let N = Ny---N;, where N; = 2™ and let x,])‘/{s denote the vector
(x(b),z(b+s),...,x(b+ (M —1)s)). Then evaluation of z = WHT y - z
using Equation 1 is performed using

R=N; S=1,
fori=1,...,t



for j=0,...,R—1
for k=0,...,5—-1
N; N; .
TiNsk,s = WHIN - T8 644 o5
S =5 Ni;

3 Implementation Alternatives and Cache Utiliza-
tion

Computation of factors of the form (WHT, ®Ism) access data at stride 2™
and this can lead to poor utilization of cache due to conflict misses and in-
efficient use of the cache line. Techniques to improve this situation involve
dynamically rearranging [11] the data and loop interleaving [2]. Both tech-
niques can be described using mathematical formulas and were introduced
into the WHT package by introducing additional the split nodes splitddl
and smallilw, where 0 < w < 5 is the interleaving factor.

Strided data access can be converted to sequential data access at the cost
of a runtime permutation called a stride permutation. This is accomplished
using the identity (4,,®B,) = LT (B,®A;,) L™, where LY is a permu-
tation matrix corresponding to matrix transposition of an N/d x d matrix
(see [8] for a discussion of matrix transposition algorithms expressed as fac-
torizations of the permutation matrix Lflv ). A splitddl node corresponds
to

WHTy = L, (Imy @WHTgns ) Lan, (Inni @WHTans ), (2)

where n = nq + ny. Alternative permutations P can be used instead of L in
Equation 2 which may lead to better implementations.

WHTyn = P~ (Iyns @WHTgnz ) P(Ignt @WHTans) (3)

Using the pseudo code following Equation 1, computation of WHT,,®1,,
repeatedly computes WHT,, where data is accessed at stride m. This
may a cache line to be replaced before all elements are used. This sit-
uation can be alleviated by interleaving the computation of WHT,, over
several iterations of the loop. In general WHT 22 ®I5m+r can be written as
(WHTon®I5r)@I9m where the computation of (W HTon®I,:), smallilk is
interleaved.



#begin parallel region
R=N;

S=1;

id = get_thread_id();
num = get_total_thread();

fori=1,...,¢t
R=R /N
forid =1id, ..., R * S - 1, step = num
j=id/5;
k = id mod S;
xj'vjifiSJrk,s = WHTy, * x%@s%,s%
S=8S* Ni;

#parallel barrier
#end parallel region

Figure 1: Pseudo-code of a simple parallel WHT algorithm

4 SMP Implementation

On a shared-memory parallel computer multiple threads can be used to
compute the WHT tasks arising in the computation of split nodes. The
extension of the WHT package to shared-memory multiprocessors was in-
troduced in [3].

The parallel split node is similar to the split node except that the
work is distributed over a collection of parallel threads. Additional code is
required to create, manage, and synchronize the threads.

Figure 1 lists the pseudo-code, using OpenMP [10], of a simple parallel
WHT algorithm. The inner loop allocates the work (recursive WHT applica-
tions) for each stage in the factorization in Equation 1. Since the input from
each stage depends on the output from the previous stage, a barrier syn-
chronization is inserted between stages. Alternatively, new threads could be
created and joined each iteration of the outer loop with the use of a parallel
region. This would simplify the code, but would add substantial overhead
due to the repeated initialization of threads.

5 Distributed Memory Implementation

A distributed memory implementation of the WHT can be obtained by
partitioning the input vector amongst the processors and interpreting WHT



factorizations as distributed computations. The following equation naturally
suggests a distributed algorithm.

t

WHTy» = [[ L3n: (Iyn-n; @WHTyn; ) (4)
i=1
At the i-th stage, ¢ = 1,...,t, each processor computes its share of the

WHTyn; computations arising in (Ign—n, QWHT9n; ). After the computa-
tions the data is permuted amongst the processors corresponding to the
permutation L%Zi. This computation is denoted by a dsplit node in the
WHT package.

Additional factorizations of the form

¢
WHT2 = [[ Pi(Iyn-n @WHTgn;), (5)
i=1
where P; is a permutation are possible. Different sequences of permutations
P;,i=1,...,t may lead to different performance characteristics [4] and can
be explored by introducing generalized dsplit nodes in the WHT package.
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