
Improving the Energy Behavior of Block
Buffering Using Compiler Optimizations

M. KANDEMIR

Pennsylvania State University

J. RAMANUJAM

Louisiana State University

and

U. SEZER

University of Wisconsin

On-chip caches consume a significant fraction of the energy in current microprocessors. As a result,

architectural/circuit-level techniques such as block buffering and sub-banking have been proposed

and shown to be very effective in reducing the energy consumption of on-chip caches. While there

has been some work on evaluating the energy and performance impact of different block buffering

schemes, we are not aware of software solutions to take advantage of on-chip cache block buffers.

This article presents a compiler-based approach that modifies code and variable layout to take

better advantage of block buffering. The proposed technique is aimed at a class of embedded codes

that make heavy use of scalar variables. Unlike previous work that uses only storage pattern

optimization or only access pattern optimization, we propose an integrated approach that uses

both code restructuring (which affects the access sequence) and storage pattern optimization (which

determines the storage layout of variables). We use a graph-based formulation of the problem and

present a solution for determining suitable variable placements and accompanying access pattern

transformations. The proposed technique has been implemented using an experimental compiler

and evaluated using a set of complete programs. The experimental results demonstrate that our

A preliminary version of this article appeared in Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED), ACM, New York, 2001. This article

enhances the preliminary version by explaining how the proposed technique interacts with register

allocation and by presenting more experimental data.

M. Kandemir is funded in part by National Science Foundation (NSF) grant CCR-0093082 and

by the Pittsburgh Digital Greenhouse through a grant from the Commonwealth of Pennsylvania,

Department of Community and Economic Development.

J. Ramanujam is supported in part by NSF grant CCR-007380 and NSF Young Investigator Award

CCR-9457768.

Authors’ addresses: M. Kandemir, Pennsylvania State University, Department of Computer Sci-

ence and Engineering, University Park, PA 16802; email: kandemir@cse.psu.edu; J. Ramanujam,

Louisiana State University, Department of Electrical and Computer Engineering Baton Rouge,

LA 70803; email: jxr@ee.lsu.edu; U. Sezer, University of Wisconsin, Department of Electrical and

Computer Engineering Madison, WI 53706; email: sezer@ece.wisc.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-4309/06/0100-0228 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006, Pages 228–250.

Improving the Energy Behavior of Block Buffering • 229

approach leads to significant energy savings. Based on these results, we conclude that compiler

support is complementary to architecture and circuit-based techniques to extract the best energy

behavior from a cache subsystem that employs block buffering.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Caches memo-
ries; D.3.4 [Programming Languages]: Processors—Compilers, optimization

General Terms: Design, Performance

Additional Key Words and Phrases: Energy optimizations, compiler transformations, block buffer-

ing, embedded systems, data cache

1. INTRODUCTION

On-chip caches are a major source of energy consumption in current micropro-
cessors. For example, Edmondson et al. [1995] report that the on-chip cache in
DEC Alpha 21264 consumes approximately 25% of the on-chip energy. Circuit
and architectural techniques that implement alternative cache organizations
(e.g., sub-banking, bitline segmentation, and block buffering [Kamble and
Ghose 1997]) have been shown to be very effective in reducing the energy
consumption of on-chip caches. A block buffer is a small line buffer inserted
between the processor and the first-level on-chip cache to hold the most
recently accessed cache line (block). If the cache line that resides in the block
buffer is accessed again, this request can be satisfied from the block buffer, and
the main on-chip cache (both data and tag arrays) can be disabled during this
access to save energy. While previous research [Su and Despain 1995; Ghose
and Kamble 1999; Kin et al. 1997; Esakkimuthu et al. 2000] investigated
different block buffering schemes and evaluated their impact on energy and
performance, to the best of our knowledge, no previous study considered
compiler support for block buffering.

In this article, we present a compiler-based approach that modifies code
and variable (data) layout to take better advantage of block buffering. The
application domain that this technique targets includes a class of embed-
ded codes that make heavy use of scalar variables. That is in contrast to a
vast amount of locality-oriented work done for array-dominated applications
in the optimizing compiler area (see, for example, Wolfe’s book [Wolfe 1996]
and the references therein). While previous work such as that of Panda et al.
[1997] and Panda [1998] addresses optimizations for improving cache local-
ity of scalar-dominated codes, their approach is limited to variable placement
(called storage pattern or storage sequence optimization in this article). In com-
parison, the approach proposed in this paper employs both storage pattern
and access pattern optimizations. Specifically, this article makes the following
contributions:

—It presents an access pattern (access sequence) optimization technique to
maximize the benefits of block buffering for data accesses in scalar-dominated
embedded codes;

—It presents a unified (integrated) optimization strategy that employs both
access pattern and storage pattern (variable placement) optimizations for
multi-basic block codes; and

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

230 • M. Kandemir et al.

—It quantifies the benefits from the proposed techniques over a straightforward
block buffering scheme that does not make use of any compiler support using
four complete programs.

Our experimental results indicate that the proposed techniques improve data
cache energy consumption by 45.8% on average, and by as much as 49.7% in
some cases when no register allocation is performed. In the existence of an ag-
gressive register allocation, the percentage energy benefits range from 17.0% to
43.9% for data cache, and from 6.8% to 18.8% for the entire data memory sys-
tem. Based on these results, we believe that compiler support is complementary
to architecture and circuit-based techniques to extract the best energy behavior
from the cache subsystem equipped with a block buffer.

The remainder of this article is organized as follows. Section 2 gives back-
ground material on block buffering and compiler optimizations. Section 3 de-
scribes the problem and Section 4 formulates it on a graph-based structure.
Section 5 gives a solution strategy for a single basic block (a straight line of
code without branching/conditionals) case, and Section 6 presents a solution
for multiple basic block case (i.e., whole procedure). Section 7 discusses exten-
sions to our basic scheme and Section 8 presents experimental data showing the
effectiveness of the proposed technique. Section 9 concludes with a summary
and an outline of the planned future work.

2. BACKGROUND

2.1 Block Buffering

Block buffering is an extension of conventional cache architectures that uses
small (one-block wide) line buffers. The key idea is to keep the most recently
accessed cache line (block) in the block buffer so that the following request
can access the data from the block buffer if it targets the same cache line (this
clearly depends on the block-level data locality exhibited by the application). As
noted by Ghose and Kamble [1999], this not only saves accesses to data arrays
of the on-chip cache but, at the same time, also saves the access to the tag
arrays. Su and Despain [1995] propose a single block buffer structure; Ghose
and Kamble [1999] extend this structure to multiple buffers (for set-associative
caches), and report as much as 75% savings in power dissipation as compared
to a conventional cache architecture when block buffering is combined with
other energy-saving hardware optimizations. Bellas et al. [1998] propose the
use of a cache that sits between the CPU and the instruction cache to improve
performance and energy consumption.

A simplified block buffering scheme is depicted in Figure 1. This is similar
to the architecture proposed by Ghose and Kamble [1999]. An access to the
block buffer-augmented cache is performed in two cycles but at the rate of one
access per cycle using a two-phase clock. In the first cycle, the last set number is
compared to the corresponding field of the address issued by CPU to determine
if the current access is to the same set as the previous one. If it is, the tag and
data array sensing are disabled. Otherwise, the selected set is latched in and
the set number for the current access is moved into the latch that holds the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Improving the Energy Behavior of Block Buffering • 231

Fig. 1. Operation of block buffering.

set number for the last access. In the second cycle, normal tag comparison is
done and if it succeeds, word multiplexing is performed as in the case of normal
caches.

2.2 Compiler Optimizations for Data Locality

A vast majority of research in compiler optimizations has targeted array-
dominated codes using source-level transformations to make better use of
caches. Among the techniques investigated are loop restructurings (e.g., loop
permutations and tiling [Wolfe 1996]), data transformations (e.g., dimension
reindexings [Kandemir and Ramanujam 2000], integrated data and loop trans-
formations [Kandemir et al. 1998, 1999; Kulkarni et al. 2000, 2001], dynamic
memory layout modifications [Mellor-Crummey et al. 1999]), and locality en-
hancing transformations for pointer-intensive codes [Chilimbi et al. 2000]. An
important characteristic of the techniques in the first two groups mentioned
is that they focus on multilevel nested loops and exploit the regularity due to
affine expressions in array subscript functions. Consequently, it is possible to
model the problem using linear algebraic representations [Wolfe 1996] and/or
polyhedral tools [Kelly et al. 1995], and solve it using linear transformations
of iteration and/or data spaces [Catthoor et al. 1998]. The codes that are tar-
geted by the approach presented in this paper, however, are quite different from
those as they involve sequences of scalar assignments and conditional flow of
control. Thus, they do not lend themselves to polyhedral formulations; instead,
a graphical representation might be preferable.

A unique aspect of our approach is that the unified strategy that we discuss
can optimize an entire procedure that might consist of multiple basic blocks.
It operates on a control flow graph (CFG) representation of the procedure, and
propagates information (obtained through compiler analysis as explained later)
between basic blocks to obtain a globally (procedure-wide) acceptable solution.
Our experimental results show that such a global approach is superior to the
techniques that optimize each basic block in isolation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

232 • M. Kandemir et al.

3. PROBLEM DESCRIPTION

In this section, we describe the problem addressed in this article. Until
Section 7, we assume that no register allocation is performed and all variables
accessed from memory (through cache). We also assume the the architecture
or the back-end compiler does not modify the order of load/store operations.
In Section 7, we discuss in detail how our approach interacts with register
allocation.

The success of a block buffering scheme is strongly dependent on the variable
access pattern. For example, consider the following code fragment that consists
of two assignment statements:

a = c + a + b
b = c + b + a

Assuming that the addition operation (+) is left-associative, the variable access
pattern (access sequence) imposed by these two statements is c,a,b,a, c,b,a,b.
If we have a single block buffer of one scalar element (word) wide, such an
access pattern will not take advantage of block buffering as no variable in the
sequence is accessed twice in a row. Note, however, that using commutativity
and associativity properties of the addition operation, this program fragment
can be rewritten as:

a = c + b + a
b = a + c + b

The new access sequence is c,b,a,a,a,c,b,b. While this transformed code frag-
ment is semantically equivalent to the original one, it exploits the mentioned
block buffer much better as it has a total of three repetitions: two for variable a
(in subsequence a,a,a) and one for variable b (in subsequence b,b). Therefore,
we can expect three block buffer hits (i.e., data accesses satisfied from the block
buffer) from this new sequence. Now, consider the following code fragment:

a = 1
c = c - 1
d = a + b

The original access sequence is a,c,c,a,b,d and an optimization scheme that
is limited to intrastatement transformations (e.g., those exploit commutativity
and associativity) cannot generate a better sequence. However, if we apply an
interstatement transformation that interchanges the order of the second and
the third assignments, we obtain the following fragment:

a = 1
d = a + b
c = c - 1

This new fragment leads to an access sequence of a,a,b,d,c,c which is better
than the original one as the second access to variable a in this sequence results
in a buffer hit. These two examples show that access sequence optimizations can
generate improvements (over original codes); that is, they increase the number
of hits in the block buffer.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Improving the Energy Behavior of Block Buffering • 233

Let us now assume that our block buffer can hold k (> 1) variables (i.e., a
line size of k elements). In this case, given a code fragment, we can increase
the block buffer hit rate (which is defined as the ratio between the number of
block buffer hits and the total number of data accesses) by using both access
sequence and storage sequence (variable layout) optimizations. Consider the
following code fragment, assuming that k = 2 and that the storage order of the
variables is a,b,c,d, the first variable being at the head of a cache line, that is,
aligned to the cache line boundary.

a = b + d
c = c + d + a
d = b + a
d = a + c + d

The original access sequence is b, d, a, c, d, a, c, b, a, d, a, c, d, d.
For the given storage sequence a, b, c, d, the block buffer hit rate is 4/14; the
hits are due to the subsequences c, d, b, a, c, d and d, d, which map onto
the same cache line, and therefore, the block buffer.

Now, we will illustrate the effects of (i) optimizing only the storage sequence;
(ii) optimizing only the access pattern (e.g., changing the access sequence by
exploiting properties of the computation such as operator commutativity and
associativity); and (iii) combining (integrating) access and storage sequence
optimizations.

Optimizing only the Storage Sequence. Without making any changes to
the given access sequence, if we change the storage sequence to a, d, b, c
(derived using the approach due to Panda et al. [1997]), we get the best
(among those that change only the storage sequence) block buffer hit rate
of 6/14.

Optimizing only the Access Sequence. Given the original storage sequence of
a, b, c, d, consider the following (equivalent) transformed code:

a = d + b
c = a + c + d
d = b + a
d = a + c + d

The right-hand side expressions in the first two statements have been re-
ordered to improve the block buffer hit rate. The transformed (changed) ac-
cess sequence is d, b, a, a, c, d, c, b, a, d, a, c, d, d. The best hit
rate possible for this new access sequence is 7/14, which for example, can be
realized using the storage sequence a, b, c, d.

Optimizing both the Access Sequence and Storage Sequence. Starting from
the original code, consider the use of the storage sequence a, d, b, c together
with the following (equivalent) transformed code:

a = b + d
c = a + d + c
d = b + a
d = a + c + d

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

234 • M. Kandemir et al.

The transformed (changed) access sequence is b, d, a, a, d, c, c, b, a,
d, a, c, d, d. With the storage sequence a, d, b, c, we get a hit rate of
8/14. Note that, this hit rate is higher than the best achievable for the given
code segment using either only storage sequence or only access sequence op-
timizations. Thus, in general, an integrated framework that uses both access
and storage sequence optimizations can be very useful in practice.

We can conclude from these examples that in order to increase the block
buffer hit rate, we need to maximize the number of consecutive accesses to a
given line. This can be done by modifying the order of variable access (access
sequence optimization), by modifying the storage order of variables in memory
(storage pattern optimization), or by a combination of these (unified optimiza-
tion). Note that, when k is one, access sequence optimization is the only option.

4. REPRESENTATION

It should be emphasized that the access pattern optimization problem is impor-
tant for two major reasons. First, it is the only available optimization strategy
when the cache line is single element wide or when storage (variable layout)
optimizations are not applicable. Second, the access pattern optimization strat-
egy can be used as a part of a global optimization framework that uses both
storage pattern and access pattern transformations. Section 6 discusses such
an optimization framework that can handle an entire procedure.

We represent the problem of access pattern optimization using a graph-based
structure and solve it using a longest path algorithm. We define two data ele-
ments as neighbors if they map on the same cache line and the distance between
them (in memory) is less than k (the cache line size) elements. Note that the
neighboring elements are brought into cache (when they are accessed) and
hence into the block buffer at the same time. We also define virtual lines in
memory, each of which holding a group of neighboring elements.

Given a basic block (i.e., a block of sequential assignment statements without
a branch except maybe at the end of the sequence [Aho et al. 1986]), we use a
layout transition graph (LTG) to show the connections between elements that
are mapped on the same cache line. Specifically, a layout transition graph of
a basic block is a directed graph LT G(V , E) where each node (vertex) vi ∈ V
represents the occurrence of a variable in the basic block, and a bi-directional
edge e = (vi, vj) ∈ E from a node vi to a node vj indicates that the variables
represented by vi and vj are neighbors (i.e., they are in the same virtual line).
An LTG also contains an edge between vi to vj if these two nodes represent the
occurrences of the same variable.

For ease of exposition, we divide a given LTG into layers, each of which
corresponding to an assignment statement in the basic block. If the basic block
contains K statements, each variable vi in the j th statement from top (denoted
sj where 1 ≤ j ≤ K) is assumed to belong to the variable set of sj ; we express
this concept using the notation vi ∈ sj . When there is no confusion, we will
abuse the notation sj to denote both the statement and its variable set.

A given variable set si can also be divided into two logical subsets: one
that contains the variable on the left-hand side (LHS), and one that contains

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Improving the Energy Behavior of Block Buffering • 235

the variables on the right-hand side (RHS). For a variable set si, the first set
is denoted by siL and the second set is denoted by siR . As will be discussed
later in this section, the edges of the LTG can be used to traverse the nodes in
the graph, which, in turn, corresponds to intrastatement and interstatement
transformations.

We define a traversal of (the variables in) a given LTG as a set of paths
that collectively visit each and every node only once without mixing accesses
to the variables from different statements. While a given LTG shows the stor-
age connections (relations) between the variables in the basic block, it does
not dictate any traversal. Note that a traversal of the LTG corresponds to an
ordered sequence of variable accesses (i.e., access pattern). Consequently, dif-
ferent traversals correspond to different access patterns. It is well known from
data dependence theory [Wolfe 1996] that there are some traversals (of vari-
ables during execution) that are not valid (i.e., semantically correct). To elimi-
nate some of the invalid traversals from the LTG, we constrain it by eliminating
any edge e = (vi, vj) ∈ E if going from vi to vj during the program execution
(i.e., touching the variables represented by vi and vj immediately one after an-
other) does not preserve the original semantics of the code. This pruned LTG
is called constrained LTG (CLTG) in this article and is the main data structure
which the optimizations we employ operate on.

To illustrate how a LTG and a CLTG are constructed, let us consider the
following code fragment (basic block):

a = i + b + 3j
e = g + h + k
b = 2d + 4a - 5
k = l + f

Let us assume that the variables are stored in memory in the order of
a,b,c,d,e,f,g, h,i,j,k,l and that k = 4. Consequently, we have three vir-
tual lines: {a,b,c,d}, {e,f,g,h}, and {i,j,k,l} (We assume perfect alignment).
Figure 2(i) shows the four layers corresponding to four statements in this
fragment. Each layer is delimited using dashed lines and corresponds to an
individual statement. For example, labeling the first statement as s1, we have
s1L = {a} and s1R = {i,b,j}. Given the storage sequence (virtual line mapping)
above, Figure 2(v) shows the LTG for this code fragment. Note that there is
a bidirectional edge between two nodes whenever the corresponding variables
are neighbors (i.e., they reside in the same virtual line). Figures 2(ii), (iii), and
(iv), on the other hand, show the contributions (that can be called sub-LTGs)
coming from the three virtual lines (group of neighbors) mentioned above. It
should be noted that a different alignment in memory (virtual line mapping)
would generate a totally different LTG.

We see that the LTG shown in Figure 2(v) is very dense. However, assuming
that the statements in the fragment will not be broken into sub-statements and
that the variable accesses from different statements are not mixed, a simple
analysis of the code fragment reveals that many of the edges in this LTG cannot
be traversed by a legal access pattern. For example, there is no way that the edge
from i to k be taken by any given schedule (access pattern) as a LHS variable
needs to be touched between these two variables. Data dependence constraints

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

236 • M. Kandemir et al.

Fig. 2. (i) Four layers (corresponding to four statements) for a basic block. (ii–iv) sub-LTGs induced

by different virtual lines. (v) the overall LTG. (vi) the corresponding CLTG. (vii) four representative

paths in the CLTG. (viii) the final traversal of nodes.

might also help one to eliminate a number of edges (e.g., the one from a in the
first statement to d in the third statement). Eliminating all these illegal (un-
acceptable) edges (transitions) gives us the CLTG shown in Figure 2(vi). Note
that, the graph in Figure 2(vi) contains very few edges, compared to Figure 2(v).

The optimization process described in the next section operates on the CLTG.
Before moving to the optimization phase, let us first formalize the constraints
that allow us derive a CLTG from a given LTG. A constrained layout transition
graph, written CLT G(V ′, E ′), is a subgraph of the LT G(V , E) such that V ′ =
V and E ′ contains all the edges in E except those that can lead to an incorrect
or infeasible code transformation (transition). Note that the construction of
the CLTG subsumes both the intrastatement constraints (i.e., evaluation rules
that need to be obeyed when processing the RHS expression) and the inter-
statement constraints (i.e., data dependence and other constraints between
different statements). In mathematical terms, to build the CLTG, the following
edges of the LTG should be dropped:

—Any edge (vi, vj) ∈ E such that vi ∈ skR , vj ∈ sk′ R with k �= k′

—Any edge (vi, vj) ∈ E such that vi ∈ skR , vj ∈ sk′L with k �= k′

—Any edge (vi, vj) ∈ E such that vi ∈ skL and vj ∈ sk′L, where k �= k′ and
sk′ R �= ∅

—Any edge (vi, vj) ∈ E such that traversing this edge would break expression
evaluation rules or data dependence.

While a CLTG shows only the legal edges, this does not necessarily mean
that traversing the shown edges will always result in correct codes. For ex-
ample, accessing two nodes, vi and vj consecutively, itself may not break any
dependence; however, after this access sequence, it may not be possible to gen-
erate legal code due to the a new restriction (in the access order) resulting from
the said transition between vi and vj . Note also that this may not be detectable

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Improving the Energy Behavior of Block Buffering • 237

during the construction of the CLTG since we do not know at that point what
the access sequence (traversal order) will be (e.g., whether the edge (vi, vj) will
actually be visited by the traversal).

5. SOLUTION

We formulate the problem of modifying a given basic block code for effective use
of the available block buffer of k elements as one of determining a path cover
[Cormen et al. 1990] and a traversal order on the CLTG. To generate correct
code (i.e., to preserve the semantics of the basic block), we impose the following
conditions on the traversal order:

—Each node in the CLTG (i.e., a variable occurrence in the basic block) should
be visited.

—For a given layer in the CLTG corresponding to the statement sk , all nodes
in skR should be visited before the node in skL.

—Once the traversal reaches a layer corresponding to the statement sk , it
should finish all variables in that layer (i.e., the set skL ∪ skR) before moving
to another layer.

—All data dependences and other restrictions such as latency constraints or
expression evaluation constraints should be preserved.

Based on these observations, our approach determines a traversal order and
during the traversal it also transforms the underlying code fragment (basic
block). The objective of the traversal (and that of transformation) is to minimize
the cost of traversal. In our context, the traversal cost is defined as the number of
transitions (i.e., successive variable accesses) that do not have a corresponding
edge in the CLTG. This is because each such transition accesses two variables
(one after another) that reside in different virtual lines, and consequently, the
second access (in the transition) cannot exploit the data currently residing in
the block buffer (i.e., results in a block buffer miss). Recall that we assume
a single block buffer that can hold k consecutive elements. Therefore, one
way of minimizing the cost is to traverse as many edges from the CLTG as
possible.

In the following, we present the description of an algorithm that takes as
input a CLTG and generates as output a traversal (an access sequence) and all
the necessary (interstatement and intrastatement) transformations to obtain
this access sequence. Given a CLTG, the algorithm first detects the longest di-
rected path (i.e., the path that contains the maximum number of edges in the
same direction). It then transforms the portion of the CLTG (which contains a
subset of the statements in the original basic block) in accordance with this
longest path. Finding the longest path in a given directed graph is straight-
forward, and takes O(N 3) time where N is the number of nodes in the graph
[Cormen et al. 1990]. Transforming the program code in accordance with the
longest path is more challenging as explained next.

Let us now discuss the transformations imposed by a path. Figure 3 shows
the situations that may demand code (access sequence) transformations dur-
ing the optimization process. The first situation corresponds to the case where

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

238 • M. Kandemir et al.

Fig. 3. Example cases that might require code transformations.

there is an edge from a node vi in skR to the node vj in skL. In this case, the
RHS node in question should be made the last node accessed on the RHS (if
it is not already the last node accessed on the RHS). The second situation is
the one in which we have an edge (in the CLTG) from the LHS node vi of a
statement sk to a node vj in sk′ R of statement sk′ where k �= k′. In this case, we
may need two types of transformations: first, if sk′ and sk are not consecutive,
that should be made consecutive (an inter-statement transformation); second,
if vj is not the first variable accessed in the sk′ R , it should be made so (an in-
trastatement transformation). The third situation corresponds to the case in
which we have an edge from a node vi in skR to another node vj in skR . In
this case, we need an intra-statement transformation that should bring these
two nodes together. In cases where a variable vj is needed to be both the first
variable accessed in sk′ (due to the edge from sk to sk′) and be the last variable
accessed (due to the intra-statement edge in sk′), we need a conflict resolution
scheme.

We illustrate the operation of this transformation mechanism using the ex-
ample in Figure 2. Recall that in this example we have three virtual lines:
{a,b,c,d}, {e,f,g,h}, and {i,j,k,l}. The longest path in the CLTG in Fig-
ure 2(vi) is marked (1) in Figure 2(vii). It contains two nodes (b and a) from
the first statement and three nodes (a, d, and b) from the third statement.
In order to realize this path (i.e., to touch the variables at runtime in the or-
der indicated by this path), variable b in the first statement should be the
variable that is accessed last on the RHS (just before the LHS variable a),
the third statement should be moved to just below the first statement (an
inter-statement transformation) to ensure successive accesses to variable a,
the variables a and d (in the original third statement) should be accessed one
after another (already satisfied as there are only two variables on the RHS),
and d should be the last variable accessed on the RHS. Note that after per-
forming these transformations the access orders for variables i and j (in the
first statement) are also fixed. The approach next moves to the second longest
path (marked (2) in Figure 2(vii)) and performs the transformations indicated
by it. It is important to stress that the transformations that would be per-
formed based on the second (longest) path cannot override (nullify) those per-
formed based on the longest (previously optimized) path. Note that after pro-
cessing path (2), the access order of all the variables in the code is fixed. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Improving the Energy Behavior of Block Buffering • 239

approach verifies this by checking the remaining paths (which are marked (3)
in the figure) and making sure that the nodes contained in them have all been
processed.

Figure 2(viii) shows the final access sequence (traversal). The dashed edges
(arrows) correspond to transitions that contribute the cost of the traversal as
they do not have corresponding edges in the CLTG. In this particular case,
the overall cost is 4. Note that the cost of the traversal directly corresponds to
the number of block buffer misses. It is easy to verify that the traversal cost
would be 11 had we not performed any transformation. Considering that the
total number of variable accesses in this example is 14, we observe a significant
impact of the code transformations used.

6. MULTIPLE BASIC BLOCKS

Up until now, we have focused on a single basic block and presented a tech-
nique that employs access sequence transformations built upon a graph-based
representation. In reality, most embedded codes have multiple basic blocks con-
nected to each other through control dependences such as loop structures and
conditional branching. Below we present an approach that optimizes a given
procedure that might contain multiple basic blocks using a mix of data (vari-
able) layout (storage sequence) and access sequence transformations.

It should be noted that if we restrict ourselves to access sequence transfor-
mations, it is relatively straightforward to extend the technique presented in
the previous section to multiple basic blocks as follows. Assume that the pro-
cedure being optimized is represented using a control flow graph (CFG) where
each node represents a basic block and each directed edge represents a pos-
sible transition (transfer of control) between two basic blocks. The proposed
approach starts with the most frequently executed basic block (which might be
determined through profiling and static analysis where applicable) and opti-
mizes it as explained in the previous section. It then visits each basic blocks
in the order of decreasing execution frequency and uses the same algorithm to
transform its access sequence.

A more interesting problem (and that is the one addressed in this section),
however, is to optimize a given CFG using both access sequence and storage
sequence transformations. In order to achieve this we need to employ a storage
sequence optimization strategy. Panda et al. [1997] and Panda [1998] present
a powerful strategy for this purpose. Their strategy first obtains an access se-
quence and then builds a closeness graph (CG). The CG has a node for every
variable used in the code. The two nodes, vi and vj , in the CG are connected
using an edge with a weight of wij if the distance between them in the access
pattern is ≤ k (line size) and the corresponding edge (transition) is taken wij

times. After constructing the CG, the next step is to group the variables into
clusters of k elements. As explained in Panda et al. [1997], a higher edge weight
in the CG between two variable represents a potential reduction in the number
of memory accesses (i.e., increase in the cache hit rate) if the two variables are
stored close to each other in memory. They propose a heuristic that determines
the temporally correlated variables and stores them consecutively as much as

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

240 • M. Kandemir et al.

possible. Note that in our terminology, each cluster in Panda et al. [1997] cor-
responds to a virtual line.

In principle, an approach that integrates access sequence optimizations and
storage sequence optimizations in a unified framework should generate better
results than pure access sequence optimizations and pure storage sequence
optimizations.

Before discussing how the approach in Panda et al. [1997] can be combined
(integrated) with the access transformation technique presented in this paper,
let us address a subproblem that will be needed in the integration process. The
problem that we address below is to optimize the access and storage pattern of a
basic block assuming that only some (not all) of the variables have fixed memory
locations and the remaining variables do not have fixed locations (i.e., they are
yet to be assigned to storage locations). Let us call these two groups of variables
FA and FN , respectively. The objective of the optimization process is then to find
an access sequence (to come up with an access sequence transformation) and
to find a storage sequence for the variables in FN . We propose the following
three-step approach to solve this subproblem:

—Use access sequence transformations to obtain an access sequence (for the
variables in FA) compatible with the storage sequence of the variables in FA.
These transformations will typically modify the access sequence of some of
the variables in FN as well. Let us call the set of these variables FN ′ (⊆ FN).

—Use storage sequence optimizations for the variables in FN ′ to obtain a stor-
age sequence (variable layout) which is compatible with the access sequence
determined in the previous step.

—If the set FN −FN ′ is not empty, then determine a suitable storage sequence
for the variables in this set. In most of the cases encountered in practice, this
set is empty.

Note that the first step uses our approach explained in the previous section
whereas the second step use Panda et al.’s [1997] approach.

We are now ready to present our unified approach to procedure-wide (global)
optimization for effective utilization of block buffering. Our approach operates
on the CFG representation of the procedure and starts by ranking the basic
blocks according to decreasing execution frequencies (which might be obtained
through static analysis or profiling as mentioned earlier). It then starts the
optimization process with the most frequently executed basic block and opti-
mizes this basic block using only storage sequence optimizations proposed by
Panda et al. [1997]. After optimizing this block, the storage order of the vari-
ables accessed by this block is known. The approach then moves to the second
most frequently executed basic block and optimizes this basic block using the
three-step approach discussed in the previous paragraph. After optimizing this
block, the set of variables whose storage locations are determined is updated
and the approach moves to optimize the next basic block, and so on. Therefore,
two distinguishing characteristics of the approach are:

—during the optimization process, it gives priority in optimization to the most
frequently executed basic blocks; and

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Improving the Energy Behavior of Block Buffering • 241

Fig. 4. An example control flow graph (CFG).

—it propagates variable layouts between basic blocks to reach a globally
(procedure-wide) acceptable solution.

It should be noted that once a memory location has been determined for a
variable (during optimization of a basic block), it is never changed later (during
the optimization of a less frequently executed basic block); that is, the approach
does not backtrack.

To illustrate the operation of this approach, we consider the CFG shown in
Figure 4. Let us assume without loss of generality that the basic blocks are
ordered according to decreasing execution frequency as B4, B0, B2, B3, and B1
and that k = 2. Note that a total of eight variables, namely a, b, c, d, e, f,
g, and h, are referenced in this CFG. Our approach starts with B4 and opti-
mizes it using Panda et al.’s scheme which indicates that variables a and c,
and similarly variables g and b should be stored consecutively; that is, a and
c should form a virtual line and g and b should form a virtual line. Having
fixed the storage order (sequence) for four variables, we move to B0 (the sec-
ond most frequently executed basic block). Since c and a (and similarly b and
g) have already been decided to be stored one after another (in the same vir-
tual line), we apply a commutativity transformation and transform the state-
ment g = b + a to g = a + b. The next block to be optimized is B2. In op-
timizing this block, our approach first applies commutativity transformation
to the first statement to makes accesses to variables b and g successive. It
then captures the temporal proximity between d and h and stores them con-
secutively (in a single virtual line). After that, it moves to B3 and changes
the access order of variables in the second statement (a = a + h) to bring ac-
cesses to d (in the first statement) and h (in the second statement) together.
Finally, the approach handles B1 by storing e and f, consecutively (in the
same virtual line). A possible storage order satisfying these transformations
is a,c,g,b,d,h,e,f in which we have four virtual lines: {a,c}, {g,b}, {d,h},
and {e,f}.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

242 • M. Kandemir et al.

7. EXTENSIONS TO THE BASIC APPROACH

7.1 Multiple Blocks

So far, we have considered only a single block buffer. The proposed technique
can be extended to work with multiple block buffers. In this case, after obtaining
the storage and access sequences, we need to place the virtual lines in memory
so as to minimize the number of conflict misses (in the block buffer) between
the virtual lines. We can achieve this by employing the cluster optimization
proposed by Panda et al. [1997]. The idea is to build a cluster (virtual line) in-
terference graph in which each node represents a virtual line (determined by our
approach in the previous section), and the weight of an edge between two nodes
indicates the number of potential conflict misses in the block buffer (cache) due
to these two clusters. Since this cluster (virtual line) assignment problem can be
shown to be NP-hard, a heuristic can be used so that the nodes (clusters) with
high number of potential conflict misses (i.e., high edge weights) are assigned
to consecutive memory locations to minimize the chances for conflict misses.

7.2 Impact of Register Allocation

Until now, we have assumed no register allocation; that is, all variables are
accessed from memory (through the cache plus block buffer system). A register
allocation mechanism can have two impacts on the energy consumption of a
memory system. First, it filters out a number of memory references that would
otherwise end up in the cache and (maybe) off-chip memory. This filtering, in
general, leads to a reduction on the overall memory system energy consumption.
Second, it can distort the regularity in data accesses to cache memory. This
second impact can be expected to lower the percentage benefits due to our
strategy. On one hand, there would be fewer references to the block buffer,
hence less scope for optimization. On the other hand, those references that end
up in the block buffer exhibit less regularity. This obviously makes a high-level
compiler optimization that targets block buffering less predictable.

There are two ways of handling the interaction between our approach and
register allocation. The first approach is to do nothing. In other words, we can
continue to optimize the code as if all data references would go to cache, and
expect that the references that actually go to cache at runtime would, hopefully,
still exhibit a regularity so that our optimization would bring some benefit. The
second approach is more involved as explained below.

Note that our strategy as explained so far, has been applied at the source-
level. This obviously makes it difficult to take into account the interactions with
low-level optimizations performed by the back-end compiler. However, it is also
possible to apply our approach at the low level, possibly even after register allo-
cation and instruction scheduling. Such a strategy will bring two main benefits.
First, we can clearly see (at the low level) which references are register allo-
cated (therefore, they do not need to be considered by our approach). Second, we
can have a better idea about the orders of loads and stores. Consequently, our
modified approach proceeds as follows. The CLTG is constructed after register
allocation has been performed and all register-allocated variables are omitted

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Improving the Energy Behavior of Block Buffering • 243

from consideration. In the multiple basic blocks case, once the storage locations
of all variables that are not register-allocated have been determined, the re-
maining variables are assigned locations from a separate region of memory;
that is, they do not interfere with the former group of variables.

It should be stressed, however, that modifying the access pattern at low level
is more challenging than doing it at high level. For example, going from an
evaluation order a + b + c to c + a + b in the low-level representation of the
code not only changes the order of loads but may also affect the register usage.
However, this potential problem does not create an excessively negative impact
with our current implementation as we do not move load/store instructions
beyond basic block boundaries.

7.3 Impact of Load/Store Re-ordering

As mentioned earlier in the article, if the back-end optimizer changes the rela-
tive order of loads/stores, the effectiveness of our strategy may reduce as such
re-orderings can make access pattern assumptions at the high level invalid.
Implementing our optimization strategy at the low level solves this load/store
problem partially (i.e., as far as the compiler’s view of the order of loads/stores
is concerned, if we run our strategy after instruction scheduling). This has
drawbacks in that reordering the instructions (that were ordered by the in-
struction scheduler to reduce stalls) may have an adverse effect by increas-
ing stalls. A detailed modeling of the potential interaction between instruction
scheduling and our strategy is beyond the scope of this article. We are cur-
rently exploring the problem of integrating instruction scheduling with our
strategy. This problem can be much worse for superscalar processors that per-
form out-of-order (OOO) execution through which the order of instructions can
be modified at runtime in a manner that may not be predictable at compile
time.

It should also be mentioned that many embedded systems (in particular,
those aiming at real-time environments) do not perform aggressive load/store
scheduling at runtime as such optimizations make the execution time prediction
highly difficult, in general [Wolf 2001].

8. EXPERIMENTAL EVALUATION

This section provides results of the experiments we performed to evaluate the
proposed optimization scheme. Our scheme has been implemented within the
SUIF compilation framework [Amarasinghe et al. 1996] and has been evaluated
using four codes: int mxm, an integer matrix multiply program (that contains
one initialization and one multiplication nest); full search, a motion estima-
tion code; fft, a discrete Fourier analysis code; and flt, a filtering routine.
Since our strategy targets codes that make frequent use of scalar variables, a
pre-pass in the compiler unrolls the loops in the code completely, and replaces
array references with their scalar counterparts. For example, array references
such as a[1][2] and b[5][3] are converted to scalar variables a12 and b53, re-
spectively. After this optimization, each element can be treated independently
from others.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

244 • M. Kandemir et al.

The data set sizes (respectively the number of basic blocks) for int mxm,
full search, fft, and flt are 196K (respectively, 2), 71K (respectively, 11),
224K (respectively, 8), and 128K (respectively, 12). For each code, four different
versions have been evaluated: the original code, a version that uses only storage
layout optimizations (denoted s opt) [Panda et al. 1997], a version that uses
only access sequence optimizations (denoted a opt), and a version that uses
both storage layout and access sequence optimizations (denoted s+a opt).

Our first set of experiments measure the energy benefits of our approach
when no register allocation is performed. The input to our implementation is a
code written in C. The SUIF pass implemented first applies loop unrolling and
converts array references to scalars as mentioned above. After this step, it ap-
plies our strategy explained in Section 6, which transforms access patterns and
determines storage locations for variables. Then, this optimized output code in
C and the original code are compared with each other. To eliminate register
allocation, all the versions are compiled using a custom Sparc-based back-end
where no scalar variable is permanently register allocated. The block buffer
miss rates are obtained through the use of an in-house simulator built upon the
Shade infrastructure [Cmelik and Keppel 1994]. To calculate energy consump-
tions, we employ the on-chip energy formulations in Shiue and Chakrabarti
[1999]. All the graphs shown here are for an 8K, direct-mapped, write-back
data cache with a single block buffer. Experiments with 2-way and 4-way asso-
ciative caches exhibited similar trends; so, they are not presented here. Also,
when we increase the number of block buffers (to 4 and 8), we obtained larger
energy savings (though slightly sub-linear in terms of the number of block
buffers). Beyond 8 buffers, we noticed that the buffers themselves consume a
large amount of energy.

Figure 5 gives the percentage improvements (reductions) in data cache en-
ergy consumption with respect to the original version (unoptimized code) for
two different values of k (1 and 4). Note that, the unoptimized code also takes
advantage of block buffering depending on the amount of block-level data local-
ity in the code. We can make two major observations from these graphs. First,
there is no clear choice between s opt and a opt as none of them dominates the
other. This means that both access pattern optimizations and storage pattern
optimizations need to be considered by the compiler. Second, the unified strat-
egy (s+a opt) outperforms the other two optimization schemes over all codes
and buffer sizes. When k = 1, the average percentage improvements brought
about by s opt, a opt, and s+a opt are 26.1%, 26.7, and 48.2%, respectively.

Figure 6 presents reductions in the overall data memory system energy
(main memory energy plus data cache energy, including the block buffer). We
see that the average energy reductions (over all codes and all buffer sizes) due
to s opt, a opt, and s+a opt are 12.6%, 12.2%, and 21.4%, respectively. These
results clearly demonstrate that the unified strategy generates much better
results than pure storage pattern or pure access pattern optimizations.

Next, we performed a set of experiments in which the impact of register allo-
cation on the effectiveness of our approach was gauged. Figure 7 gives the per-
centage reductions in data cache energy consumption with respect to the orig-
inal version. To perform these experiments, we first coded a simple back-end,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Improving the Energy Behavior of Block Buffering • 245

Fig. 5. Data cache energy percentage improvement over original codes (without register

allocation).

which takes the SUIF output (of the unoptimized code) and generates Sparc
code. Then, our back-end implementation, after register allocation, applied the
optimization technique discussed in this article. The register allocator employed
here closely follows the Chaitin’s graph-coloring-based approach [Chaitin 1982].
We see from Figure 7 that, when k = 1, the average percentage data cache en-
ergy improvement due to s+a opt is 35.7%, which is 12.5% worse than when
no register allocation is employed. Similarly, the results illustrated in Figure 8
show that (when register allocation is used) our approach improves overall data
memory energy by 16.4%. These results indicate that, even in the existence of
an aggressive register allocation, large energy benefits are possible by using
compiler-directed storage pattern and access pattern optimizations in concert.

In the next set of experiments, we measured the impact of load/store re-
ordering. For this purpose, we modified our back-end so that loads and stores
are moved to exploit as much instruction level parallelism (ILP) as possible
(without performing any load speculation). Since the observed trends are the
same for all the codes in our experimental suite, we present only the results
for flt when the register allocator is activated and the unified optimization
strategy (s+a opt) is used. The results presented in Figure 9 show that, with
load/store re-ordering, the data cache energy and overall data memory energy
brought by our approach is 24.7% and 9.1%, respectively. It should be noted
that load/store speculation can even take these benefits to lower values.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

246 • M. Kandemir et al.

Fig. 6. Overall memory energy percentage improvement over original codes (without register

allocation).

Before moving to our concluding remarks, we would like to discuss two im-
portant issues: performance impact of our approach and its impact on overall
energy savings. The impact of our approach on performance (execution cycles)
can be evaluated under two scenarios. In the first scenario, we assume that
the block buffer access and the cache access are serialized. That is, we first ac-
cess the block buffer and then to the cache if we miss in the block buffer. In this
case, the impact of our approach on performance is directly dictated by the block
buffer hit rate. Specifically, if the block buffer hit rate is high, we can expect
performance benefits (in addition to energy benefits). If, on the other hand, the
block buffer hit rate is low, this can affect the overall performance since each
miss in the block buffer brings 1 cycle additional penalty. The second scenario,
whose implementation we followed up to this point in the article, is based on
the implementation strategy suggested by Ghose and Kamble [1999], in which
the buffer and cache accesses are performed concurrently, using a two-phase
clock. In this case, the cache access is terminated early if the block buffer access
turns out to be a hit. In this case, the performance behavior of our scheme is less
affected by the buffer hit rate, compared to the first scenario described above.

Figure 10 gives the performance behavior of our strategy (s+a opt) under
these two scenarios. Each bar in this graph gives the execution cycles, nor-
malized with respect to the case without any optimization (i.e., the original
version). Two trends can be observed from this graph. First, our approach

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Improving the Energy Behavior of Block Buffering • 247

Fig. 7. Data cache energy percentage improvement over original codes (with register allocation).

improves overall performance under both the scenarios. The average execu-
tion cycle reductions for the first (serial access) and the second (parallel access)
scenarios are 9.4% and 13.1%, respectively. Second, as expected, the execution
cycle savings are lower with the first scenario. The reason that we still achieve
execution cycle savings with this scenario is the fact that the block buffer hit
rates are generally high, thereby removing the potential cache access in many
circumstances. The experimental results so far demonstrate that our approach
is beneficial from both energy and performance viewpoints.

Finally, it is also important to consider the overall energy savings achieved by
our approach. We start by observing that since our approach does not increase
execution cycles (under both the scenarios discussed above), we do not incur
any extra leakage consumption (over the original codes). Our experimentation
with these benchmark codes showed that, without any optimization, the data
memory system energy (including the data cache and the data main memory)
constitutes about 31% of the total energy consumption (for a simple five-stage
pipelined embedded processor, excluding the input/output units), indicating
that data memory system is an important target from the energy angle. Since
the results in Figures 6 and 8 show that our approach is able to reduce overall
data memory system energy by 16–21% when averaged over all benchmark
codes in our experimental suite, one can expect around 5–6.5% savings, on the
average, in total energy consumption.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

248 • M. Kandemir et al.

Fig. 8. Overall memory energy percentage improvement over original codes (with register

allocation).

Fig. 9. Data cache energy and overall memory energy percentage improvements over original

codes when load/store re-ordering is performed (with register allocation).

9. CONCLUSIONS AND FUTURE WORK

This article presented a compiler-based approach that modifies code and vari-
able layout to take better advantage of block buffering. The proposed technique
is aimed at a class of embedded codes that make heavy use of scalar variables.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Improving the Energy Behavior of Block Buffering • 249

Fig. 10. Overall performance improvement over original codes (without register allocation and

when k = 1.)

Unlike previous work that uses only storage pattern optimization, we use an
integrated approach that employs both code restructuring and storage pattern
optimizations. Our solution works for whole procedures, that is, multiple basic
blocks. We have implemented our solution in an experimental compiler. Exper-
iments with several codes demonstrate that our solution results in up to 24%
savings in overall memory energy without register allocation and 18% with
register allocation.

Work in progress includes the investigation of different ways of combining
storage layout and code restructuring transformations, incorporating partition-
ing of variables for multiple block buffers, and studying the impact of static
single assignment. We also plan to investigate how storage pattern decisions
made for a given procedure can be propagated to other procedures in the same
application.

REFERENCES

AHO, A. V., SETHI, R., AND ULLMAN, J. 1986. Compilers: Principles, Techniques, and Tools. Addison-

Wesley, Reading, MA.

AMARASINGHE, S. P., ANDERSON, J. M., WILSON, C. S., LIAO, S.-W., MURPHY, B. R., FRENCH, R. S.,

LAM, M. S., AND HALL, M. W. 1996. Multiprocessors from a software perspective. IEEE
Micro.

BELLAS, N., HAJJ, I., STAMOULIS, G., AND POLYCHRONOPOULOS, C. 1998. Architectural and compiler

support for energy reduction in the memory hierarchy of high-performance microprocessors. In

Proceedings of the 1998 ACM/IEEE International Symposium on Low Power Electronics and
Design, ACM, New York, 70–75.

CATTHOOR, F., WUYTACK, S., GREEF, E. D., BALASA, F., NACHTERGAELE, L., AND VANDECAPPELLE, A. 1998.

Custom Memory Management Methodology—Exploration of Memory Organization for Embedded
Multimedia System Design. Kluwer Academic Publishers.

CHAITIN, G. 1982. Register allocation and spilling via graph coloring. In Proceedings of the
SIGPLAN’82 Symposium on Compiler Construction, ACM, New York, 98–105.

CHILIMBI, T., LARUS, J., AND HILL, M. 2000. Making pointer-based data structures cache conscious.

IEEE Comput.
CMELIK, B. AND KEPPEL, D. 1994. Shade: A fast instruction-set simulator for execution profiling. In

Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, ACM, New York, 128–137.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

250 • M. Kandemir et al.

CORMEN, T., LEISERSON, C., AND RIVEST, R. 1990. Introduction to Algorithms. MIT Press, Cambridge,

MA.

EDMONDSON, J., FISCHER, T. C., JAIN, A. K., MEHTA, S., MEYER, J. E., PRESTON, R. P., RAJAGOPALAN, V.,

SOMANATHAN, C., TAYLOR, S. A., WOLRICH, G. M., RUBINFELD, P. I., BANNON, P. J., BENSCHNEIDER, B. J.,

BERNSTEIN, D., CASTELINO, R. W., COOPER, E. M., DEVER, D. E., AND DONCHIN, D. R. 1995. Internal

organization of the Alpha 21164, a 300 MHz 64-bit quad-issue CMOS RISC microprocessor. Digit.
Tech. J. 7, 1, 119–135.

ESAKKIMUTHU, G., VIJAYKRISHNAN, N., KANDEMIR, M., AND IRWIN, M. 2000. Memory system energy:

Influence of hardware-software imizations. In Proceedings of the ISLPED’00 ACM/IEEE Inter-
national Symposium on Low Power Electronics and Design. ACM, New York.

GHOSE, K. AND KAMBLE, M. 1999. Reducing power in superscalar processor caches using sub-

banking, multiple line buffers and bit-line segmentation. In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design, ACM, New York, 70–75.

KAMBLE, M. AND GHOSE, K. 1997. Energy-efficiency of vlsi caches: a comparative study. In Pro-
ceedings of the International Conference on VLSI Design, 261–267.

KANDEMIR, M., CHOUDHARY, A., RAMANUJAM, J., AND BANERJEE, P. 1998. Improving locality using

loop and data transformations in an integrated framework. In Proceedings of the International
Symposium on Microarchitecture.

KANDEMIR, M., CHOUDHARY, A., SHENOY, N., BANERJEE, P., AND RAMANUJAM, J. 1999. A linear alge-

bra framework for automatic determination of imal data layouts. IEEE Trans. Parall. Distrib.
Syst. 10, 2, 115–135.

KANDEMIR, M. AND RAMANUJAM, J. 2000. Data relation vectors: A new abstraction for data imiza-

tions. In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques.

KELLY, W., MASLOV, V., PUGH, W., ROSSER, E., SHPEISMAN, T., AND WONNACOTT, D. 1995. The Omega

library interface guide. Technical Report CS–TR–3445, CS Dept., University of Maryland.

KIN, J., GUPTA, M., AND MANGIONE-SMITH, W. 1997. The filter cache: An energy-efficient memory

structure. In Proceedings of the MICRO-30, 184–193.

KULKARNI, C., CATTHOOR, F., AND MAN, H. D. 2000. Advanced data layout imization for multimedia

applications. In Proceedings of the Workshop on Parallel and Distributed Computing in Image,
Video, and Multimedia Processing, held in conjunction with IPDPS’00.

KULKARNI, C., MIRANDA, M., GHEZ, C., CATTHOOR, F., AND MAN, H. D. 2001. Cache conscious data

layout organization for embedded multimedia applications. In Proceedings of the 4th ACM/IEEE
Design and Test in Europe Conference. ACM, New York.

MELLOR-CRUMMEY, J., WHALLEY, D., AND KENNEDY, K. 1999. Improving memory hierarchy perfor-

mance for irregular applications. In Proceedings of the ACM International Conference on Super-
computing. ACM, New York.

PANDA, P. 1998. Memory minimization and exploration for embedded systems. Ph.D. dissertation.

University of California, Irvine, Irvine, CA.

PANDA, P., DUTT, N., AND NICOLAU, A. 1997. Memory data organization for improved cache perfor-

mance in embedded processor applications. ACM Trans. Des. Auto. Elec. Sys. 2, 4.

SHIUE, W. AND CHAKRABARTI, C. 1999. Memory exploration for low power embedded systems. Tech.

Rep., Arizona State Univ.

SU, C. AND DESPAIN, A. 1995. Cache design tradeoffs for power and performance imization: A case

study. In Proceedings of the ISLPED95, ACM/IEEE International Symposium on Low Power
Electronics and Design, ACM, New York, 63–68.

WOLF, W. 2001. Computers as Components: Principles of Embedded Computing System Design.

Morgan-Kaufmann, San Francisco, CA.

WOLFE, M. 1996. High Performance Compilers for Parallel Computing. Addison-Wesley, Reading,

MA.

Received January 2003; revised March 2003; accepted March 2005

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

