
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004 281

Compiler-Directed Scratch Pad Memory Optimization
for Embedded Multiprocessors

Mahmut Kandemir, Member, IEEE, Ismail Kadayif, Member, IEEE, Alok Choudhary, Senior Member, IEEE,
J. Ramanujam, Member, IEEE, and Ibrahim Kolcu

Abstract—This paper presents a compiler strategy to optimize
data accesses in regular array-intensive applications running on
embedded multiprocessor environments. Specifically, we propose
an optimization algorithm that targets at reducing extra off-chip
memory accesses caused by interprocessor communication. This
is achieved by increasing the application-wide reuse of data
that resides in scratch-pad memories of processors. Our results
obtained using four array-intensive image processing applications
indicate that exploiting interprocessor data sharing can reduce
energy-delay product significantly on a four-processor embedded
system.

Index Terms—Embedded systems, loop-dominated applications,
scratch-pad memories (SPM).

I. INTRODUCTION

AS MICROPROCESSORS grow more and more powerful,
designers are building larger and ever more sophisticated

systems to solve complex problems. As a result, embedded
system designers are now using multiple processors in a single
system (either in the form of system-on-a-chip (SoC) or in the
form of a multiprocessor board) to address the computational
requirements of a wide variety of applications. In this paper,
we present a compiler-based strategy for optimizing energy
consumption of array-dominated applications in a multipro-
cessor based embedded system. Specifically, we show how a
compiler can increase data sharing opportunities when multiple
processors (each one is equipped with a scratch pad memory)
operate on a set of data arrays in parallel. This is in contrast
with previous work on scratch-pad memories (SPM), that
exclusively focused on single-processor architectures. In this
paper, we make the following contributions.

1) We show that interprocessor communication require-
ments in an embedded multiprocessor system can lead to
extra off-chip memory requests, and present a compiler
strategy that eliminates these extra off-chip memory
requests. Our optimization strategy is fully implemented
using an experimental compiler infrastructure and targets
array-dominated embedded applications.

Manuscript received March 7, 2003; revised June 25, 2003. This work was
supported in part by National Science Foundation CAREER Award 0093082.

M. Kandemir and I. Kadayif are with The Pennsylvania State University, Uni-
versity Park, PA 16802 USA (e-mail: kandemir@cse.psu.edu).

A. Choudhary is with Northwestern University, Evanston, IL 60208-2300
USA.

J. Ramanujam is with Louisiana State University, Baton Rouge, LA
70803-5901 USA.

I. Kolcu is with the University of Manchester Institute of Science and Tech-
nology, Manchester M60 1QD, U.K.

Digital Object Identifier 10.1109/TVLSI.2004.824299

2) We report experimental data showing the effectiveness
of our optimization strategy. The results show that ex-
ploiting interprocessor data sharing can reduce energy-
delay product by as much as 33.8% (and 24.3% on av-
erage) on a four-processor embedded system.

II. ARCHITECTURE AND EXECUTION MODEL

A virtually shared scratch pad memory (VS-SPM), is a shared
SRAM space made up by individual SPMs of multiple proces-
sors. In this paper, we focus on a multiprocessor on-a- chip ar-
chitecture, as shown in Fig. 1. In this architecture, we have a SoC
and an off-chip DRAM (which can hold data as well as instruc-
tions). SoC has multiple processor cores (with their local SPMs),
an interprocessor communication/synchronization mechanism,
a clock circuitry, and some ASIC. The SPMs of individual pro-
cessors make up a VS-SPM. Each processor has fast access to
its own SPM (called the local SPM) as well as to the SPMs of
other processors. With respect to a specific processor, the SPMs
of other processors are referred to as remote SPMs. Accessing re-
mote SPMs is made possible using fast on-chip communication
links between processors. Accessing off-chip DRAM, however,
is very costly in terms of both latency and energy consumption.
Since per access energy and latency of VS-SPM are much lower
than the corresponding values of DRAM, it is important to make
sure that as many data requests (made by processors) as possible
are satisfied from the VS-SPM.

References [1], [2], and [14] discuss dynamic-data reuse tech-
niques for software-controlled cache hierarchies. Steinke et al.
[13] focus on a strategy for placing program and data objects
into SPM for saving energy. Panda et al. [11] present a pow-
erful static data-partitioning scheme for efficient utilization of
SPM. Their approach is oriented toward eliminating the po-
tential conflict misses due to limited associativity of on-chip
cache. This approach benefits applications with a number of
small (and highly reused) arrays that can fit in the SPM. Benini
et al. [5] discuss an elegant memory-management scheme that is
based on keeping the most frequently used data items in a soft-
ware-managed memory (instead of a conventional cache). Kan-
demir et al. [8] propose a dynamic SPM management scheme
for data accesses. Their framework uses both loop and data
transformations to maximize the reuse of data elements stored
in the SPM. They enhance their approach in [9]. Hallnor and
Reinhardt [6] propose a new software-managed cache architec-
ture and a new data replacement algorithm. In contrast to these
studies, our work focuses on improving the energy behavior on a
multiprocessor environment. Therefore, our SPM management
strategy is entirely different from prior work.

1063-8210/04$20.00 © 2004 IEEE

282 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004

Fig. 1. VS-SPM based system architecture. Each processor has an SPM, and a processor can access its local SPM and the SPM of another processor (i.e., a
remote SPM). As compared to off-chip accesses, the SPM accesses (whether local or remote) are much less expensive from an energy consumption perspective.

The execution model in a VS-SPM based architecture is as
follows. The system takes as input a loop-level parallelized
application. In this model, each loop nest is parallelized as
much as possible. In processing a parallel loop, all processors in
the system participate computation and each executes a subset
of loop iterations. When the execution of a parallel loop has
completed, the processors synchronize using a special construct
called barrier before starting the next loop. The synchronization
and communication between processors are maintained using
fast on-chip communication links. Based on the parallelization
strategy, each processor works on a portion of each array in the
code. Since its local SPM space is typically much smaller than
the portion of the array it is currently operating on, it divides its
portion into chunks (also called data tiles) and operates on one
chunk at a time. When a data tile has been processed, it is either
discarded or written back into off-chip memory (if modified).

III. PROBLEM DESCRIPTION AND PROPOSED SOLUTION

A. Problem Description

In order to improve the reuse of data in the VS-SPM, one
can consider intraprocessor data reuse and interprocessor data
reuse. Intraprocessor data reuse corresponds to optimizing data
reuse when considering access pattern of each processor in iso-
lation. Previous work presented in [8] and [11] addresses this
problem. It should be noted, however, that exploiting intrapro-
cessor reuse only may not be very effective in a VS-SPM based
environment. This is because intraprocessor data reuse has a
local (processor-centric) perspective and does not take inter-
processor data sharing (communication) effects into account.
Such effects are particularly important in applications where
data regions touched by different processors overlap. This is
very common in many array-intensive image processing appli-
cations. Interprocessor data reuse, on the other hand, focuses
on the problem of optimizing data accesses considering access
patterns of all processors in the system. In other words, it has an
application-centric view of data accesses.

To illustrate the difference between application-centric and
processor-centric views, let us consider the code fragment in
Fig. 2, which performs Jacobi iteration over two square

Fig. 2. Jacobi iteration. This loop is fully parallel, thanks to lack of data
dependences between loop iterations. Consequently, each on-chip processor
can execute its iterations in any order. Our strategy exploits this observation by
reordering data tile fetches, which, in turn, reduces the total number of off-chip
requests due to interprocessor data sharing.

arrays and . In this code fragment, is a linear function
and parfor indicates a parallel for-loop whose iterations are to
be distributed (evenly) across processors available in the system.
Since this loop does not have any data dependences, both the
for-loops are parallel. Also, since our approach works on an al-
ready parallelized program, we do not concern ourselves with
the question of how the code has been parallelized. Assuming
that we have four processors (, , , and) as shown
in Fig. 1, the portion of array accessed by each processor is
shown in Fig. 3(b). Each processor is responsible from updating
an subarray of . The portions accessed by pro-
cessor 1 from array are shown in Fig. 3(a). This portion is
very similar (in shape) to its portion from array except that
it also includes some elements shared (accessed) by other pro-
cessors. These elements are called nonlocal elements (or border
elements). Assuming that the arrays and initially reside in
off-chip DRAM, each processor brings a data tile of its sub-
array and a data tile of its subarray from DRAM to VS-SPM,
updates the corresponding elements, and stores the data tile
back in the DRAM. Fig. 3(c) shows seven data tiles (from)
that belong to processor 4. This processor accesses these tiles
starting from tile 1 and ending with tile 7. Other processors also
operate on similar data tiles.

Let us first see how each processor can make effective use of
its local SPM space (processor-centric optimization). We focus
on processor 1, but our discussion applies to other processors
as well. This processor first brings a data tile from and a
data tile from from off-chip memory to its local SPM. After
computing the new values for its data tile, it stores this data
tile back in off-chip memory and proceeds by bringing new data
tiles from and . However, to exploit data reuse, it keeps
the last row of the previous data tile in SPM. This is because

KANDEMIR et al.: COMPILER-DIRECTED SPM OPTIMIZATION FOR EMBEDDED MULTIPROCESSORS 283

Fig. 3. (a) and (b) Local array portions of processors for the arrays accessed in Fig. 2. (c) Data tiles to be processed by a processor. (d) and (g) Different tile access
patterns (arrows denote the order of tile accesses). The important point to note here is that the number off-chip memory accesses varies depending on how data
tiles are visited by different processors. Specifically, while the tile access patterns in (d) and (e) incur extra off-chip memory accesses (coming from interprocessor
communication), the corresponding access patterns in (f) and (g) eliminate these extra off-chip accesses. When there is no data dependence in the loop nest (as
in the case of this example), the loop iterations can be executed in any order (i.e., the data tiles can be traversed in any order). However, when there is a data
dependence, some tile access patterns may not be permissible.

this row is also needed when computing the elements of the
new tile. This optimization is termed as local buffering or
processor-centric data reuse.

While such a tiling strategy makes effective use of the
SPM space as far as intraprocessor reuse is concerned, it fails
to capture interprocessor data reuse. To show why it is so,
let us consider how our four processors execute this nest in
parallel. Fig. 3(d) illustrates the scenario where four processors
are working on their first data tiles from array (assuming

row-block data tiles). Let us focus on processor 3; similar
discussion applies to other processors as well. This processor,
while working on its first data tile, needs data from processors
1, 2, and 4. More specifically, it needs an entire row from
processor 1 (that is, the last row of processor 1’s last tile), a
single element from processor 2, and two elements from pro-
cessor 4. These nonlocal elements are also shown in Fig. 3(d).
It should be noted that processor 4 can supply these elements
immediately from its local SPM. This is because these two

284 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004

array elements are part of the data tile it is currently working on.
However, processors 1 and 2 need to perform off-chip memory
accesses for the data required by processor 3 as these data
are not currently in their local SPMs. Obviously, these extra
off-chip memory requests (that is, memory requests performed
due to interprocessor communication requirements only) can be
very costly from an energy consumption viewpoint. A similar
scenario occurs when we consider a different data tile shape.
Fig. 3(e) shows processor access patterns (to array) when
square data tiles are used. It also shows the nonlocal elements
required by processor 4 when it is operating on its first data
tile. We can easily see that none of these elements are in any
SPM (as other processors are also working on their first data
tiles). Consequently, in order for processor 4 to complete its
computation on its first tile, other processors need to perform
extra off-chip memory accesses. It should also be noted that
it is not a good idea to try to bring the nonlocal elements to
the local SPM and keep them there until they are requested by
other processors. This is because such a strategy would lead
to keeping data in the SPM without much reuse and decrease
overall SPM space utilization.

We now discuss our compiler-based solution using our cur-
rent example. Since the code fragment in Fig. 2 does not ex-
hibit any data dependence, the processors do not have to stick
to the same tile processing order; that is, they do not have to
process their data tiles in the same order. In particular, they can
bring (and process) their data tiles in such a way that whenever
a nonlocal array element is required (to perform some com-
putation), it can be found it some remote SPM. If this can be
achieved for all nonlocal accesses, we can eliminate all extra
off-chip memory accesses due to interprocessor communica-
tion. Fig. 3(f) and (g) show how extra off-chip memory requests
can be eliminated when row block and square data tiles are used,
respectively.

There are at least two subproblems for compiling array-dom-
inated applications in a VS-SPM based environment:

• Data Tile Shape/Size Selection: The first step in compila-
tion is to determine the shape and sizes of data tiles. The
important parameters in this process are the available SPM
space and data access pattern of the application. While this
problem is important, it is beyond the scope of this paper.
In this paper, we assume rectilinear tile shapes and that all
processors have the same SPM capacity and operate with
identical data tiles (whose maximum size is determined by
the local SPM size).

• Tile Access Pattern Detection: In this step, which we also
call scheduling, given a data tile shape/size, we want to de-
termine a data tile access pattern (for all processors) such
that extra off-chip memory accesses (due to interprocessor
communication) are eliminated.

We define a tile access pattern matrix (scheduling matrix), de-
noted , which determines the order in which the data tiles are
accessed. Our scheduling strategy makes use of the following
lemma.

Lemma 1: Consider two processors and with their sched-
uling matrices and , respectively. In a two-dimensional
(2-D) array case, schedules denoted by these matrices eliminate

Fig. 4. SOR iteration. This is similar to the Jacobi iteration code given earlier;
the difference is that since the same array is both read and written, we have
data dependences. These dependences prevent the compiler from using some
potential tile access patterns.

Fig. 5. (a) Illegal and (b) legal access patterns for the code fragment in
Fig. 4. The legality of a tile access pattern is checked by considering the data
dependences in the code.

extra off-chip memory accesses (when considering only these
two processors) if and only if they satisfy the equality

This equality is called the scheduling equality, and is a
vector that represents the direction of processor with respect to
processor . Our scheduling algorithm consists of the following
three steps.

1) Assign a symbolic scheduling matrix to each processor.
The rank of the scheduling matrix will be equal to the
degree of freedom of data tiles.

2) Construct scheduling equalities for each processor pair
using direction vectors and scheduling matrices (based on
Lemma 1 given above). These equalities collectively rep-
resent the constraints that need to be satisfied for elim-
inating all extra DRAM accesses due to interprocessor
communication.

3) Initialize the scheduling matrix of a processor with an ar-
bitrary schedule and compute the corresponding sched-
uling matrices (tile access patterns) of the remaining pro-
cessors by solving the scheduling equalities.

As an example, let us consider the successive-over-relaxation
(SOR) loop shown in Fig. 4. If we apply our three-step strategy,
one possible schedule would have the following scheduling ma-
trices (assuming four processors)

This is shown in Fig. 5(a). Since the schedules for processors
2 and 4 violate data dependences, they are not acceptable. An-

KANDEMIR et al.: COMPILER-DIRECTED SPM OPTIMIZATION FOR EMBEDDED MULTIPROCESSORS 285

Fig. 6. Percentage savings in energy-delay product with different remote SPM latencies. We observe that the average (i.e., across all benchmarks) improvements
when remote SPM latency is four cycles and 20 cycles are 24.3% and 5.7%, respectively.

other schedule (solution) would have the following scheduling
matrices:

The tile access pattern corresponding to this schedule is given in
Fig. 5(b). We note that this is a legal schedule. This is because
the flow dependence in this code is carried by the loop; and
consequently, the tiles can be accessed in the loop direction
in any order (as long as the proper order in the direction is
maintained). In should be noted, however, that in the existence
of flow dependences, it may not always be possible to eliminate
all extra off-chip memory accesses. Note that our approach tries
to come up with appropriate (and legal) scheduling matrices if it
is possible to do so. However, it is also possible to check whether
a given scheduling matrix is legal.

IV. EXPERIMENTS

A. Experimental Setup and Benchmarks

Our experimental setup consists of a compiler environment
and an inhouse simulator. Our optimization algorithm has
been implemented using the Stanford University Intermediate
Format (SUIF) experimental compiler infrastructure [3]. To
test the effectiveness of our strategy, we used four array-dom-
inated applications (written in C) from the image processing
domain: , , , and . is an image-based mod-
eling application that simplifies the task of building models
and scenes. is a digital image filtering and enhancement
code. is a volume rendering application which is used
in multi-resolution volume visualization through hierarchical
wavelet splatting. It is used primarily in the area of morpholog-
ical image processing. And finally, wave is a wavelet compres-

sion code that targets specifically medical applications. This
code has a characteristic that it can reduce image data to an
extremely small fraction of its original size without compro-
mising image quality significantly. These programs are written
so that they can operate on images of different sizes. Our sim-
ulator takes a parallel code written in C as input and simulates
a multiprocessor architecture. Each simulated processor is a
100-MHz MIPS 4 Kp-like core with a five-stage pipeline that
supports four execution units (integer, multiply-divide, branch
control, and processor control). The default values of our simu-
lation parameters are as follows. The simulated off-chip DRAM
is 4 MB with an access latency of 80 cycles. On-chip multipro-
cessor has four processors, each with an SPM. Accessing the
local SPM takes two cycles. We also define a parameter called
slab ratio, which gives the ratio between the local SPM size
and total array size that needs to be traversed by a processor.
The default value for this parameter is 1/8. That is, the avail-
able SPM space is 1/8 of the local array portion of a processor.
Finally, we use row block data tiles.

B. Results

Fig. 6 gives the energy-delay product improvements for dif-
ferent values of the remote SPM access latency with the default
simulation parameters. It should be emphasized that when the
remote SPM latency is increased, the corresponding per access
energy consumption (for remote SPM) is also proportionally
increased. We observe from these results that eliminating the
extra off-chip memory accesses (due to interprocessor commu-
nication requirements) helps to improve energy-delay product
in all benchmarks and with all remote SPM latencies. Also,
as expected, our approach generates the best savings with the
small (remote SPM) latencies. However, even with large la-
tencies, we have at least 5% savings in all benchmarks except

. The average improvements when remote SPM latency
is 4 and 20 are 24.3% and 5.7%, respectively. It should also

286 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004

Fig. 7. Percentage savings in energy-delay product with different remote SPM latencies when the applications are optimized to minimize interprocessor data
sharing. We observe that the average improvements when remote SPM latency is 4 and 20 are 20.6% and 3.9%, respectively.

be mentioned that the energy benefits brought by our strategy
range from 1.4% (with with an SPM latency of 20 cycles)
to 22.4% (with with a remote SPM latency of four cycles).
The average energy savings when remote SPM latency is 4 and
20 are 16.1% and 3.1%, respectively. While these values are
not as good as our energy-delay improvements, they are still
significant.

To obtain the results in Fig. 6, we used the original bench-
marks without any modification. The only modification
introduced by our optimization strategy was to reorder the data
tile accesses to reduce the number of extra off-chip memory
requests. However, it should be mentioned that even in this
case most of the loops in our applications, 67.7% to be specific,
exhibited outermost loop parallelism (that is, we were able to
parallelize the outermost loop in the nest without any code
modification). In our next set of experiments, we measured
the impact of code optimizations on the effectiveness of our
strategy. Specifically, we optimized the input codes using a
set of source-level optimizations that reduce the number of
array elements shared by multiple processors. We achieved this
as follows. Since our loop parallelization strategy is oriented
toward parallelizing the outer loops, we tried to place all data
dependences into the innermost loop positions. While it is
possible to do this using a variety of compiler-based techniques
designed for exploiting loop-level parallelism [4], [10], in this
work, we employed the compiler algorithm outlined in [7]. Ba-
sically, this algorithm uses both loop and data transformations
to bring as much data reuse as possible into the innermost loop
positions. After this optimization, we collected experimental
data with and without our VS-SMP optimization strategy. The
results are given in Fig. 7. Comparing these results with those
shown in Fig. 6, we see that the effectiveness our approach
slightly reduces. However, we still achieve 20.6% and 3.9%
savings in the energy-delay product with remote SPM latencies
of four cycles and 20 cycles, respectively.

V. CONCLUSIONS

This paper presents a compiler-directed optimization strategy
for exploiting software-controlled, shared SRAM space in an
embedded multiprocessor system. Our approach is oriented
toward eliminating extra off-chip DRAM accesses caused
by interprocessor communication (data sharing). The results
obtained using four array-intensive applications show that
significant reductions in energy-delay product are possible
using this approach.

REFERENCES

[1] T. Van Achteren, R. Lauwereins, and F. Catthoor, “Systematic data reuse
exploration methodology for irregular access patterns,” in Proc. 13th
ACM/IEEE Symp. System-Level Synthesis, Madrid, Spain, Sept. 2000,
pp. 115–121.

[2] , “Data reuse exploration techniques for loop-dominated applica-
tions,” in Proc. 5th ACM/IEEE Design Test Europe Conf., Paris, France,
Apr. 2002, pp. 428–435.

[3] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng, “The
SUIF compiler for scalable parallel machines,” in Proc. 7th SIAM Conf.
Parallel Processing Scientific Computing, Feb. 1995.

[4] J. M. Anderson, “Automatic computation and data decomposition for
multiprocessors,” Ph.D. dissertation, Computer Systems Lab., Stanford
Univ., Stanford, CA, Mar. 1997.

[5] L. Benini, A. Macii, E. Macii, and M. Poncino, “Increasing energy effi-
ciency of embedded systems by application-specific memory hierarchy
generation,” IEEE Des. Test Comput., pp. 74–85, Apr.–June 2000.

[6] E. G. Hallnor and S. K. Reinhardt, “A fully-associative software-man-
aged cache design,” in Proc. Int. Conf. Computer Architecture, Van-
couver, BC, Canada, 2000, pp. 107–116.

[7] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee, “Im-
proving locality using loop and data transformations in an integrated
framework,” in Proc. Int. Symp. Microarchitecture, Dallas, TX, Dec.
1998, pp. 285–296.

[8] M. Kandemir, J. Ramanujam, M. Irwin, N. Vijaykrishnan, I. Kadayif,
and A. Parikh, “Dynamic management of scratch-pad memory space,”
in Proc. 38th Design Automation Conf., Las Vegas, NV, June 2001, pp.
690–695.

[9] M. Kandemir and A. Choudhary, “Compiler-directed scratch pad
memory hierarchy design and management,” in Proc. 39th Design
Automation Conf., June 2002, pp. 628–633.

KANDEMIR et al.: COMPILER-DIRECTED SPM OPTIMIZATION FOR EMBEDDED MULTIPROCESSORS 287

[10] A. W. Lim, G. I. Cheong, and M. S. Lam, “An affine partitioning
algorithm to maximize parallelism and minimize communication,” in
Proc. 13th ACM SIGARCH Int. Conf. Supercomputing, June 1999, pp.
228–237.

[11] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient utilization of
scratch-pad-memory in embedded processor applications,” in Proc.
Eur.Design Test Conf., Paris, France, Mar. 1997, pp. 7–11.

[12] , “Architectural exploration and optimization of local memory in
embedded systems,” in Proc. Int. Symp. System Synthesis, Antwerp, Bel-
gium, Sept. 1997, pp. 90–97.

[13] S. Steinke et al., “Assigning program and data objects to scratchpad for
energy reduction,” in Proc. Eur. Design Test Conf, Paris, France, 2002,
pp. 1–7.

[14] S. Wuytack, J. P. Diguet, F. Catthoor, and H. De Man, “A formalized
methodology for data reuse exploration for low-power hierarchical
memory mappings,” IEEE Trans. VLSI Syst., vol. 6, pp. 529–537, Dec.
1998.

Mahmut Kandemir (M’98) received the B.Sc. and
M.Sc. degrees in control and computer engineering
from Istanbul Technical University, Istanbul, Turkey,
in 1988 and 1992, respectively, and the Ph.D. degree
in electrical engineering and computer science, from
Syracuse University, Syracuse, NY, in 1999.

Since August 1999, he has been an Assistant
Professor in the Computer Science and Engineering
Department, Pennsylvania State University, Uni-
versity Park. His main research interests include
optimizing compilers, I/O intensive applications,

and power-aware computing.
Dr. Kandemir is a Member of the ACM.

Ismail Kadayif (M’01) received the B.Sc degree,
from the Department of Control and Computer
Engineering, Istanbul Technical University, Istanbul,
Turkey, in 1991, and the M.Sc degree from the
Department of Computer Science, Illinois Institute
of Technology, Chicago, in 1997. He is currently
working toward the Ph.D. degree in computer sci-
ence and engineering, Pennsylvania State University,
University Park.

His research interests include high-level compiler
optimizations, power-aware compilation techniques,

and low-power computer architectures.

Alok Choudhary (SM’99) received the B.E. degree
(Hons.) from Birla Institute of Technology and Sci-
ence, Pilani, India, in 1982, the M.S. degree from
the University of Massachusetts, Amherst, in 1986,
and the Ph.D. degree in electrical and computer en-
gineering, from the University of Illinois, Urbana-
Champaign, in 1989.

His main research interests include high-per-
formance computing and communication systems
and their applications in many domains including
multimedia systems, information processing, and

scientific computing. In particular, his interests are in the design and evaluation
of architectures and software systems (from system software such as runtime
systems, compilers, and programming languages to applications), high-perfor-
mance servers, high-performance databases and input–output.

Dr. Chaudhary is a Member of the ACM.

J. (Ram) Ramanujam (M’94) received the B.Tech.
degree in electrical engineering from the Indian
Institute of Technology, Madras, in 1983, and the
M.S. and Ph.D. degrees in computer science from
The Ohio State University, Columbus, in 1987 and
1990, respectively.

He is currently an Associate Professor in the
Department of Electrical and Computer Engi-
neering, Louisiana State University, Baton Rouge.
His research interests include embedded systems,
compilers for high-performance computer systems,

software optimizations for low-power computing, high-level hardware
synthesis, parallel architectures, and algorithms.

Ibrahim Kolcu received the B.Sc. degree in com-
puter engineering from Istanbul Technical University
(ITU), Istanbul, Turkey, in 1990, and the M.Phil de-
gree in genetic algorithms from Cranfield University,
Cranfield, U.K., in 1997. He is currently working to-
ward the Ph.D. degree, University of Manchester In-
stitute of Science and Technology (UMIST), Man-
chester, U.K.

His research interests include genetic algorithms,
neural networks, code optimization, search algo-
rithms, and low-power computing.

