
Lessons learned from the Shared Memory Parallelization
of a Functional Array Language

(Draft)

Clemens Grelck
University of Lübeck

Institute for Software Technology and Programming Languages
23569 Lübeck, Germany

grelck@isp.mu-luebeck.de

Abstract

This paper reports on the experiences made with the par-
allelization of a functional array language called SAC. The
high-level approach together with a side-effect free seman-
tics make it a good candidate for this purpose. In order to
realize the project with limited man power, shared memory
systems are selected as target architectures and the imple-
mentation based on PTHREADS. These choices allow reuse
of large parts of the existing compiler infrastructure as it
avoids explicit data decomposition.

In fact, this setting significantly simplified the creation
of an initial solution. However, with respect to perfor-
mance some architecture-specific pitfalls required careful
attention, namely multithreaded memory management and
the utilization of processor-private cache memories. These
problems are discussed and solutions are outlined. In the
end, it turned out that getting the right performance is at
least as challenging in this setting as it is with a distributed
memory target architecture.

1 Introduction

Functional programming languages are well-known for
providing a very high level of abstraction. With higher-
order functions, polymorphic type systems, implicit mem-
ory management, and functions which behave like mathe-
matical functions following a call-by-value parameter pass-
ing convention, they allow for concise program specifica-
tions close to mathematical notations. Organizational de-
tails of program execution are left to language implementa-
tions, i.e. to compilers and runtime systems. By ruling out
side-effects on a conceptual level and by defining program
semantics based on the principle of context-free substitu-
tions, functional programs usually are also considered ideal

candidates for parallel execution.
However, program parallelization is usually motivated

by the need to increase the runtime performance of pro-
grams beyond what can be accomplished by sequential ex-
ecution on a single processor. To justify the additional ef-
fort both in hardware and in software, parallelization only
makes sense for certain performance-critical application do-
mains and it must start out from the basis of excellent se-
quential performance characteristics.

Unfortunately, functional programming is less well-
known for these two aspects. All the programming ameni-
ties mentioned before have their price in terms of runtime
overhead. Even more important, traditional parallel or high
performance computing is dominated by array processing,
whereas functional programming focuses on lists and trees
as prevailing data structures. Hence, apart from the gener-
ally high level of abstraction, their support for array pro-
cessing is often limited. Much worse, their runtime per-
formance turns out to be clearly inferior to what is accom-
plished by imperative programs in uniprocessor environ-
ments [16, 15].

Unfortunately, this is not only an implementation prob-
lem, but, to some extent, inherent to the programming
paradigm. Conceptually, functions consume arguments and
create values from scratch. For small data objects this can
be implemented fairly efficiently. However, operations on
large homogeneous arrays which “change” just a few array
elements should be performed destructively, whenever pos-
sible. Otherwise, large amounts of data would have to be
copied, thus considerably degrading runtime performance
with increasing array sizes.

Some functional languages, e.g. ML or ID, try to circum-
vent this problem by introducing arrays as non-functional,
stateful data structures [23, 2] and by providing side-
effecting operations on them. Though this approach al-
lows for reasonable runtime performance characteristics, it

1

mostly sacrifices the idea of high-level programming as far
as arrays are involved, e.g., arrays have to be allocated,
copied, and removed explicitly.

Languages which follow a lazy evaluation regime like
CLEAN or HASKELL encounter some specific pitfalls with
respect to efficient array processing. Whenever strictness
cannot be inferred, several slightly modified versions of
an array may have to be held simultaneously in differ-
ent environments resulting in an explosion of memory re-
quirements. Furthermore, the usage of garbage collectors
rules out destructive implementations of array operations
since it is generally undecidable whether or not additional
references to argument arrays exist. The sole remedy to
these problems is to implement arrays based on language
facilities for the functionally sound realization of states,
e.g. uniqueness types [34] or state monads [36, 19]. Both
mechanisms guarantee that at most one reference to an ar-
ray exists, and, hence, operations can always be performed
destructively [20]. However, once again, a more low-level,
imperative-like programming style is the consequence [33].

Very few functional languages are specifically designed
with array processing in mind. After the development of
Sisal [22, 4] has come to an end, SAC or Single Assignment
C[30] seems to be the most recent approach. SAC clearly
builds upon the achievements of Sisal, yet it tries to allevi-
ate some of its shortcomings and generally allows for sig-
nificantly more abstract program specifications.

Unlike Sisal, SAC supports truly multi-dimensional ar-
rays. Memory management for arrays again is based on
reference counting [6, 7], which permits destructive imple-
mentations of array operations in certain situations. SAC
provides only a few basic operations on arrays as built-in
functions. In contrast, all aggregate array operations are
specified by means of a SAC-specific array comprehension,
the so-called WITH-loop, in SAC itself. They permit speci-
fications which completely abstract from the dimensionali-
ties of the arrays involved. Moreover, SAC allows to embed
such general specifications within functions which are ap-
plicable to arrays of any dimensionality and size.

In fact, a similar functionality as provided by
Fortran-90/95 or by interpreted array languages, e.g. APL or
NIAL [18] can be implemented in SAC with almost no loss
of generality [13]. This allows to adopt an APL-like pro-
gramming style which constructs application programs by
nesting pre-defined high-level, general-purpose array oper-
ations, whereas these basic building blocks themselves are
implemented by means of WITH-loops.

Whenever during program development such an opera-
tion is found to be missing, it can easily be added to the
repertoire and reused in future projects. A comprehensive
selection of standard array operations is already provided as
a library. Being implemented in the language itself rather
than hard-wired into the compiler, they are easier to main-

tain, to extend, and to customize for varying requirements.
Notwithstanding the considerably higher level of ab-

straction, SAC has demonstrated its potential of outper-
forming Sisal as well as Fortran-77 in uniprocessor environ-
ments [29, 32]. Hence, SAC basically meets the aforemen-
tioned requirements for being an interesting candidate for
parallelization. Typical SAC programs can be expected to
spend considerable portions of their execution times in ar-
ray operations. Since in SAC almost all such operations, in
one way or another, boil down to nestings of WITH-loops in
intermediate program representations, all efforts to generate
concurrently executable code can be directed to this single
language construct. Furthermore, preceding optimization
steps [31, 32] often result in WITH-loops whose computa-
tional complexities per element exceed that of typical built-
in aggregate array operations known from other languages.

Today, almost all high-level approaches in the field of
parallel programming rely on MPI for their realization.
Abiding to the leading industry standard ensures portabil-
ity across a wide range of architectures. However, mes-
sage passing inherently is a distributed memory program-
ming paradigm. Shared memory systems are only indirectly
supported by specific implementations of message passing
routines, but the shared memory is not exposed at the pro-
gramming level. This unnecessary indirection is likely to
introduce additional overhead which could be avoided by a
dedicated solution.

With the advent of processor-specific hierarchies of large
and fast cache memories and the development from a phys-
ically shared memory to a shared address space on top of
physically distributed memory shared memory multiproces-
sors have become an increasingly popular and wide-spread
class of machines in recent years. The concept of hav-
ing multiple threads of control within the shared address
space of a single process perfectly matches this architecture.
Therefore, the POSIX multithreading standard PTHREADS

[17] is selected as a compilation target to ensure portabil-
ity across different concrete machine implementations and
operating systems.

However, the commitment to shared memory architec-
tures also provides some concrete benefits for supporting
parallel program execution. For instance, the existing inter-
nal representation of arrays may be adopted without modifi-
cation, as an explicit data decomposition is obsolete. Hence,
integral parts of the existing compiler framework can be
reused, thus reducing precious man power.

The paper is organized as follows. Section 2 provides a
very brief introduction into SAC. The compilation of SAC
program specifications into multithreaded code is outlined
in Section 3. Unfortunately, some specific pitfalls apply
to achieving high performance on shared memory systems.
They are addressed in Sections 4 and 5. Finally, Section 6
draws some conclusions.

2

2 SAC — Single Assignment C

The core language of SAC is a functional subset of C, a
design which aims at simplifying adaptation for program-
mers with a background in imperative programming. This
kernel is extended by multidimensional arrays as first class
objects. With implicit memory management and a strict
call-by-value semantics for function applications SAC al-
lows for high-level array processing in the style of APL.

bool continue(double[+] A,
double[+] A_old,
double eps)

{
return(any(abs(A - A_old) >= eps));

}

Figure 1. SAC example: convergence test.

As an example, Fig. 1 shows a SAC implementation of
the termination condition of some iterative algorithm. It
takes two double precision floating point number arrays of
arbitrary (but equal) shape (double[+]) and yields true
as long as for any array element the absolute difference be-
tween its current and its old value exceeds the given conver-
gence criterion eps.

What distinguishes SAC from other array languages is
basically twofold. First, SAC allows for function abstrac-
tions on arrays of arbitrary shape, including varying num-
bers of dimensions. Second, almost all basic array opera-
tions, e.g. those shown in Fig. 1, are not hard-wired into the
language as primitive operations, but they are implemented
in SAC themselves based on a versatile array comprehen-
sion construct, the WITH-loop.

double[+] abs(double[+] A)
{

res = with (. <= iv <= .)
{
if (A[iv] < 0.0) val = -A[iv]
else val = A[iv]

}
genarray(shape(A), val)

return(res);
}

Figure 2. SAC implementation of abs.

Fig. 2 shows the SAC implementation of the function
abs used in the previous example. It consists of a single
WITH-loop which creates a new array of the same shape
as the argument array A. For each of its index positions,
represented by the variable iv, the body is evaluated, and
the result array is initialized accordingly.

More complex generators, i.e. the expression follow-
ing the key word with, allow to restrict operations
to subranges of arrays as well as to periodic grids.
Moreover, additional WITH-loop variants may be used
for manipulating existing arrays as well as for realiz-
ing reduction operations. More information on pro-
gramming in SAC may be found in [14, 11] or at
http://www.informatik.uni-kiel.de/� sacbase/.

3 Compilation into Multithreaded Code

Being a dedicated array language, it is reasonable to as-
sume that typical SAC programs spend almost all of their
execution time in compound array operations. Moreover,
these compound array operations in one way or the other
are all implemented in SAC itself by means of WITH-loops.
Hence, all effort in compilation may be directed to this sin-
gle language construct. The WITH-loop itself is extremely
well-suited for parallel execution as it defines a new array
whose elements may be computed independently of each
other by definition.

Additionally, the commitment to shared memory archi-
tectures and multithreading as underlying organizational
layer renders explicit data decomposition obsolete. In con-
junction, these design choices allow for a fairly straightfor-
ward compilation scheme, as illustrated in Fig. 3.

Even if compiled for multithreaded execution, SAC pro-
grams are generally executed sequentially by a single thread
of control. Only when it comes to execution of a WITH-
loop and after allocation of memory for storing the com-
plete result array, additional worker threads are created.
Each worker thread first identifies a rectangular subrange
of the iteration space covered by the WITH-loop. This is
done using one of several interchangeable work distribution
schemes. After that, worker threads compute and initial-
ize pairwise disjoint parts of the result array. Facilities to
repeatedly assign subarrays to the same worker thread, as
indicated by the dashed arrows in Fig. 3, allow for includ-
ing dynamic load balancing schemes. Having completed its
individual share of work each thread runs upon a final syn-
chronization barrier and terminates. With all worker threads
being finished, the master thread resumes control and con-
tinues execution of the remaining program again in a se-
quential manner.

The compilation scheme sketched out so far directly
leads to a classical fork/join execution model, as illustrated
in Fig. 4a. Unfortunately, the repeated creation and termi-
nation of a possibly large number of threads during the exe-
cution of a program turns out to be too costly to be efficient
in practice. Therefore, a more complex enhanced fork/join
execution model, as shown in Fig. 4b, is used instead. With-
out sacrificing the simplicity of the simple fork/join model
on a conceptual level, all worker threads are created right

3

subarray
= SELECT_SUBARRAY(tid);

LOOP_NESTING(iv:
{ A[iv] = ...}

, shp)

subarray
= SELECT_SUBARRAY(tid);

subarray
{ A[iv] = ...}

subarray, shp)LOOP_NESTING(iv:

A = ALLOCATE_ARRAY (shp);

FORK_THREADS(0 <= tid < MAX);

JOIN_THREADS(0 <= tid < MAX);

Figure 3. Compiling WITH-loops into multithreaded code.

pr
og

ra
m

 e
xe

cu
tio

n

pr
og

ra
m

 e
xe

cu
tio

njoin

fork

fork

join

fork

join

start barrier

stop barrier

start barrier

thread creation

thread termination

eliminated barrier

stop barrier

a) fork/join model b) enhanced fork/join model

Figure 4. Multithreaded execution models.

after program execution starts and stay alive until the en-
tire program terminates. Intermediate thread creations and
terminations are replaced by tailor-made start and stop bar-
riers. They are implemented solely by exploiting proper-
ties of underlying hardware cache coherence protocols and,
hence, are fairly efficient.

However, even the most efficient barrier construct con-
stitutes runtime overhead. Therefore, it is desirable to com-
pletely eliminate barriers between consecutive WITH-loops
wherever data dependencies allow. This does not only save
the time associated with executing the barrier code itself,
but workload imbalances between consecutive WITH-loops
are likely to compensate each other, as indicated in Fig. 4b.
Here, the high-level functional approach pays off. With a
semantics that completely avoids side-effects exact data de-
pendencies can be identified with only modest effort.

With such a fine-tuned compilation scheme and runtime
system reasonable speedups should be achievable for typi-

cal compound operations on arrays of suitable size. In fact,
simple experiments back this assumption. For example,
Fig. 5 shows speedups achieved by the multithreaded com-
putation of the sum of all elements of a reasonably sized
matrix relative to code compiled for sequential execution
from the same source. The test system here as well as in all
other experiments described in this paper is a 12-processor
SUN Ultra Enterprise 4000 running SOLARIS-7.

4 Dynamic Memory Management

The performance data achieved by the parallel execution
of the sum operation, as shown in Fig. 5, demonstrate that
compilation scheme and runtime system support described
in the previous section are well-suited to reach the goal of
reasonable performance improvements with zero additional
effort on the programmer’s side. Unfortunately this obser-
vation does not hold for the general case. Fig. 6 shows

4

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10

S
pe

ed
up

s
re

la
tiv

e
to

 s
in

gl
e

pr
oc

es
so

r
pe

rf
or

m
an

ce
.

Number of processors involved.

Figure 5. Speedup for computing sum of array
elements.

“speedup” values achieved by a very similar operation: in-
stead of summing up all elements of a matrix, they are only
added row-wise yielding a vector of results. With a matrix
of the same size as in the first experiment, this operation in-
curs almost the same number of machine instructions; par-
allel execution is just as trivial as in the first case. However,
the observed performance gains achieved by parallel exe-
cution are nothing but disappointing: with every additional
processor used the absolute program runtime grows.

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10

S
pe

ed
up

s
re

la
tiv

e
to

 s
in

gl
e

pr
oc

es
so

r
pe

rf
or

m
an

ce
.

Number of processors involved.

Figure 6. Speedup for computing row-wise
sum of array elements.

So, the question is what is the fundamental difference
between these two operations which are so similar at first
glance, yet yield so different performance figures? Hav-
ing a look at the two implementations reveals that the lat-
ter uses two nested WITH-loops, whereas the former does
with a single one. Knowledge of their compilation into host
machine code indicates that nested WITH-loops result in
memory allocation/de-allocation operations during the mul-
tithreaded execution of the outer WITH-loop. In contrast,
the first version of sum completely avoids memory manage-

ment during multithreaded execution. These observations
seem to be very SAC-specific at first. However, it is quite
reasonable to assume that applications which are more com-
plex and hence more realistic than the two versions of sum
addressed here, are very likely to incur substantial memory
management operations during multithreaded execution.

In SAC, as in other high-level languages, memory man-
agement for compound data structures like arrays is per-
formed implicitly by the compiler and the runtime system.
For this purpose, SAC uses a so-called reference count-
ing scheme. Whenever memory for the creation of an ar-
ray is allocated, it is associated with an additional refer-
ence counter which keeps track of the number of active
references to this array. Special reference counting oper-
ations inserted by the compiler increment and decrement
this counter during the lifetime of the array to keep track of
varying numbers of references. As soon as the last reference
becomes obsolete, all memory associated with the array —
including its reference counter — is de-allocated.

Although this scheme incurs some additional overhead
at runtime for managing reference counters, its advantages
over alternatives, e.g. various forms of garbage collection,
are persuasive in the context of arrays. First, precious mem-
ory can be reclaimed as soon as possible. Second, and even
more important, any array with only a single remaining ref-
erence can be subject to a destructively implemented array
operation without compromising the functional semantics.

Going back to the experiments which led to the diverg-
ing speedup graphs shown in Fig. 5 and in Fig. 6, it turns
out that not reference counting itself can be made responsi-
ble for the observations. In fact, it is the allocation and de-
allocation of memory (triggered by the reference counting
mechanism) which causes the problems. In a multithreaded
environment all threads share the same heap. However, the
execution model, shown in Fig. 4, ensures that threads al-
ways write to pairwise disjoint memory locations while read
operations to identical locations do not harm.

Unfortunately, the same is not true for operations modi-
fying the internal structure of the heap, as any call to mal-
loc or free does. In order to guarantee the integrity of
internal heap data structures in the presence of multiple con-
current threads, access must be made single-threaded by
means of critical regions. This is done by implementors of
standard memory allocators to achieve correct behaviour in
multithreaded environments. Unfortunately, this may seri-
alize parallel execution through the back door though at the
expense of severe runtime overhead. The associated perfor-
mance impact can be observed in Fig. 6.

This frustrating experience led to the design and imple-
mentation of a new memory allocator tailor-made for the
multithreaded runtime system of SAC and tightly integrated
into it. Its basic organization is characterized by a hierar-
chy of multiple nested heaps, as sketched out in Fig. 7. At

5

local heaplarge data local heap

local heap

global heap

data data
chunk

smallsmall
data
chunk

small

chunk

chunk

Figure 7. Organization of SAC heap manager.

the top of the hierarchy is a single global heap, which con-
trols the entire address space of the process. It may grow or
shrink during program execution, as additional memory is
requested from the operating system or unused memory is
released to it. Nevertheless, the global heap always repre-
sents a contiguous memory address space.

However, only relatively large chunks of memory are di-
rectly allocated from the global heap. Memory requests be-
low some threshold size are satisfied from one of possibly
several local heaps. A local heap is a contiguous piece of
memory with a fixed size, which in turn is allocated from
the global heap. Even more important: each thread is asso-
ciated with its individual local heap(s).

This organization addresses both scalability and false
sharing. On the one hand, each thread may allocate and
de-allocate arrays of up to a certain size without any interac-
tion with other threads. On the other hand, small amounts of
memory are guaranteed to be allocated from different parts
of the address space if requested by different threads. Fur-
thermore, housekeeping data structures for maintaining lo-
cal heaps are kept separate by different threads. This allows
to keep them in processor-specific cache memories without
invalidation by the cache coherency mechanism.

Access to the global heap still needs protection by means
of synchronization primitives. However, their impact on
runtime performance and scalability is negligible primar-
ily for two reasons. On the one hand, expensive locking
may actually be avoided in many cases because execution is
known to be in single-threaded mode, anyways (cf. Fig. 4).
On the other hand, runtime overhead inflicted by requests
for large amounts of memory is amortized over the concur-
rent initialization of relatively many array elements.

Unfortunately, the concept of local heaps is not without
drawbacks either. Since any thread must allocate at least
one entire local heap regardless of its actual memory de-
mands (which might be much less), memory fragmenta-
tion is increased. While this concept is clearly inappro-
priate for general-purpose allocators, the additional mem-

ory fragmentation seems to be acceptable in the context
of SAC because the number of threads is limited by the
number of processors available and, thus, remains rather
small. Moreover, the data parallel approach taken by SAC
definitely rules out certain allocation/de-allocation patterns
which must be addressed by general-purpose allocators,
e.g. the producer/consumer pattern, where some threads
predominantly allocate memory whereas others predomi-
nantly de-allocate memory previously allocated by the for-
mer ones. In fact, the multithreaded execution model de-
scribed in Section 3 guarantees that any memory allocated
by one thread will be de-allocated by the same thread.

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10

S
pe

ed
up

 r
el

at
iv

e
to

 s
eq

ue
nt

ia
l e

xe
cu

tio
n.

Number of processors involved.

Class A:
SAC with private allocator
SAC with standard allocator
Fortran-77

Figure 8. NAS benchmark MG.

Experiments involving more realistic code, i.e. SAC im-
plementations of the NAS benchmarks MG and FT whose
performance graphs are shwon in Fig.8 and in Fig.9, respec-
tively, back the decision of implementing a specific memory
allocator. They also demonstrate the huge impact of mem-
ory management overhead on runtime performance in the
context of high-level programming environments.

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10

S
pe

ed
up

 r
el

at
iv

e
to

 s
eq

ue
nt

ia
l e

xe
cu

tio
n.

Number of processors involved.

Class A:
SAC with private allocator
SAC with standard allocator
Fortran-77

Figure 9. NAS benchmark FT.

Still, the question remains why didn’t we simply take
an off-the-shelf multithreaded memory allocator? The an-
swer basically is twofold. The simple part is that when

6

we first discovered the problem, suitable general-purpose
multithreaded memory allocators were simply not available.
This situation has changed meanwhile [3, 35]. Neverthe-
less, and this is the second part of the answer, a dedicated
memory allocator may exploit specific knowledge both con-
cerning general properties of the execution model as well as
any other information dynamically available to the runtime
system. Furthermore, the closer integration of the mem-
ory allocator into the runtime system allows to exploit com-
pile time information on the code, e.g. memory chunk sizes,
within the allocation and de-allocation routines.

5 Cache Utilization

It is well-known that data locality is a key issue for
achieving high performance in multiprocessor environ-
ments [5, 21, 24]. On shared memory architectures efficient
utilization of processor-specific hierarchies of cache memo-
ries is absolutely crucial. Any failure to satisfy memory re-
quests from one of the cache memories does not only incur
considerably slower main memory accesses. Compared to
uniprocessor systems, the performance penalty associated
with a main memory access typically is significantly higher.
Depending on the concrete memory interface design data
may have to be fetched from a remote node in physically
distributed shared memory systems. In general, memory
access times suffer from a much more complex hardware
logic. Moreover, in one way or another, all processors com-
pete for limited bandwidth resources. Hence, failure to ef-
ficiently exploit processor-specific cache memories usually
results in very limited scalability and poor overall perfor-
mance.

In order to illustrate and quantify the performance im-
pact of varying degrees of cache utilization, we have made
some experiments with a typical numerical application ker-
nel: relaxation on a 3-dimensional grid with fixed boundary
conditions. The same (compiled) SAC code is applied to
grids of different size; more precisely, the cubic grids in-
volved are varied from 163 to 5283 elements in steps of 16
elements in each dimension. With double precision float-
ing point numbers, this involves array sizes between 32KB
and 1.1GB. The experiments are again performed on a SUN
Ultra Enterprise 4000 system; their results are shown in
Fig. 10. Startup overhead, which turns out to be significant
for larger problem sizes, is eliminated from these figures by
running each problem size with two different numbers of
iterations. Then, the difference in iterations as well as the
difference in measured execution times are taken to derive
the average time needed to re-compute a single inner grid
element. This guarantees to compare the runtime perfor-
mance achieved with extremely different problem sizes on
a reasonably fair basis.

It can be observed that the times required to re-compute

a single inner grid element considerably vary among the
problem sizes investigated. While 120nsec are sufficient
to update an inner element of a grid of size 163, it takes
up to 838nsec to complete the same operation in a grid of
size 2563 or 5123. Although the same sequence of instruc-
tions is executed regardless of the problem size, the time
required to do so varies by a factor of about 7 among the
problem sizes investigated. Even when ignoring the three
extremely poorly performing problem sizes 643, 2563, and
5123, a rather monotonous increase in program execution
times can be observed. This alone accounts for a factor of
2.25 between the smallest problem size 163 and the largest
one, i.e. 5283.

Various optimization techniques have been developed in
the context of Fortran-77 which aim at improving cache uti-
lization [1, 28, 27]. Basically, they fall into one of two cat-
egories. Either the iteration order in loop nestings is ma-
nipulated or the memory layout. Examples for the former
category are the unimodular transformations or tiling; ex-
amples for the latter kind are internal and external padding
[25, 26]. Unfortunately, these optimization techniques are
not without problems. Their application as well as certain
parameters like tile or pad sizes have to be chosen very care-
fully. Inappropriate selections may significantly slow down
program execution.

However, even before dealing with these considerations
compilers must prove that iteration reordering or memory
layout manipulations do not affect the meaning of the code.
In low-level scalar languages, which are characterized by
guaranteeing certain iteration orders and data representa-
tions, this prerequisite often prevents successful optimiza-
tions. At this point the design of high-level approaches
clearly pays off. For example, SAC makes no assumptions
on the representation of arrays in memory. Similarly, WITH-
loops represent complex multi-dimensional iteration spaces
without any explicit order. Moreover, a functional, side-
effect free semantics simplifies the exact identification of
array access patterns.

Exploiting these conceptual advantages, the SAC com-
piler addresses cache issues in four different ways. First,
code generation for WITH-loops aims at achieving unit-
stride memory accesses wherever feasible. Considering the
potential complexity of WITH-loops, this turned out to be
a challenging task [12]. Nevertheless, iteration space tiling
is known to yield even better performance figures. There-
fore, tiled code may be generated for WITH-loops based on
a tailor-made tile size inference heuristics [9].

With respect to memory data layout, arrays in SAC
are implicitly padded internally whenever another com-
piler heuristics considers padding suitable [8, 10]. In con-
trast, external padding as in Fortran-77 is no option for
a high-level array programming environment. Whereas
Fortran-77 provides a static overall memory layout, high-

7

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

T
im

e
to

 r
ec

om
pu

te
 o

ne
 in

ne
r

ar
ra

y
el

em
en

t i
n

ns
ec

Problem size, edge length of cubic array.

Figure 10. Performance impact of cache memories.

level approaches are typically characterized by highly dy-
namic memory requirements, which render global memory
layout planning unfeasible. As a remedy, SAC applies so-
called array placement [9]. Whenever a new array is com-
puted based on existing ones, its newly allocated memory
base address is carefully chosen to avoid cache conflicts at
least in this operation.

In conjunction, these optimizations turn out to be quite
successful in improving the average cache utilization and,
hence, the overall runtime performance of SAC programs.
Repeating the initial experiments with cache optimizations
enabled yields the performance data shown in Fig. 11.

6 Conclusion

This paper reports on the experiences made by paralleliz-
ing the functional array language SAC. Instead of going the
paved path of compiling SAC programs to MPI, PTHREADS

was chosen as compilation target. This decision excludes
distributed memory architectures for the time being, but it
also allows to directly support shared memory system with-
out the detour of a distributed memory programming model.
As the commitment to shared memory architectures renders
explicit data decomposition obsolete and allows to reuse the
memory data layout used for sequential execution, the com-
pilation effort is significantly reduced.

For similar reasons shared memory parallelization is of-
ten considered to be less challenging compared to the de-
velopment of message passing backends. Indeed, the time
to create the first successfully parallelizing compiler ver-
sion was relatively short. However, achieving the desired
speedups in program execution turned out to be a much

more challenging task. A highly-tuned runtime system
which avoids superfluous synchronizations and uses very
efficient means for the remaining ones proved to be insuffi-
cient to yield reasonable performance figures in many cases.

Two problems characteristic to shared memory architec-
tures had to be solved first. Whenever multiple threads of
control concurrently issue memory management requests,
they have to be satisfied from the same shared heap. With
traditional memory allocators this results in severe perfor-
mance degradation because access to internal heap data
structures must be single-threaded to ensure their integrity,
hence serializing program execution through the back door.
Only the development of a specialized memory allocator,
which is integrated into the multithreaded runtime system,
allowed to achieve satisfying runtime performance values.

In shared memory systems, processor private cache
memories represent the only “local” source of data, i.e. data
which can be read though not even written without interac-
tion with other processors. As a consequence, their efficient
utilization is even more important for scalability and over-
all performance on shared memory systems as it is on dis-
tributed memory architectures. Several optimization tech-
niques to this effect had to be incorporated into the compiler
without which runtime performance often remains poor.

After all, the essence of this project is that PTHREADS

is well-suited as a compilation target for shared memory
architectures. However, achieving good speedups is about
as challenging as with message passing. Although coming
up with an initial solution is considerably more straightfor-
ward, it takes a lot more than that to actually succeed with
respect to the runtime performance achieved.

8

100

125

150

175

200

225

250

275

300

325

350

375

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

T
im

e
to

 r
ec

om
pu

te
 o

ne
 in

ne
r

gr
id

 p
oi

nt
 in

 n
se

c

Problem size, edge length of cubic grid.

Figure 11. Performance impact of cache Optimizations.

References

[1] U. Banerjee. Unimodular Transformations of Double Loops.
In Proceedings of the 3rd International Workshop on Ad-
vances in Languages and Compilers for Parallel Processing
(PCPC’90), Irvine, California, USA, pages 192–219, 1990.

[2] P. Barth, R. Nikhil, and Arvind. M-Structures: Extending
a Parallel, Non-Strict Functional Language with State. In
Proceedings of the Conference on Functional Programming
Languages and Computer Architecture (FPCA’91), Cam-
bridge, Massachusetts, USA, volume 523 of Lecture Notes in
Computer Science, pages 538–568. Springer-Verlag, Berlin,
Germany, 1991.

[3] E. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard:
A Scalable Memory Allocator for Multithreaded Applica-
tions. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS-IX), Cambridge, Massachusetts,
USA, volume 35 of SIGPLAN Notices, pages 117–128.
ACM Press, 2000.

[4] A. Böhm, D. Cann, R. Oldehoeft, and J. Feo. SISAL Ref-
erence Manual Language Version 2.0. CS 91-118, Colorado
State University, Fort Collins, Colorado, USA, 1991.

[5] W. Bolosky, M. Scott, R. Fitzgerald, R. Fowler, and A. Cox.
NUMA Policies and their Relation to Memory Architecture.
In Proceedings of the 4th International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems (ASPLOS-IV), Palo Alto, California, USA, vol-
ume 26 of SIGPLAN Notices, pages 212–221. ACM Press,
1991.

[6] D. Cann. Compilation Techniques for High Performance
Applicative Computation. Technical Report CS-89-108,
Lawrence Livermore National Laboratory, Livermore, Cali-
fornia, USA, 1989.

[7] S. Fitzgerald and R. Oldehoeft. Update-in-place Analy-
sis for True Multidimensional Arrays. In A. Böhm and

J. Feo, editors, Proceedings of the Conference on High Per-
formance Functional Computing (HPFC’95), Denver, Col-
orado, USA, pages 105–118. Lawrence Livermore National
Laboratory, Livermore, California, USA, 1995.

[8] C. Grelck. Array Padding in the Functional Language SAC.
In H. Arabnia, editor, Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’00), Las Vegas, Nevada, USA,
volume 5, pages 2553–2560. CSREA Press, 2000.

[9] C. Grelck. Implicit Shared Memory Multiprocessor Support
for the Functional Programming Language SAC — Single
Assignment C. PhD thesis, Institute for Computer Science
and Applied Mathematics, University of Kiel, Germany,
2001. Logos Verlag, Berlin, 2001.

[10] C. Grelck. Improving Cache Effectiveness through Array
Data Layout in SAC. In M. Mohnen and P. Koopman, ed-
itors, Proceedings of the 12th International Workshop on
Implementation of Functional Languages (IFL’00), Aachen,
Germany, selected papers, volume 2011 of Lecture Notes in
Computer Science, pages 231–248. Springer-Verlag, Berlin,
Germany, 2001.

[11] C. Grelck. Implementing the NAS Benchmark MG in
SAC. In Proceedings of the 16th International Parallel and
Distributed Processing Symposium (IPDPS’02), Fort Laud-
erdale, Florida, USA. IEEE Computer Society Press, 2002.

[12] C. Grelck, D. Kreye, and S.-B. Scholz. On Code Genera-
tion for Multi-Generator WITH-Loops in SAC. In P. Koop-
man and C. Clack, editors, Proceedings of the 11th Inter-
national Workshop on Implementation of Functional Lan-
guages (IFL’99), Lochem, The Netherlands, selected papers,
volume 1868 of Lecture Notes in Computer Science, pages
77–94. Springer-Verlag, Berlin, Germany, 2000.

[13] C. Grelck and S.-B. Scholz. Accelerating APL Programs
with SAC. In O. Lefevre, editor, Proceedings of the
International Conference on Array Processing Languages

9

(APL’99), Scranton, Pennsylvania, USA, volume 29 of APL
Quote Quad, pages 50–57. ACM Press, 1999.

[14] C. Grelck and S.-B. Scholz. HPF vs. SAC — A Case Study.
In A. Bode, T. Ludwig, W. Karl, and R. Wismüller, edi-
tors, Proceedings of the 6th European Conference on Par-
allel Processing (Euro-Par’00), Munich, Germany, volume
1900 of Lecture Notes in Computer Science, pages 620–624.
Springer-Verlag, Berlin, Germany, 2000.

[15] J. Hammes, S. Sur, and W. Böhm. On the Effectiveness of
Functional Language Features: NAS Benchmark FT. Jour-
nal of Functional Programming, 7(1):103–123, 1997.

[16] P. Hartel et al. Benchmarking Implementations of Func-
tional Languages with “Pseudoknot”, a Float-Intensive
Benchmark. Journal of Functional Programming, 6(4),
1996.

[17] Institute of Electrical and Electronic Engineers, Inc. Infor-
mation Technology — Portable Operating Systems Interface
(POSIX) — Part: System Application Program Interface
(API) — Amendment 2: Threads Extension [C Language].
IEEE Standard 1003.1c–1995, IEEE, New York City, New
York, USA, 1995. also ISO/IEC 9945-1:1990b.

[18] M. Jenkins and W. Jenkins. The Q’Nial Language and Ref-
erence Manual. Nial Systems Ltd., Ottawa, Canada, 1993.

[19] S. P. Jones and P. Wadler. Imperative Functional Program-
ming. In Proceedings of the 20th ACM Symposium on Prin-
ciples of Programming Languages (POPL’93), Charleston,
South Carolina, USA, pages 71–84. ACM Press, 1993.

[20] J. Launchbury and S. P. Jones. Lazy Functional State
Threads. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion (PLDI’94), Orlando, Florida, USA, volume 29 of SIG-
PLAN Notices, pages 24–35. ACM Press, 1994.

[21] E. Markatos and T. LeBlanc. Load Balancing versus Lo-
cality Management in Shared-Memory Multiprocessors. In
Proceedings of the 21st International Conference on Paral-
lel Processing (ICPP’92), St. Charles, Illinois, USA, 1992.

[22] J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft,
et al. Sisal: Streams and Iteration in a Single Assign-
ment Language: Reference Manual Version 1.2. M 146,
Lawrence Livermore National Laboratory, Livermore, Cali-
fornia, USA, 1985.

[23] R. Milner, M. Tofte, and R. Harper. The Definition of Stan-
dard ML. MIT Press, Cambridge, Massachusetts, USA,
1990.

[24] T. Mowry, M. Lam, and A. Gupta. Design and Evaluation of
a Compiler Algorithm for Prefetching. In Proceedings of the
5th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
V), Boston, Massachusetts, USA, volume 27 of SIGPLAN
Notices, pages 62–73. ACM Press, 1992.

[25] P. Panda, H. Nakamura, N. Dutt, and A.Nicolau. A Data
Alignment Technique for Improving Cache Performance. In
Proceedings of the International Conference on Computer
Design: VLSI in Computers and Processors (ICCD’95),
Austin, Texas, USA, pages 587–592. IEEE Computer Society
Press, 1997.

[26] G. Rivera and C.-W. Tseng. Data Transformations for Elim-
inating Conflict Misses. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and

Implementation (PLDI’98), Montréal, Canada, volume 33
of ACM SIGPLAN Notices, pages 38–49. ACM Press, 1998.

[27] R. Saavedra, W. Mao, D. Park, J. Chame, and S. Moon.
The Combined Effectiveness of Unimodular Transforma-
tions, Tiling, and Software Prefetching. In Proceedings
of the 10th International Parallel Processing Symposium
(IPPS’96), Honolulu, Hawaii, USA, pages 39–45, 1996.

[28] V. Sarkar and R. Thekkath. A General Framework for
Iteration-Reordering Loop Transformations. In Proceedings
of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’92), San Fran-
cisco, California, USA, volume 27 of SIGPLAN Notices,
pages 175–187. ACM Press, 1992.

[29] S.-B. Scholz. On Programming Scientific Applications in
SAC - A Functional Language Extended by a Subsystem for
High-Level Array Operations. In W. Kluge, editor, Proceed-
ings of the 8th International Workshop on Implementation of
Functional Languages (IFL’96), Bonn, Germany, selected
papers, volume 1268 of Lecture Notes in Computer Science,
pages 85–104. Springer-Verlag, Berlin, Germany, 1997.

[30] S.-B. Scholz. On Defining Application-Specific High-Level
Array Operations by Means of Shape-Invariant Program-
ming Facilities. In S. Picchi and M. Micocci, editors, Pro-
ceedings of the International Conference on Array Process-
ing Languages (APL’98), Rome, Italy, pages 40–45. ACM
Press, 1998.

[31] S.-B. Scholz. With-loop-folding in SAC — Condensing
Consecutive Array Operations. In C. Clack, T. Davie,
and K. Hammond, editors, Proceedings of the 9th Inter-
national Workshop on Implementation of Functional Lan-
guages (IFL’97), St. Andrews, Scotland, UK, selected pa-
pers, volume 1467 of Lecture Notes in Computer Science,
pages 72–92. Springer-Verlag, Berlin, Germany, 1998.

[32] S.-B. Scholz. A Case Study: Effects of WITH-Loop Fold-
ing on the NAS Benchmark MG in SAC. In K. Hammond,
T. Davie, and C. Clack, editors, Proceedings of the 10th
International Workshop on Implementation of Functional
Languages (IFL’98), London, UK, selected papers, volume
1595 of Lecture Notes in Computer Science, pages 216–228.
Springer-Verlag, Berlin, Germany, 1999.

[33] P. Serrarens. Implementing the Conjugate Gradient Algo-
rithm in a Functional Language. In W. Kluge, editor, Pro-
ceedings of the 8th International Workshop on Implemen-
tation of Functional Languages (IFL’96), Bonn, Germany,
selected papers, volume 1268 of Lecture Notes in Computer
Science, pages 125–140. Springer-Verlag, Berlin, Germany,
1997.

[34] S. Smetsers, E. Barendsen, M. van Eekelen, and M. Plasmei-
jer. Guaranteeing Safe Destructive Updates through a Type
System with Uniqueness Information for Graphs. Technical
report, University of Nijmegen, Nijmegen, The Netherlands,
1993.

[35] Sun Microsystems Inc. A Comparison of Memory Alloca-
tors in Multiprocessors. Solaris Developer Connection, Sun
Microsystems Inc., Mountain View, California, USA, 2000.

[36] P. Wadler. Comprehending Monads. Mathematical Struc-
tures in Computer Science, 2(4), 1992.

10

