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Abstract

The accurate modeling of the electronic structure of atoms
and molecules involves computationally intensive ten-
sor contractions involving large multi-dimensional arrays.
The efficient computation of complex tensor contractions
usually requires the generation of temporary intermediate
arrays. These intermediates could be extremely large, but
they can often be generated and used in batches through
appropriate loop fusion transformations. To optimize the
performance of such computations on parallel comput-
ers, the total amount of inter-processor communication
must be minimized, subject to the available memory on
each processor. In this paper, we address the memory-
constrained communication minimization problem in the
context of this class of computations. Based on a frame-
work that models the relationship between loop fusion
and memory usage, we develop an approach to identify
the best combination of loop fusion and data partition-
ing that minimizes inter-processor communication cost
without exceeding the per-processor memory limit. The
effectiveness of the developed optimization approach is
demonstrated on a computation representative of a com-
ponent used in quantum chemistry suites.

�Supported in part by the National Science Foundation through the
Information Technology Research program (CHE-0121676 and CHE-
0121706), and NSF grants CCR–0073800 and EIA-9986052.

1. Introduction

The development of high-performance parallel programs
for scientific applications is usually very time consuming.
The time to develop an efficient parallel program for a
computational model can be a primary limiting factor in
the rate of progress of the science. Our overall goal is to
develop a program synthesis system to facilitate the rapid
development of high-performance parallel programs for a
class of scientific computations encountered in quantum
chemistry. The domain of our focus is electronic struc-
ture calculations, as exemplified by coupled cluster meth-
ods [8], in which many computationally intensive compo-
nents are expressible as a set of tensor contractions. We
are developing a synthesis system that will transform an
input specification expressed in a high-level notation into
efficient parallel code tailored to the characteristics of the
target architecture.

A number of compile-time optimizations are being in-
corporated into the program synthesis system. These in-
clude algebraic transformations to minimize the number
of arithmetic operations [17, 22], loop fusion and ar-
ray contraction for memory space minimization [22, 21],
tiling and data locality optimization [4, 5], space-time
trade-off optimization [6], and data partitioning for com-
munication minimization [18, 19]. Since the problem of
determining the set of algebraic transformations to mini-
mize operation count was found to be NP-complete, we
developed a pruning search procedure [17] that is very ef-
ficient in practice. The operation-minimization procedure
results in the creation of intermediate temporary arrays.
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Often, these intermediate arrays that help in reducing the
computational cost create a problem with the memory re-
quired. Loop fusion was found to be effective in signifi-
cantly reducing the total memory requirement. However,
since some fusions could prevent other fusions, the choice
of the optimal set of fusion transformations is important.
So we addressed the problem of finding the choice of fu-
sions for a given operator tree that minimizes the space
required for all intermediate arrays after fusion [21, 20].

We have also previously addressed the problem of com-
munication optimization in the context of the operator
trees [18, 19]. An efficient polynomial-time dynamic pro-
gramming algorithm was developed for the determination
of optimal distributions of the various arrays through the
evaluation of the operator tree so as to minimize inter-
processor communication overhead. However, that model
did not consider the effects of loop fusion for memory
minimization. As we elaborate later with examples, it is
not feasible to simply apply the previously developed loop
fusion algorithm and the previous communication mini-
mization algorithm (in either order) to optimize for the
parallel context when memory size constraints are severe.
For many computations of interest to quantum chemists,
the unoptimized form of the computation could require in
excess of hundreds of terabytes of memory. Therefore, the
following optimization problem is of great interest: given
a set of computations expressed as a sequence of tensor
contractions (explained later on), an empirically derived
measure of the communication cost for a given target
computer, and a specified limit on the amount of available
memory on each processor, re-structure the computation
so as to minimize the total execution time while staying
within the available memory. In this paper, we present a
framework that we have developed to address this prob-
lem. The memory-constrained communication minimiza-
tion algorithm we develop here will be incorporated into
the synthesis system being developed.

The computational structures that we target arise in sci-
entific application domains that are extremely compute-
intensive and consume significant computer resources at
national supercomputer centers. They are present in var-
ious computational chemistry codes such as ACES II,
GAMESS, Gaussian, NWChem, PSI, and MOLPRO. In
particular, they comprise the bulk of the computation with
the coupled cluster approach to the accurate description of
the electronic structure of atoms and molecules [23, 26].
Computational approaches to modeling the structure and
interactions of molecules, the electronic and optical prop-
erties of molecules, the heats and rates of chemical re-
actions, etc., are very important to the understanding of
chemical processes in real-world systems.

The paper is organized as follows. In the next section,
we elaborate on the computational context of interest and

the pertinent optimization issues. Section 3 presents our
multi-dimensional processor model, discusses the inter-
action between distribution of arrays and loop fusion, and
describes our algorithm for the memory-constrained com-
munication minimization problem. Section 4 presents re-
sults from the application of the new algorithm to an ex-
ample abstracted from NWChem [14]. We discuss related
work in Section 5. Conclusions are provided in Section 6.

2. Elaboration of Problem Addressed

In the class of computations considered, the final result to
be computed can be expressed as multi-dimensional sum-
mations of the product of several input arrays. Due to
commutativity, associativity, and distributivity, there are
many different ways to obtain the same final result and
they could differ widely in the number of floating point
operations required. Consider the following example:

S�t� � ∑
i� j �k

A�i� j� t��B� j�k� t� (1)

If implemented directly as expressed above, the compu-
tation would require 2NiNjNkNt arithmetic operations to
compute. However, assuming associative reordering of
the operations and use of distributive law of multiplication
over addition is acceptable for the floating-point compu-
tations, the above computation can be rewritten in various
ways. One equivalent form that only requires NiNjNt �
NjNkNt �2NjNt operations is as shown in Fig. 1(a).

Generalizing from the above example, we can express
multi-dimensional integrals of products of several input
arrays as a sequence of formulae. Each formula produces
some intermediate array and the last formula gives the fi-
nal result. A formula is either:

� a multiplication formula of the form: Tr�� � �� �
X�� � ���Y�� � ��, or

� a summation formula of the form: Tr�� � �� �

∑i X�� � ��,

where the terms on the right hand side represent input ar-
rays or intermediate arrays produced by a previously de-
fined formula. Let IX , IY and ITr be the sets of indices
in X�� � ��, Y�� � �� and Tr�� � ��� respectively. For a formula
to be well-formed, every index in X�� � �� and Y�� � ��, ex-
cept the summation index in the second form, must ap-
pear in Tr�� � ��. Thus IX� IY � ITr for any multiplication
formula, and IX ��i� � ITr for any summation formula.
Such a sequence of formulae fully specifies the multipli-
cations and additions to be performed in computing the
final result.

A sequence of formulae can be represented graphically
as a binary tree to show the hierarchical structure of the
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T1� j� t� � ∑
i

A�i� j� t�

T2� j� t� � ∑
k

B� j�k� t�

T3� j� t� � T1� j� t��T2� j� t�

S�t� � ∑
j

T3� j� t�

(a) Formula sequence

A�i� j�t� B� j�k�t�

∑i ∑kT1 T2

�
��

�
��

�T3

∑ jS

(b) Binary tree representation

Figure 1: A formula sequence and its binary tree repre-
sentation.

computation more clearly. In the binary tree, the leaves
are the input arrays and each internal node corresponds to
a formula, with the last formula at the root. An internal
node may either be a multiplication node or a summation
node. A multiplication node corresponds to a multiplica-
tion formula and has two children which are the terms be-
ing multiplied together. A summation node corresponds
to a summation formula and has only one child, repre-
senting the term on which summation is performed. As
an example, the binary tree in Fig. 1(b) represents the for-
mula sequence shown in Fig. 1(a).

The operation-minimization procedure discussed above
usually results in the creation of intermediate temporary
arrays. Sometimes these intermediate arrays that help in
reducing the computational cost create a problem with the
memory capacity required. For example, consider the fol-
lowing expression:

Sabi j � ∑
cde f kl

Aacik�Bbe f l�Cd f jk�Dcdel

If this expression is directly translated to code (with ten
nested loops, for indices a� l ), the total number of arith-
metic operations required will be 4N10 if the range of each
index a� l is N. Instead, the same expression can be
rewritten by use of associative and distributive laws as the
following:

Sabi j � ∑
ck

�
∑
d f

�
∑
el

Bbe f l�Dcdel

�
�Cd f jk

�
�Aacik

This corresponds to the formula sequence shown in
Fig. 2(a) and can be directly translated into code as shown
in Fig. 2(b). This form only requires 6N6 operations.
However, additional space is required to store temporary
arrays T1 and T2. Often, the space requirements for the
temporary arrays poses a serious problem. For this ex-
ample, abstracted from a quantum chemistry model, the
array extents along indices a� d are the largest, while
the extents along indices i� l are the smallest. Therefore,
the size of temporary array T1 would dominate the total
memory requirement.

We have previously shown that the problem of deter-
mining the operator tree with minimal operation count is
NP-complete, and have developed a pruning search pro-
cedure [17, 18] that is very efficient in practice. For the
above example, although the latter form is far more eco-
nomical in terms of the number of arithmetic operations,
its implementation will require the use of temporary inter-
mediate arrays to hold the partial results of the parenthe-
sized array subexpressions. Sometimes, the sizes of inter-
mediate arrays needed for the “operation-minimal” form
are too large to even fit on disk.

A systematic way to explore ways of reducing the
memory requirement for the computation is to view it in
terms of potential loop fusions. Loop fusion merges loop
nests with common outer loops into larger imperfectly
nested loops. When one loop nest produces an intermedi-
ate array which is consumed by another loop nest, fusing
the two loop nests allows the dimension corresponding to
the fused loop to be eliminated in the array. This results in
a smaller intermediate array and thus reduces the memory
requirements. For the example considered, the application
of fusion is illustrated in Fig. 2(c). By use of loop fusion,
for this example it can be seen that T1 can actually be re-
duced to a scalar and T2 to a 2-dimensional array, without
changing the number of arithmetic operations.

For a computation comprised of a number of nested
loops, there will generally be a number of fusion choices,
that are not all mutually compatible. This is because dif-
ferent fusion choices could require different loops to be
made the outermost. In prior work, we have addressed the
problem of finding the choice of fusions for a given op-
erator tree that minimizes the total space required for all
arrays after fusion [22, 21, 20].

A data-parallel implementation of the unfused code for
computing Sabi j would involve a sequence of three steps,
each corresponding to one of the loops in Fig. 2(b).
The communication cost incurred will clearly depend on
the way the arrays A, B, C, D, T1, T2, and S are dis-
tributed. We have previously considered the problem of
minimization of communication with such computations
[22, 18]. However, the issue of memory space require-
ments was not addressed. In practice, many of the com-
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T1bcd f � ∑
el

Bbe f l�Dcdel

T2bc jk � ∑
d f

T1bcd f�Cd f jk

Sabi j � ∑
ck

T2bc jk�Aacik

(a) Formula sequence

T1=0; T2=0; S=0
for b, c, d, e, f, l�
T1bcdf += Bbefl Dcdel

for b, c, d, f, j, k�
T2bcjk += T1bcdf Cdfjk

for a, b, c, i, j, k�
Sabij += T2bcjk Aacik

(b) Direct implementation
(unfused code)

S = 0
for b, c�
�����������

T1f = 0; T2f = 0
for d, f�
���

for e, l�
T1f += Bbefl Dcdel

for j, k�
T2fjk += T1f Cdfjk

for a, i, j, k�
Sabij += T2fjk Aacik

(c) Memory-reduced implementation (fused)

Figure 2: Example illustrating use of loop fusion for memory reduction.

putations of interest in quantum chemistry require imprac-
tically large intermediate arrays in the unfused operation-
minimal form. Although the collective memory of par-
allel machines is very large, it is nevertheless insuffi-
cient to hold the full intermediate arrays for many com-
putations of interest. Thus, array contraction through
loop fusion is essential in the parallel context too. How-
ever, it is not satisfactory to first find a communication-
minimizing data/computation distribution for the unfused
form, and then apply fusion transformations to minimize
memory for that parallel form. This is because 1) fusion
changes the communication cost, and 2) it may be impos-
sible to find a fused form that fits within available mem-
ory, due to constraints imposed by the chosen data dis-
tribution on possible fusions. In this paper we address
this problem of finding suitable fusion transformations
and data/computation partitioning that minimize commu-
nication costs, subject to limits on available per-processor
memory.

3. Memory-Constrained Communica-
tion Minimization

Given a sequence of formulae, we now address the prob-
lem of finding the optimal partitioning of arrays and oper-
ations among the processors and the loop fusions on each
processor in order to minimize inter-processor communi-
cation and computational costs while staying within the
available memory in implementing the computation on
a message-passing parallel computer. Section 3.1 intro-
duces a multi-dimensional processor model used to rep-
resent the computational space. Section 3.2 discusses the
combined effects of loop fusions and array/operation par-
titioning on communication cost, computational cost, and
memory usage. An integrated algorithm for solving this
problem is presented in Section 3.3.

3.1. Preliminaries: A Multi-Dimensional Pro-
cessor Model

A logical view of the processors as a multi-dimensional
grid is used, where each array can be distributed or repli-
cated along one or more of the processor dimensions. As
will be clear later on, the logical view of the processor grid
does not impose any restriction on the actual physical in-
terconnection topology of the processor system since em-
pirical characterization of the cost of redistribution be-
tween different distributions is performed on the target
system.

Let pd be the number of processors on the d-th dimen-
sion of an n-dimensional processor array, so that the num-
ber of processors is p1� p2� � � �� pn. We use an n-tuple
to denote the partitioning or distributionof the elements of
a data array on an n-dimensional processor array. The d-th
position in an n-tuple α, denoted α�d�, corresponds to the
d-th processor dimension. Each position may be one of
the following: an index variable distributed along that pro-
cessor dimension, a ‘*’ denoting replication of data along
that processor dimension, or a ‘1’ denoting that only the
first processor along that processor dimension is assigned
any data. If an index variable appears as an array subscript
but not in the n-tuple, then the corresponding dimension
of the array is not distributed. Conversely, if an index
variable appears in the n-tuple but not in the array, then
the data are replicated along the corresponding processor
dimension, which is the same as replacing that index vari-
able with a ‘*’.

As an example, suppose 128 processors form a 4-
dimensional 2�2�4�8 array. For the array B�b�e� f � l�
in Fig. 2(a), the 4-tuple �b�e���1	 specifies that the first
and the second dimensions of B are distributed along the
first and second processor dimensions respectively (the
third and fourth dimensions of B are not distributed), and
that data are replicated along the third processor dimen-
sion and are assigned only to processors whose fourth
processor dimension equals 1. Thus, a processor whose
id is Pz1�z2�z3�z4 will be assigned a portion of B specified
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by B�myrange�z1�Nb� p1��myrange�z2�Ne� p2��1 : Nf �1 :
Nl � if z4 � 1 and no part of B otherwise, where
myrange�z�N� p� is the range �z�1��N�p�1 to z�N�p.

We assume the data-parallel programming model and
do not consider distributing the computation of different
formulae on different subsets of processors. A child array
(or a part of it) is redistributed before the evaluation of its
parent if their distributions do not match. For instance,
suppose the arrays B�b�e� f � l� and D�c�d�e� l� have dis-
tributions �b�e���1	 and �c�d���1	 respectively. If we
want T1 to have the distribution �c�d� f �1	 when evaluat-
ing T1�b�c�d� f � � ∑e�l B�b�e� f � l��D�c�d�e� l�, B would
have to be redistributed from �b�e���1	 to ����� f �1	 be-
cause the two distributions do not match. But since
for D�c�d�e� l�, the distribution �c�d���1	 is the same as
�c�d� f �1	, D is not redistributed.

3.2. Interaction Between Array Partitioning
and Loop Fusion

The partitioning of data arrays among the processors and
the fusions of loops on each processor are inter-related.
Although in our context there are no constraints to loop
fusion due to data dependences (there are never any fu-
sion preventing dependences), there are constraints and
interactions with array distribution: �i� both affect mem-
ory usage, by fully collapsing array dimensions (fusion)
or by reducing them (distribution), �ii� loop fusion does
not change the communication volume, but increases the
number of messages, and therefore the start-up communi-
cation cost, and �iii � fusion and communications patterns
may conflict, resulting in mutual constraints. We discuss
these issues next.

�i� Memory usage and array distribution. The mem-
ory requirements of the computation depend on both loop
fusion and array distribution. Fusing a loop with index t
between a node v and its parent eliminates the t-dimension
of array v. If the t-loop is not fused but the t-dimension
of array v is distributed along the d-th processor dimen-
sion, then the range of the t-dimension of array v on each
processor is reduced to Nt�pd. Let DistSize�v�α� f � be the
size on each processor of array v, which has fusion f with
its parent and distribution α. We have

DistSize�v�α� f � � ∏i � v�dimensDistRange�i�v�α�Set� f ��

where v�dimens� v�indices��v�sumindex� is the array di-
mension indices of v before loop fusions, v�indicesis the
set of loop indices for v including the summation index
v�sumindexif v is a summation node, Set� f � is the set of
fused indices for fusion f , and

DistRange�i�v�α�x� �

���
�	

1 if i � x

Ni�pd if i �� x and i � α�d�
Ni if i �� x and i �� α

In our example, assume that Na � Nb � Nc � Nd � 1000,
Ne � Nf � 70, and Nj � Nk � Nl � 30. These are index
ranges typical of the quantum chemistry calculations of
interest, and are used elsewhere in the paper in relation
to this example. If the array B�b�e� f � l� has distribution
�b�e���1	 and fusion �b f	 with T2, then the size of B on
each processor whose fourth dimension equals one would
be Ne�2�Nl � 1050 words, since the e and l dimensions
are the only unfused dimensions, and the e dimension is
distributed onto 2 processors. Note that if array v under-
goes redistribution from α to β, the array size on each pro-
cessor after redistribution is DistSize�v�β� f �, which could
be different from DistSize�v�α� f �, the size before redistri-
bution.

�ii� Loop fusion increases communication cost. The
initial and final distributions of an array v determines the
communication pattern and whether v needs redistribu-
tion, while loop fusions change the number of times array
v is redistributed and the size of each message. Let v be
an array that needs to be redistributed. If node v is not
fused with its parent, array v is redistributed only once.
Fusing a loop with index t between node v and its parent
puts the collective communication code for redistribution
inside the loop. Thus, the number of redistributions is
increased by a factor of Nt�pd if the t-dimension of v is
distributed along the d-th processor dimension and by a
factor of Nt if the t-dimension of v is not distributed. In
other words, loop fusions cannot reduce communication
cost. Instead, the number of messages increases with loop
fusion, while the total volume of communication stays
the same. Therefore, the communication cost increases,
due to higher start-up costs. Consider the computation se-
quence presented in Fig. 3(a), where the array C�i�k� is
first “produced” from A�i� j� and B� j�k�, and then “con-
sumed” to produce E�i� l�. For this simple example, we
assume that the computation is executed in parallel on
4 processors, with a one-dimensional logical processor
view. Figure 3(b) shows the pseudo-code in the absence
of fusion: the array C�i�k� is re-distributed from �k	 to �l	
only once. In the presence of fusion, where the i-loop is
the outermost loop, the dimensionality of the array C is
reduced to C�k�, but the re-distribution is performed Ni

times. The pseudo-code in Fig. 3(c) illustrates this effect.

�iii � Potential conflict between array distribution
and loop fusion. Solution of the conflict by virtual par-
titioning. For the fusion of a loop between nodes u and
v to be possible, the loop must either be undistributed at
both u and v, or be distributed onto the same number of
processors at u and at v. Otherwise, the range of the loop
at node u would be different from that at node v, prevent-
ing fusion of the loops. Let us consider again the compu-
tation given in Figure 3(a), with a different distribution of
the array C�i�k� at the two nodes: assume that we have a
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C�i�k� � ∑ j A�i� j��B� j�k�
E�i� l� � ∑kC�i�k��D�k� l�

(a) Formula sequence

for i = 1, Ni�
� for k = (z-1) * Nk/4 + 1, z * Nk/4�

for j = 1, Nj�
C(i,k) += A(i,j) * B(j,k)

Redistribute C(i,k) from <k> to <l>=<*>
for i = 1, Ni�
� for l = (z-1) * Nl/4 + 1, z * Nl/4�

for k = 1, Nk�
E(i,l) += C(i,k) * D(k,l)

for i = 1, Ni�
����������

Initialize C(k) to zero
for k = (z-1) * Nk/4 + 1, z * Nk/4�

for j = 1, Nj�
C(k) += A(i,j) * B(j,k)

Redistribute C(k) from <k> to <l>=<*>
for l = (z-1) * Nl/4 + 1, z * Nl/4�

for k = 1, Nk�
E(i,l) += C(k) * D(k,l)

(b) Before loop fusion (c) After loop fusion

Figure 3: An example of the increase in communication cost due to loop fusion.

for i = 1, Ni�
� for k = (z-1) * Nk/4 + 1, z * Nk/4�

for j = 1, Nj�
C(i,k) += A(i,j) * B(j,k)

Redistribute C(i,k) from <k> to <i>
for i = (z-1) * Ni/4 + 1, z * Ni/4�
� for l = 1, Nl�

for k = 1, Nk�
E(i,l) += C(i,k) * D(k,l)

for i = (z-1) * Ni/4 + 1, z * Ni/4�
����������

for ii = 1, 4�
� for k = (z-1) * Nk/4 + 1, z * Nk/4�

for j = 1, Nj�
C(ii,k) += A(i + (ii-1) * Ni/4,j) * B(j,k)

Redistribute C(ii,k) from <k> to <i>=<ii>
for l = 1, Nl�

for k = 1, Nk�
E(i,l) += C(1,k) * D(k,l)

(a) Before virtualization (b) After virtualization

Figure 4: An example of the increase in loop fusion due to a virtual process view.

�k	 distribution at the first node, and a �i	 distribution at
the second node. The pseudo-code for this computation
on 4 processors is presented in Fig. 4(a). Fusion of the i-
loop is no longer possible, due to the different loop ranges
at the two nodes. However, we can overcome this prob-
lem by taking a virtualized view of the computation on
a larger set of virtual processors, mapped onto the actual
physical processors. Consider a virtual partitioning of the
computation and split the i-loop into two loops, i and ii .
(see the pseudo-code in Fig. 4(b)). With this modification,
the outermost i-loop can be fused, and the size of the array
C is reduced from Ni �Nk to 4Nk.

This transformation of the i-loop is presented graphi-
cally in Fig. 5. At the first node (where it is produced),
the array C is distributed among the 4 processors along
the k dimension (�k	 distribution, or vertical partitioning
in the Figure). In addition, each physical processor can be
further viewed as 4 “virtual processors”, as showed by the
horizontal virtual partitioning lines in Fig. 5. The purpose
of the virtual partitioning along the i dimension at the first
(produce) node is to match the actual i partitioning at the
second (consume) node and allow for fusion of the i-loop.
Fusion of the i-loop no longer produces a one-dimensional
C�k� array in this case. Each processor stores the equiv-
alent of 4 such arrays, corresponding to the 4 virtual pro-
cessors. In Fig. 5, the elements stored on processor P0,
before and after re-distribution, are represented by shaded

areas.

In general, the virtual partitioning of the computation
depends on the distribution at the nodes involved. Let u
and v be two nodes in the operator tree T that have a com-
mon loop index t. The t-loop is distributed onto pu proces-
sors at node u and onto pv processors at node v. Let pvirtual

be lowest common multiple of pu and pv. With these no-
tations, the t-loop can be virtually partitioned by a factor
of pvirtual�pu at the u node, and by a factor of pvirtual�pv

at the v node. The resulting virtual partitions along the t
dimension at the u and v nodes become identical, allowing
for loop fusion.

Virtual partitioning is essential for the success of our
combined loop fusion — data distribution approach.
Since both fusion and distribution impose constraints on
the array dimensions, the potential for conflict is enor-
mous. In practice, unless we allow virtual partitioning, we
often find that optimal array distribution for minimizing
inter-processor communication precludes effective mem-
ory reduction by fusion. The number of compatible loop
fusion and array distribution configurations is very lim-
ited. Virtual partitioning relaxes the mutual constraints
imposed by the loop fusion and data distribution, allow-
ing for the optimal solution(s) to be found.
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p0 p1 p2 p3

p0

p1

p2

p3

redistribute
i

partitions
virtual

produce C(i,k) consume C(i,k)

Figure 5: Virtual partitioning of an array.

3.3. Memory-Constrained Communication
Minimization Algorithm

In this section, we present an algorithm addressing the
communication minimization problem with memory con-
straint. Previously, we have solved the communication
minimization problem but without considering loop fu-
sion or memory usage [18]. In practice, the arrays in-
volved are often too large to fit into the available mem-
ory even after partitioning among the processors. We as-
sume the input arrays can be distributed initially among
the processors in any way at zero cost, as long as they are
not replicated. We do not require the final results to be
distributed in any particular way. Our approach works re-
gardless of whether any initial or final data distribution is
given.

The main idea of this method is to search among all
combinations of loop fusions and array distributions to
find one that has minimal total communication and com-
putational cost and uses no more than the available mem-
ory. A dynamic programming algorithm for this purpose
is given in this section.

Let Mcost�localsize�α�β� be the communication cost in
moving the elements of an array, with localsizeelements
distributed on each processor, from an initial distribution
α to a final distribution β. We empirically measure Mcost
for each possible non-matching pair of α and β and for
several different localsizeson the target parallel computer.
Let MoveCost�v�α�β� f � denote the communication cost
in redistributing the elements of array v, which has fusion
f with its parent, from an initial distribution α to a final
distribution β. It can be expressed as:

MoveCost�v�α�β� f � �
MsgFactor�v�α�Set� f ���Mcost�DistSize�v�α�Set� f ���α�β��

where

MsgFactor�v�α�x� � ∏i � v�dimensLoopRange�i�v�α�x�

and

LoopRange�i�v�α�x� �

���
�	

1 if i �� x

Ni�pd if i � x and i � α�d�
Ni if i � x and i �� α

Let CalcCost�v�γ� be the computational cost in calcu-
lating an array v with γ as the distribution of v. Note
that the computational cost is unaffected by loop fusions.
For multiplication and for summation where the sum-
mation index is not distributed, the computational cost
for v can be quantified as the total number of opera-
tions for v divided by the number of processors work-
ing on distinct parts of v. In our example in Fig. 2(a),
if the array T1�b�c�d� f � has distribution �c�d� f �1	, its
computational cost would be Nb�Nc�Nd �Ne�Nf �
Nl�p1�p2�p3 � 9�1875�1012 multiply-add operations on
each participating processor. Formally,

CalcCost�v�γ� � ∏i � v�indicesNi

∏γ�d� � v�dimenspd

For the case of summation where the summation index
i � v�sumindexis distributed, partial sums of v are first
formed on each processor and then either consolidated on
one processor along the i-dimension or replicated on all
processors along the same processor dimension. We de-
note by CalcCost1and MoveCost1the computational and
communication costs for forming the sum without replica-
tion, and by CalcCost2and MoveCost2those with repli-
cation.

Finally, we define Cost�v�α� to be the total cost for the
subtree rooted at v with distribution α. After transforming
the given sequence of formulae into an expression tree T
(see Section 2), we initialize Cost�v�α� for each leaf node
v in T and each distribution α as follows:
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Cost�v�α� �



0 if NoRep�α�
minβ�MoveCost�v�β�α� /0�� otherwise�

where NoRep�α� is a predicate meaning α involves no
replication.

For each internal node uand each distribution α, we can
calculate Cost�u�α� according to the following procedure:
Case (a): u is a multiplication node with two children v
and v�. We need both v and v� to have the same distri-
bution, say γ, before u can be formed. After the multi-
plication, the product could be redistributed if necessary.
Thus,

Cost�u�α� � min
γ
�Cost�v�γ��Cost�v��γ�

� CalcCost�u�γ��MoveCost�u�γ�α� /0���

Case (b): u is a summation node over index i and with
a child v, which may have any distribution γ. If i 
 γ,
each processor first forms partial sums of u and then we
either combine the partial sums on one processor along
the i dimension or replicate them on all processors along
that processor dimension. Afterwards, the sum could be
redistributed if necessary. Thus,

Cost�u�α� � min
γ
�Cost�v�γ�� min

j�1�2
�CalcCostj�u�γ�

� MoveCostj �u�γ�α� /0����

With these definitions, the bottom-up dynamic pro-
gramming algorithm proceeds as follows: At each node
v in the expression tree T , we consider all combinations
of array distributions for v and loop fusions between v and
its parent. If loop fusion of the same index t between v and
its parent is not possible because of different distribution
ranges, then a virtual processor view is considered in or-
der to allow the fusion. The array size, communication
cost, and computational cost are determined according to
the equations in Sections 3.1 and 3.3. If the size of an ar-
ray before and after redistribution is different, the higher
of the two should be used in determining memory usage.
At each node v, a set of solutions is formed. Each solution
contains the final distribution of v, the loop nesting at v,
the loop fusion between v and its parent, the total commu-
nication and computational cost, and the memory usage
for the subtree rooted at v. A solution s is said to be infe-
rior to another solution s� if they have the same final dis-
tribution, s has less potential fusions with v’s parent than
s�, s�totalcost� s��totalcost, and the memory usage of s is
higher than that of s�. An inferior solution and any solu-
tion that uses more memory than available can be pruned.

At the root node of T, the only two remaining criteria are
the total cost and the memory usage of the solutions. The
set of solutions is ordered in increasing memory usage and
decreasing cost. The solution with the lowest total cost
and whose memory usage is below the available memory
limit is the optimal solution for the entire tree.

4. An Application Example

In this section, we present an application example of the
memory-constrained communication minimization algo-
rithm. Consider again the sequence of computations in
Fig. (2(a)), representative of the multi-dimensional tensor
contractions often present in quantum chemistry codes.
The sizes of the array dimensions are chosen to be com-
patible with the dimensions found in typical chemistry
problems, where they represent occupied or virtual orbital
spaces: Ni � Nj � Nk � Nl � 40, Na � Nb � Nc � Nd �
1000, and Ne � Nf � 70.

As an example, we investigate the parallel execution of
this calculation on 32 processors of a Cray T3E, assum-
ing 512MB of memory available at each node, and on 16
processors of an Intel Itanium cluster, assuming 2GB of
memory available at each node. The best partitioning of
the algorithm depends on the number of processors and
the amount of memory available. It also depends on the
empirical characterization data that we use to describe the
communication costs of a given machine. We generated
this data by measuring the communication times for each
possible non-matching pair of array distributions and dif-
ferent array sizes for both the Cray T3E and the Itanium
cluster. Although generating the characterization is some-
what laborious, once a characterization file is completed,
it can be used to predict, by interpolation or extrapolation,
the communication times for arbitrary array distributions
and sizes.

Tables 1 and 2 present the solutions of the memory-
constrained communication minimization algorithm on
the Cray T3E and Itanium cluster, respectively.

For the system of 32 processors of the Cray T3E, the
optimal logical view of the processor space is found to be
a two-dimensional 4� 8 distribution. Table 1 shows the
full four-dimensional arrays involved in the computation,
their reduced (fused) representations, their initial and final
distributions, their memory requirements, and the com-
munication costs involved in their re-distribution. The fi-
nal distribution is defined in the same way for both input
and intermediate arrays: it is the distribution at the mul-
tiplication node at which the array is used or consumed.
The initial distribution is defined differently for input and
intermediate arrays: it is the distribution at the leaf node
for an input array, and the distribution at the multiplica-
tion node where the array is generated, or produced, for
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Full array Reduced array Initial dist. Final dist. Memory/processor Comm. cost

D�c�d�e� l� D�c�e� l� �c�e� ����� 22.4MB 552.8 sec.
B�b�e� f � l� B�b�e� f � l� �b� f � �b� f � 49.0MB 0
C�d� f � j�k� C� f � j�k� � j� f � ����� 0.9MB 362.3 sec.
A�a�c� i�k� A�c� i�k� �i�c� ����� 12.8MB 460.9 sec.

T1�b�c�d� f � T1�b�c� f � �b� f � �b�c� 17.5MB 791.8 sec.
T2�b�c� j�k� T2�b�c� j�k� �b�c� �b� j� 400.0MB 20.5 sec.
S�a�b� i� j� S�b� i� j� �b� j� �b� j� 0.4MB 0

Table 1: Loop fusions, memory requirements and communication costs on 32 processors of a Cray T3E for the arrays
presented in Fig. 2(a).

an intermediate array. The total memory requirement of
an array is defined as the largest memory usage of the two
distributions (initial and final).

The optimal solution has the a and d loops fused, each
across its own range: the fusion of the d-loop reduces C,
D, and T1 to three-dimensional arrays, while the fusion
of the a-loop reduces A and S to 3-dimensional arrays as
well. Notice that B and T2 are the only four-dimensional
arrays left, and, consequently, they have the largest stor-
age requirements of all arrays: 49MB per processor and
400MB per processor, respectively. The total memory re-
quirements for the solution of the example are 503MB per
processor, within the imposed limit of 512MB. Notice that
further memory reduction is possible, for example, by par-
tially fusing the c-loop and collapsing D and T1 to two-
dimensional arrays. However, this is unnecessary, as the
communication cost of the computation would increase,
and nothing can be gained by further memory reduction.

Based on the empirical characterization data of the
Cray T3E, the total communication cost for this exam-
ple is 2188 seconds, or 0.61 hours. Most of this load can
be attributed to the re-distribution of the arrays A, C, D,
and T1. Since they are collapsed onto three dimensions
for better memory management, they have to be partially
re-distributed at each iteration of the fused loop, resulting
in large message-passing start-up costs.

Table 2 presents the solution of the algorithm for a sys-
tem of 16 processors on the Itanium cluster. The opti-
mal logical view of the processor space is found to be
a two-dimensional 4� 4 distribution. The total memory
requirement of the optimal solution is 1.77GB per pro-
cessor, which is within the 2GB memory limit. The total
communication cost is 3076 seconds, or 0.85 hours. The
optimal distributions of the arrays are different for the two
cases presented here (see Tables 1 and 2).

It is important to note that a decoupled approach of
first performing loop fusion followed by array distribu-
tion fails to provide a feasible solution in this example.
In particular, minimizing the communication cost without
taking memory usage into account produces a final dis-

tribution �a�b	 � ����	 for the array T2�b�c� j�k�. The
array T2 would be replicated on all processors, resulting
in a memory usage of 12.8GB per processor. Reduction
from this amount is possible by fusion, but the constraints
imposed by the communication-optimal solution do not
permit effective memory reduction. In this example, start-
ing from the unfused communication-optimal solution, no
loop fusion structure exists that can bring the memory us-
age under the limit. Only an integrated approach to mem-
ory reduction and communication minimization is able to
provide a solution.

5. Related Work

Much work has been done on improving locality and par-
allelism by using loop fusion. Kennedy and McKinley
[15] presented an algorithm for fusing a collection of
loops to minimize the parallel loop synchronization over-
head and maximize parallelism. They proved that find-
ing loop fusions that maximize locality is NP-hard. Two
polynomial-time algorithms for improving locality were
given. Darte [9] discusses the complexity of maximal fu-
sion of parallel loops. Recently, Kennedy [16] has de-
veloped a fast algorithm that allows accurate modeling of
data sharing as well as the use of fusion-enabling transfor-
mations. Ding [10] illustrates the use of loop fusion in re-
ducing storage requirements through an example, but does
not provide a general solution. Singhai and McKinley
[32] examined the effects of loop fusion on data locality
and parallelism together. They viewed the optimization
problem as one of partitioning a weighted directed acyclic
graph in which the nodes represent loops and the weights
on edges represent the amount of locality and parallelism.
Although the problem is NP-hard, they were able to find
optimal solutions in restricted cases and heuristic solu-
tions for the general case. However, the work addressed in
this paper considers a different use of loop fusion, which
is to reduce array sizes and memory usage of automati-
cally synthesized code containing nested loop structures.
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Full array Reduced array Initial dist. Final dist. Memory /processor Comm. cost

D�c�d�e� l� D�c�e� l� �e� l� ����� 22.4MB 704.8 sec.
B�b�e� f � l� B�b�e� f � l� � f �b� � f �b� 98.0MB 0
C�d� f � j�k� C� f � j�k� � j� f � ����� 0.9MB 389.7 sec.
A�a�c� i�k� A�c� i�k� �c�k� ����� 12.8MB 546.0 sec.

T1�b�c�d� f � T1�b�c� f � � f �b� �c�b� 35.0MB 1391.7 sec.
T2�b�c� j�k� T2�b�c� j�k� �c�b� � j�b� 800.0MB 43.9 sec.
S�a�b� i� j� S�a�b� i� j� � j�b� � j�b� 800.0MB 0

Table 2: Loop fusions, memory requirements and communication costs on 16 processors of an Intel Itanium cluster
for the arrays presented in Fig. 2(a).

Traditional compiler research does not address this use
of loop fusion because this problem does not arise with
manually-produced programs.

Gao et al. [13] studied the contraction of arrays into
scalars through loop fusion as a means to reduce array ac-
cess overhead. They partitioned a collection of loop nests
into fusible clusters using a max-flow min-cut algorithm,
taking into account the data dependencies. However, their
study is motivated by data locality enhancement and not
memory reduction. Also, they only considered fusions of
conformable loop nests, i.e., loop nests that contain ex-
actly the same set of loops.

Loop fusion in the context of delayed evaluation of
array expressions in compiling APL programs has been
discussed by Guibas and Wyatt [12]. As part of their
algorithm, a general buffering mechanism is devised to
save portions of a sub-expression that will be repeatedly
needed, to avoid re-computation. They considered loop
fusion without any loop reordering; and their work is not
aimed at minimizing array sizes. Lewis et al. [24] dis-
cusses the application of fusion directly to array state-
ments in languages such as F90 and ZPL. Callahan et
al. [3] present a technique to convert array references to
scalar accesses in innermost loops.

There has been some recent work on using loop fusion
for memory reduction for sequential execution. Fraboulet
et al. [11] use loop alignment to reduce memory require-
ment between adjacent loops by formulating the one-
dimensional version of the problem as a network flow
problem; they did look at the effect of their solution on
cache behavior or communication. Song [35] and Song et
al. [36, 37] present a different network flow formulation
of the memory reduction problem and they include a sim-
ple model of cache misses as well. They do not consider
trading off memory for recomputation or the impact of
data distribution on communication costs while meeting
per-processor memory constraints in a distributed mem-
ory machine.

Loop tiling for enhancing data locality has been studied
extensively [1, 2, 7, 29, 30, 34, 38, 39, 40]. As mentioned

earlier, loop fusion has also been used as a means of im-
proving data locality [16, 32, 33, 28, 27]. There has been
much less work investigating the use of loop fusion as a
means of reducing memory requirements [13, 31]. To
the best of our knowledge, loop fusion transformation for
memory reduction, in combination with data partitioning
for communication minimization in the parallel context,
has not been previously considered.

6. Conclusion

In this paper we have addressed a compile-time optimiza-
tion problem arising in the context of a program synthesis
system. The goal of the synthesis system is the facili-
tation of rapid development of high-performance parallel
programs for a class of computations encountered in com-
putational chemistry. These computations are expressible
as a set of tensor contractions and arise in electronic struc-
ture calculations.

We have described the interactions between distribut-
ing arrays on a parallel machine and minimizing memory
through loop fusion. We have presented an optimization
approach that can serve as the basis for a key component
of the system, for minimizing the communication cost on
a parallel computer under memory constraints. The effec-
tiveness of the algorithm was demonstrated by applying
it to a computation that is representative of those used in
quantum chemistry codes such as NWChem.
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