
Reducing Code Size Through Address
Register Assignment

G. CHEN, M. KANDEMIR, and M. J. IRWIN

Pennsylvania State University

and

J. RAMANUJAM

Louisiana State University

In DSP processors, minimizing the amount of address calculations is critical for reducing code size

and improving performance, since studies of programs have shown that instructions that manipu-

late address registers constitute a significant portion of the overall instruction count (up to 55%).

This work presents a compiler-based optimization strategy to “reduce the code size in embedded sys-

tems.” Our strategy maximizes the use of indirect addressing modes with postincrement/decrement

capabilities available in DSP processors. These modes can be exploited by ensuring that successive

references to variables access consecutive memory locations. To achieve this spatial locality, our

approach uses both access pattern modification (program code restructuring) and memory storage

reordering (data layout restructuring). Experimental results on a set of benchmark codes show the

effectiveness of our solution and indicate that our approach outperforms the previous approaches

to the problem. In addition to resulting in significant reductions in instruction memory (storage)

requirements, the proposed technique improves execution time.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Main memory;

D.3.4 [Programming Languages]: Processors—Compilers, optimization

General Terms: Design, Performance

Additional Key Words and Phrases: Software compilation, address registers, DSP, register

assignment

1. INTRODUCTION

Address calculations play a key role in determining code quality in DSP proces-
sors since instructions that manipulate address registers constitute a signifi-
cant portion of overall instruction count. For example, it was found that for a
set of codes from MediaBench suite (a popular benchmark suite for embedded

Authors’ addresses: G. Chen, M. Kandemir and M. J. Irwin, CSE Department, Pennsylvania

State University, Univerity Park, PA 16802; email: {guilchen,kandemir,mji}@cse.psu.edu; J.

Ramanujam, ECE Department, Louisiana State University, Baton Rouge, LA 70803; email:

{jxr}@ee.isu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1539-9087/06/0200-0225 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006, Pages 225–258.

226 • G. Chen et al.

systems) running on Motorola’s DSP56000 processor, nearly 55% of the instruc-
tions are used to manipulate address registers through explicit loads and stores
[Udayanarayanan and Chakrabarti 2001]. Consequently, optimizing address
code generation by eliminating as many explicit address register loads as pos-
sible can result in significant improvements in code size and performance. Note
that code size improvements are very important not only because code size di-
rectly determines the capacity of the customized instruction memory (hence, its
cost) in an embedded system, but also because a smaller instruction memory
means lower power consumption.

Address calculations in modern DSPs, such as NEC 77110, Motorola
DSP56000, Analog Devices ADSP21xx, and Texas Instruments TMS320C5x
are done in address generation units (AGUs). An AGU contains a number of
address registers, the contents of which can be incremented or decremented
in parallel with the ongoing activity in the main datapath. The instruction
format for such processors allows one to encode a CPU activity and a postin-
crement/decrement of an address register in a single instruction. Thus, using
postincrement/decrement operations instead of explicit address register loads
enhances on-chip parallelism (performance) and reduces code size (as no sepa-
rate instruction is necessary to update the address register). Cintra and Araujo
[2000] report that although some of the register increment/decrement opera-
tions can be accommodated in VLIW instruction slots, modern VLIW DSP ar-
chitectures also have autoincrement and autodecrement modes; this is because
exploiting these modes effectively saves one instruction slot, which might be
used for some other operation.

An optimizing compiler can exploit these postincrement/decrement opera-
tions by performing computation and data transformations, as well as by as-
signing variables to address registers optimally. Consider the following scenario
where three scalar variables c, a, and b are to be accessed in the order c,a,b in
a given DSP code. Also assume that the AGU in question has a single address
register that can be postincremented/decremented by 1 and that these three
variables are stored in memory in the order a, b, c. The code for implementing
this sequence of accesses uses three steps. The first step loads the address reg-
ister with the address of c (the first variable in the access sequence). To access
the variable a next, the second step loads the address of a into the address
register. In accessing the variable a, a postincrement operation can be used to
modify the content of the address register so that it points to b, which will be
accessed next. In the final step, the variable b is accessed. Overall, we need
to perform two explicit address register loads. In addition to being a waste of
machine cycles, this increases code size and thereby the instruction memory
size, which is at a premium in many embedded designs.

We can reduce this overhead of explicitly updating the address register by
using a better choice of the order in which the variables are stored in data mem-
ory. Instead of the storage order a, b, c in the previous scenario, we can eliminate
one of the two address register loads if we use the storage order c, a, b. In this
case, first, we load the address register with the address of c and postincrement
the address register to make sure that, after the execution of the statement that
accesses c, it will point to the next location (which contains a). Next, we access

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 227

the variable a and again use postincrement to make the address register point
to the variable b. Finally, we access the variable b. This problem of determin-
ing the most suitable storage order of variables is called the offset assignment
problem and has been partially addressed by Bartley [1992], Liao et al. [1995,
1996], and others [e.g., Leupers and Marwedel 1996; Udayanarayanan and
Chakrabarti 2001]. Basically, these solutions first determine a suitable storage
order for variables and then assign address registers to these variables to mini-
mize the number of address register loads. In essence, since we are determining
the contents of the address register(s) before each variable access, this problem
can also be defined as the address register assignment problem.

A major limitation of the techniques proposed so far for the address reg-
ister assignment problem is that they either focus only on modifying the
storage order of variables [e.g., Liao 1996; Liao et al. 1995] or only on mod-
ifying the intrastatement access pattern using commutativity and associa-
tivity transformations [e.g., Rao and Pande 1999]. In this work, we present
a framework that considers both computation-based (intra- and interstate-
ment) transformations and storage-based optimizations in a unified setting
for “reducing the code size of a given application”; that is, our main objec-
tive is to save the code space. More specifically, this work makes the following
contributions.

1. It presents an algorithm based on access pattern modification that makes
efficient use of postincrement/ decrement addressing modes in DSPs. This
algorithm assumes a fixed storage order for variables and restructures the
code to exploit these addressing modes. This algorithm is more general than
the one proposed in Rao and Pande [1999] as it considers both intra- and
inter-statement transformations (whereas the approach in Rao and Pande
[1999] considers only intrastatement transformations).

2. It gives an algorithm that modifies an access pattern (access sequences),
given a partially fixed storage order. A partially fixed storage order is a
storage order in which the memory locations of only a subset of the variables
are fixed.

3. It combines these two algorithms with the storage order-based optimization
strategy (i.e., offset assignment) developed by Liao et al. [1995], and presents
a unified approach (which is demonstrated to be superior) to handle the
offset assignment problem for a given control flow graph (procedure-wide
optimization).

4. It shows how our approach can be made to work in an interprocedural set-
ting by making use of a call graph representation of the program being
optimized.

As far as ISA is concerned, our technique does not assume anything on
the underlying DSP architecture except for the existence of an AGU, which
is available in many current DSP architectures (e.g., Motorola DSP56000 and
TMS320C5x). Thus, our technique can optimize a broad set of DSP applications
running on various DSP architectures. We implemented our technique using
an experimental compiler and tested its effectiveness using seven embedded

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

228 • G. Chen et al.

benchmarks from the MediaBench suite [Lee et al. 1997]. Our results indicate
significant reductions in code sizes over previous techniques.

Section 2 presents a brief review of the offset assignment problem. Section 3
presents a strategy that uses code transformations to improve the access se-
quence, assuming a fixed storage order; in Section 4, we discuss a more general
technique that can work with a partially fixed storage sequence. Section 5 gives
a unified procedure-level strategy that uses both storage and access sequence
optimizations. Section 6 discusses how our approach can work in an interpro-
cedural setting. Section 7 presents experimental data that demonstrate the
efficacy of our approach. Finally, Section 8 concludes with a summary and an
outline of the future work.

2. REVIEW OF OFFSET ASSIGNMENT

The offset assignment problem [Liao 1996] is one of assigning a frame-relative
offset (i.e., storage location) to each variable in the code in order to minimize
the number of address arithmetic instructions (that is, the instructions that
load a new value to the address register) required to execute the code. The cost
of an offset assignment is defined as the number of such instructions.

Note that offset assignment problem exists for both global and local vari-
ables. Local variables are accessed using the stack pointer and instructions
for updating stack pointer will increase overall code size (like any other in-
structions). Consequently, our compiler-directed approach described in this
paper utilizes AGU for reducing the number of stack pointer updates as
well.

Given a code sequence, we can define a unique access sequence for it. In an
operation a = b op c, where “op” is some binary operator, the access sequence
is given by b, c, a. The access sequence for an ordered set of operations is
simply the concatenated access sequences for each operation taken in order.
For example, for the code fragment

a = c + d
d = d + c + b + c + a

the access sequence is c, d, a, d, c, b, c, a, d, assuming that addition is
left-associative. Let us assume that the variables in this code fragment are
stored in memory in the following order: a, b, c, d. The cost of a given stor-
age sequence (offset assignment) is the number of consecutive accesses (in the
access sequence) for which the accessed variables are not assigned to adjacent
locations in memory. Therefore, the cost of the offset assignment given above is
four as there are four transitions in the access sequence between nonadjacent
variables. The objective of the offset assignment problem is to determine a stor-
age order for variables such that the cost will be minimum. Liao [1996] showed
that the offset assignment problem is equivalent to the Maximum Weighted
Path Cover (MWPC) problem and proved that it is NP-complete. His heuristic
solution was later improved by Leupers and Marwedel [1996] who presented a
tie-breaking strategy for achieving better storage assignments. A more detailed
discussion of Liao’s approach will be presented in Section 4.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 229

Note that if the number of variables in the program being analyzed is very
small, we can use an exhaustive approach to find the optimum solution. How-
ever, in general, this is not the case and we need a systematic approach to
address this problem. Our approach mainly targets at such cases where the
number of variables to be accessed from memory is large.

3. COMPUTATION RESTRUCTURING FOR A FULLY FIXED
STORAGE SEQUENCE

Code size reduction using address register assignment is achieved by making
the access sequence (i.e., the order in which the variables are accessed) and the
storage sequence (i.e., the storage order of the variables in memory) compatible.
In practice, it is possible to do either of the following: modify the access sequence
for a fixed storage sequence or modify the storage sequence for a given fixed
access sequence. In this section, we discuss a strategy that adopts the former
approach as opposed to Liao’s scheme [1996] which takes the latter approach.
In this work, we apply code transformations to a high-level intermediate rep-
resentation (IR) of the code where commonly known low-level optimizations,
such as conventional, such as convetional graph coloring-based register allo-
cation and common subexpression elimination, have already been performed.1

This IR has statements very similar to high-level source statements. In the
remainder of this presentation, when we mention statement, we actually refer
to this IR-level statement. However, to make the presentation clear, we use
source-level (C-like) statements. Consider, a statement of the following form

a = b + c

Let us assume that the machine has a single address register and that the stor-
age sequence is c, b, a. The access sequence in this example is b, c, a, which
is different from the storage sequence. As a result of this, going from variable c
to variable a incurs an explicit address register load (since c and a are not con-
secutive in the storage sequence, so we cannot use postincrement/decrement
mode). Liao’s approach [Liao 1996] fixes this problem by modifying the stor-
age sequence from c, b, a to b, c, a. Changing the storage sequence is a
viable option provided that the variables have not yet been assigned to storage
locations, or (if they have already been assigned to locations) the cost of trans-
forming the storage sequence from one form to another (which may require
copying resulting in additional memory requirements) does not outweigh its
benefits. An access pattern-oriented approach, on the other hand, can optimize
this code by transforming this statement into

a = c + b

1It needs to be noted that, register allocation can reduce the number of memory accesses in the

application code and, consequently, reduce opportunities for utilizing AGU through our scheme.

However, even the best register allocator (e.g., the powerful allocator used in our experiments)

can remove only a small set of the total memory accesses in a data-intensive signal processing

application. As a result, one still needs to apply some techniques for removing address calculations.

The scheme proposed in this paper is one such technique.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

230 • G. Chen et al.

The new access sequence is c, b, a which is the same as the storage se-
quence. Note that, for this example, just applying commutativity transforma-
tion (an intrastatement transformation) was sufficient to obtain the desired
result.

Let us consider the following code fragment with two statements.

a = c + e
b = c + f

We assume a single address register and a storage sequence of a, b, c, d,
e, f. It should be noted that each variable access in this code fragment (under
the assumed storage sequence) will require a load to the address register. A
storage layout-oriented scheme would change the storage sequence of the vari-
ables, but this may be too costly if the variables have already been assigned
to storage locations (for example, during the optimization of a different set of
statements that manipulate the same variables.) On the other hand, a commu-
tativity transformation would lead to

a = c + e
b = f + c

Note that this code fragment (which is obtained from the previous one by ap-
plying commutativity transformation to the right-hand side of the second as-
signment statement) eliminates one of the explicit loads to the address register.
That is, in going from c to b in the second assignment statement, we can make
use of the postdecrement mode (as these two variables are consecutive in mem-
ory). An interstatement transformation, on the other hand, can generate the
following program fragment

b = f + c
a = c + e

Note that this code fragment is obtained from the original one by interchanging
the order of two statements and by applying commutativity transformation to
one of the statements. In this case, two variable accesses (i.e., going from c
to b in the first statement and going from b in the first statement to c in the
second statement) can be satisfied using postincrement/decrement modes. This
is a simple example that illustrates the benefit of interstatement optimization.
However, there are some cases where it is not possible to interchange the order
of statements because of data-dependency constraints. For example, in the code
fragment

a = a + c
c = c + 1

interchanging two statements would give a wrong result as the value used for
c in a = a + c would be different than the one in the original case. Here, a
storage-oriented approach [e.g., Liao 1996], on the other hand, could store a
and c in consecutive locations in memory, thereby leading to the effective use
of postincrement and decrement addressing modes.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 231

The preceding examples show that neither storage-based techniques nor
access sequence (computation)-based techniques (intra- and interstatement
transformations) dominate the other, and a unified framework that uses both
the techniques may be needed for better results. In the rest of this section,
we formulate the computation-oriented transformations using a graph-based
representation.

3.1 Terminology

We represent a program using a control flow graph (CFG) which is a directed
graph in which each node denotes a basic block and an edge between two basic
blocks indicates that there is a possibility that the flow of control (during exe-
cution) may be transferred from one of these basic blocks to the other. A basic
block can be defined informally as a straight-line sequence of statements that
can be entered only at the beginning and exited only at the end [Wolfe 1996].

Consider a graph G = (V , E), where V is the set of nodes (vertices) and
E is the set of edges. A path cover (or cover) C of a given graph G(V , E) is a
set of paths such that every node in V is incident at some edge belonging to
the chosen set of paths. In other words, we can think of a cover C(V ′, E ′) as a
subgraph of G(V , E), where V ′ = V and E ′ ⊆ E. The length of a path is the
number of edges in the path and the length of a cover is the sum of the number
of edges of each constituent path. A path that has the maximum length (among
all paths in the cover) is referred to as the longest path.

3.2 Layout Transition Graph

Given a basic block, we use a layout transition graph (LTG) to show the con-
nections between elements that are stored consecutively in memory. The layout
transition graph of a basic block is a directed graph LT G(V , E), where each
node vi represents a variable occurrence in the basic block (i.e., we have a node
for each variable use); and a directed edge e = (vi, vj) from a node vi to a node
vj indicates that the variable represented by vi is stored (in memory) next to
the variable represented by vj . Whether vi comes before vj in the storage order
or after vj is not important for the purposes of this work (as long as they are
consecutive in memory). An LTG also contains an edge from vi to vj , if these
two nodes represent the occurrences of the same variable. Note that the vari-
able access pattern of a program touches all the nodes of the corresponding
LTG.

For ease of exposition, we divide a given LTG into layers, each layer cor-
responding to a statement in the basic block. If the basic block contains K
statements, each variable vi in the j th statement from top (denoted sj where
1 ≤ j ≤ K) is assumed to belong to the variable set of sj ; we express this as
vi ∈ sj . We will use sj to denote both the statement and its variable set, where
there is no confusion.

A given variable set si can also be divided into two logical subsets: one that
contains the variable on the left-hand side (LHS) and one that contains the
variables on the right-hand side (RHS). For a variable set si, the first subset is
denoted by siL and the second subset is denoted by siR .

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

232 • G. Chen et al.

Fig. 1. (i–v) LTG, CLTG, and different traversals for an assignment statement under the storage

sequence c, b, a. (vi–x) LTG, CLTG, and different traversals for a program fragment under the

storage sequence a, b, c, d, e, f.

To illustrate these concepts, consider the LTG shown in Figure 1,i for the
statement a = b + c, assuming that the storage sequence is c, b, a. There
is a bidirectional edge between c and b (i.e., we have a directed edge from
c to b and one from b to c), and another bidirectional edge between b and
a. Labeling this statement by s1, we have s1L = {a} and s1R = {b, c}. Note
that the access sequence for this statement is b, c, a as shown in Figure 1,iii
using dashed arrows. It should also be noted that a new access sequence can
be obtained by traversing the edges in the LTG in a different manner. If we
start from the variable c, we can first traverse the edge (c,b) and then the edge
(b,a), as depicted in Figure 1,iv. Note that this new traversal corresponds to
transforming the statement from a = b + c to a = c + b (i.e., a commutativity
transformation).

We need to emphasize that it may not always be possible to transform a state-
ment based on its LTG. Further, not every traversal of the edges in the LTG is
legal. For example, going from a to b using the edge (a,b) is not acceptable (see
Figure 1,v) as all the right-hand side references should be accessed before the
left-hand side reference. We can prevent some of the transitions, such as this,
by eliminating edges from the LTG that would lead to unacceptable or infeasi-
ble transformations. For example, in order to prevent a transformation from a
to b, we eliminate the directed edge from a to b as shown in Figure 1,ii. Obvi-
ously, given the two legal traversals in Figures 1,iii and iv, we prefer the one in
Figure 1,iv as all transitions between variables in this figure are between con-
secutive memory locations, meaning that we can use postincrement/decrement
mode for these transitions. Another way of expressing this is that both the
edges visited during the traversal in Figure 1,iv belong to the LTG given in
Figure 1,ii. On the other hand, one of the transitions taken during the traver-
sal in Figure 1,iii (the transition from c to a) does not have any corresponding
edge in the LTG. Therefore, the objective of a traversal must be minimizing the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 233

number of transitions that do not correspond to an edge in the LTG. We will
formalize this concept later.

Now, let us consider the LTG given in Figure 1,vi for the following program
fragment.

a = c + e
b = c + f

It is assumed here that the storage sequence is a, b, c, d, e, f. As before,
a traversal of the nodes of this LTG corresponds to a specific access sequence.
The default access sequence is c, e, a, c, f, b, as shown in Figure 1,viii.
Note that a different traversal of the nodes corresponds to a transformation of
the code sequence. Here, an important point should be noted. In traversing the
nodes (or edges), we have the restriction that once we are in a statement we
need to finish all the nodes in the statement before moving to a node in another
statement. That is, we are not allowed to go from a node in skR to a node in
sk′ R if k �= k′, assuming that each statement has a left-hand side variable (this
restriction is due to the fact that we do not want to interleave variable accesses
from different statements since doing so can invalidate the impact of previous
optimizations performed on the code).

The preceding discussion indicates that we need some restrictions on the
traversal order of the nodes in the LTG. For this purpose, we use a modified
form of the LTG called constrained layout transition graph (CLTG), and perform
our traversal on this graph. Simply, in those cases where the compiler can
detect that variable vi in statement sk cannot be accessed immediately after
the variable vj in statement sk′ (sk and sk′ are not necessarily distinct here), the
corresponding edge (if any) from vj to vi in the LTG should be removed when
constructing the CLTG. (Instead of deleting edges from the LTG to construct
the CLTG, it is possible to directly construct the CLTG using the necessary
edges, albeit using somewhat more complicated rules. The correctness of the
algorithms is not affected by the choice of either method to construct the CLTG.)

A constrained layout transition graph, written CLTG(V ′, E ′), is a subgraph
of the LTG(V , E), such that V ′ = V and E ′ contains all the edges in E ex-
cept those that can lead to an incorrect or infeasible code transformation. The
construction of the CLTG subsumes both the intrastatement constraints (i.e.,
evaluation rules that need to be obeyed when processing an RHS expression)
and the interstatement constraints (i.e., dependence and other constraints be-
tween statements). For example, a CLTG cannot contain an edge between the
variable occurrences of the right-hand sides of two different assignment state-
ments. In mathematical terms, an edge e = (vi, vj) ∈ E does not belong to E ′

if vi ∈ skR and vi ∈ sk′ R , where k �= k′. Figure 1,vii depicts the CLTG for the
LTG in Figure 1,vi. Note that the default traversal (access sequence) given in
Figure 1,viii does not use any of the edges in the underlying CLTG. Conse-
quently, an explicit address register load is necessary prior to each variable
access. Now consider the traversal given in Figure 1,ix. In this case, the new
access sequence corresponds to a transformation in which the right-hand side
of the second statement is transformed using commutativity. Note that one of
the transitions in this traversal (i.e., the one from c to b) has a corresponding

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

234 • G. Chen et al.

edge in the CLTG given in Figure 1,vii. Finally, let us focus on the traversal
given in Figure 1,x. The transformation corresponding to this traversal is one of
interchanging the order of the two statements and applying the commutativity
transformation to one of the statements. In this traversal, two transitions, one
going from c to b and the other going from b to c have corresponding edges in
the CLTG. These two examples in Figure 1 show that the preferred traversal
must maximize the number of transitions that have corresponding edges in the
underlying CLTG. In other words, it should minimize the number of transitions
that do not have corresponding edges in the CLTG.

It should be noted, however, that although a given CLTG shows possible legal
transitions between nodes, it is still possible to generate an illegal traversal
(access sequence) on the CLTG. For example, by itself, accessing two nodes
vi and vj consecutively may not break any dependence; however, after this
modified access sequence, it may not be possible to generate legal code because
of a new restriction (in the access order) resulting from the said transition
between vi and vj . Therefore, our CLTG traversal strategy (which is detailed
in the following subsection) is geared toward coming up with a legal (semantic-
preserving) order in which the nodes are visited.

3.3 Traversing the CLTG

We formulate the problem of modifying a given basic block code for effective use
of the address register(s) as one of determining a path cover and a traversal
order in the CLTG. We assume for now that the AGU has only a single address
register. We will later discuss how to extend our approach to handle multiple
address registers.

3.3.1 Legality. In order to generate correct code (that is, to preserve the
original semantics of the basic block), we impose the following conditions on
the traversal order:

1. Each node in the LTG (i.e., a variable occurrence in the basic block) should
be visited.

2. For a given layer in the LTG corresponding to the statement sk , all nodes in
skR should be visited before any node in skL.

3. Once the traversal reaches the layer corresponding to the statement sk , it
should finish all the variables in that layer (i.e., the set skL ∪ skR) before
moving to another layer.

4. All the data dependences and other restrictions such as latency constraints
or expression evaluation constraints should be observed.

Condition (1) indicates that each variable should be touched (by any legal
execution of the code). We enforce condition (4) by ensuring that we do not
make a transition from a vi ∈ sk to a vj ∈ sk′ (even if vi and vj are consecutive
in memory) when there is a data dependence from sk′ to sk . To enforce condition
(2), we do not allow a transition from the node vi ∈ skL to a node vj ∈ skR . To
enforce condition (3), we disallow transitions between node vi ∈ skR and any
node vj ∈ sk′ R for k �= k′. A transition from a node vi ∈ skL to a node vj ∈ sk′L

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 235

(where k �= k′) is allowed only if sk′ has no variables on the right-hand side
(i.e., sk′ R = ∅). Also, there cannot be a transition from a node vi ∈ skR to a node
vj ∈ sk′L (where k �= k′) unless sk′ has no variable on the right-hand side (i.e.,
sk′ R = ∅) and sk has no LHS variable, which cannot occur in our framework.

3.3.2 Profitability. The objective of the traversal of the nodes in the CLTG
is to minimize the cost of the traversal, which is defined as the number of tran-
sitions from a node vi to a node vj such that vi and vj are not consecutive in
the storage sequence (i.e., there is no edge (vi, vj) in the CLTG) for all i and j .
It should be noted that a storage sequence imposes constraints on the CLTG. If
a transition from vi to vj does not use an edge in the CLTG, this means that a
postincrement or a postdecrement cannot be used for this transition; thus, new
value should be loaded in the address register (using an explicit load instruc-
tion), thereby increasing the code size. As a result, the cost of a traversal can
be viewed as the number of transitions in the access sequence that do not use
an edge in the CLTG. Thus, the address register assignment problem can be
reexpressed as

determining a traversal of the nodes in the CLTG—subject to the four
legality conditions listed above—that minimizes the number of tran-
sitions that do not correspond to an edge in the CLTG.

It can be shown that this problem is NP-complete; however, we omit the proof
because of lack of space.

Let us now concentrate on the larger basic block given below assuming a
storage sequence of a, b, c, d, e, f.

c = a + b

f = d - e - 2

a = a + 3d

c = 2f + 4

d = d + f + a

Figures 2,i and ii show the LTG and CLTG, respectively, for this code frag-
ment under the assumed storage sequence. Note that, in going from the LTG
to the CLTG, many edges are dropped as they are not possible for any legal
traversal. Figure 2,iii shows the default access sequence (i.e., without any op-
timization). This access sequence has a cost of eight, and the transitions that
contribute to this cost are marked using the symbol“*”. Our approach, on the
other hand, results in the access sequence (traversal) given in Figure 2,iv. We
see that the cost of this access sequence is four (again, the transitions that con-
tribute to the cost are marked using the symbol “*”). In other words, we are able
to eliminate four address register loads in the code. This traversal corresponds
to the following transformed program:

c = a + b

f = d - e - 2

c = 2f + 4

a = 3d + a

d = a + f + d

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

236 • G. Chen et al.

Fig. 2. (i) LTG and (ii) CLTG for a given basic block. (iii) Default access sequence. (iv) Optimized

access sequence. (v) Example paths in the CLTG.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 237

Fig. 3. An abstract CLTG and the longest path.

Note that this optimized code is obtained from the original one through
one statement reordering (interstatement transformation) and a number of
intrastatement transformations.

3.3.3 Overview of the Algorithm. We now present an algorithm that takes
as input a CLTG and generates as output a traversal (an access sequence) and
all the necessary (inter- and intrastatement) transformations to obtain this
access sequence. Given a CLTG, the algorithm first detects the longest directed
path (i.e., the path that contains the maximum number of edges in the same
direction).2 It then transforms the portion of the CLTG (which contains a subset
of the statements in the original basic block) in accordance with this longest
path. Finding the longest path in a given directed graph takes O(N 3) time,
where N is the number of nodes in the graph [Cormen et al. 1990]. After the
longest path has been determined and the portion of the CLTG that contains the
longest path (that is, a subset of the statement in the original basic block) has
been transformed, our approach continues by selecting the second longest path
and transforming the relevant parts of the CLTG. Special attention is paid to
ensure that we do not modify any parts of the basic block that have already been
transformed in accordance with a longer path considered earlier. In this way, our
approach selects the next longest path in each step and transforms the relevant
portions of the basic block. The process stops when it is not possible to transform
the basic block any further (without distorting the previous transformations).
In case we have two paths of the same length, the current implementation
favors the one that leads to minimal modification to the original code. Our
experiments show that this tie-breaking strategy performs well in practice.

3.3.4 Transformations Imposed by a Path. Transforming the program code
in accordance with a path is challenging. Consider the abstract CLTG in
Figure 3 and the longest path shown. Note that each layer in the CLTG is
labeled with a different statement id. The desired access sequence here is a,
c, h, d, f, g, b, e. To achieve this access sequence, the following transfor-
mations need to be performed:

1. The variable a should be made the last variable accessed on the RHS of the
statement s1;

2This can be done by first assigning a unit negative (−1) weight to each edge, and then solving the

shortest path problem [Cormen et al. 1990].

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

238 • G. Chen et al.

Fig. 4. Different situations that might require code transformations.

2. In statement s2: (i) the variable h should be made the first variable accessed
on the RHS; (ii) the variable h should be made to immediately precede the
variable d;

3. Statement s4 should be made to immediately follow the statement s2;

4. In Statement s4: (i) the access of variable b should be made to immediately
follow the variable g; (ii) the variable e should be made to immediately follow
the variable b.

In addition to these transformations, the transformed program should not
modify the following properties of the input code (CLTG): (1′) Statement s2

immediately follows statement s1. (2′) d is the last variable accessed on the RHS
of Statement s2. (3′) g is the first variable accessed on the RHS in Statement s4.

If the compiler can find a series of transformations to satisfy all these con-
straints, we achieve the best possible access sequence (for this path). In many
cases, however, this may not be possible because of inconsistencies between the
requirements given above, or owing to a situation that does not involve the
variables on the longest path. An example of the former is the inconsistency
between conditions (2,i), (2′), and (2,ii) above. That is, if we make the variable
h the first variable on the RHS of the statement s2 and insist on keeping the
variable d as the last variable on the RHS, it is not possible to access h and d
successively, as there are two more variables on the RHS. We assume that these
other variables are different from those labeled in the figure. An example of the
second type of difficulty is the possibility that it may not be legal to access the
statement s4 immediately after the statement s2 (as required by the condition
3). This may occur, for example, if the statement s3 writes a variable x (assumed
to be a different variable from the ones shown in the figure) that is subsequently
read by the statement s4. Although it may not always be possible to achieve all
of the desired transformations, our approach attempts to achieve as many of
the desired transformations as possible. Note that this strategy helps to use as
many edges in the CLTG as possible.

Figure 4 summarizes the situations that may demand code (access sequence)
transformations during the optimization process. The first situation corre-
sponds to the case where there is an edge from a node vi in skR to the node
vj in skL. In this case, the RHS node in question should be made the last node

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 239

accessed on the RHS (if it is not already the last node on the RHS). The second
situation is the one in which we have an edge (in the CLTG) from the LHS
node vi of a statement sk to a node vj in sk′ R of statement sk′ where k �= k′.
In this case, we may need two types of transformations: first, if sk′ and sk are
not consecutive, that should be made consecutive (an interstatement transfor-
mation); second, if vj is not the first variable accessed in the sk′ R , it should be
made so (an intrastatement transformation). The third situation corresponds
to the case in which we have an edge from a node vi in skR to another node
vj in skR . In this case, we need an intrastatement transformation that should
bring these two nodes together. In cases where a variable vj is needed to be
both the first variable accessed in sk′ (because of the edge from sk to sk′) and be
the last variable accessed (because of the intrastatement edge in sk′), we need
a conflict-resolution scheme.

3.3.5 Example Transformation. In the example in Figure 2, following the
construction of the CLTG (shown in Figure 2,ii), our approach determines the
longest path marked as the 1st path in Figure 2,v. Based on this path, it builds
an access subsequence a, b, c, d, e, f, f. This subsequence completely speci-
fies the transformations required for three of the five statements in the code
(i.e., the first, second, and fourth statements in the original code). Note also
that the transformations performed along this path include an interstatement
transformation. Next, it finds the path a, a, a (marked as the 2nd path). Note
that this path fixes the access sequence for the third statement in the original
code completely as d, a, a. It also specifies that the variable a should be the first
variable accessed in fifth statement. After that, the approach selects the path
c, d, d. The (c,d) part of this path says that the fifth statement should follow the
fourth statement in the transformed program, but this is not possible as the
fourth statement has already been transformed, and it now (in the transformed
code) comes before the third statement (in the original program). The (d,d) part
of the path, on the other hand, is feasible, and indicates that d should be the
last variable accessed in the fifth statement. The next path is c, d; however, the
transformation implied by this is not possible. The last path is the one between
c and d (marked as the 5th path in the figure). It implies that d should be the
first variable accessed in the third statement and the third and fourth state-
ment should be interchanged. At this point, the algorithm has traversed all the
paths. It next visits each statement, and fixes the access order for the variable
whose order has not yet been fixed. It visits the fifth statement (in the original
code) and makes f the second variable accessed on the RHS. The final access
sequence is shown in Figure 2,iv.

3.4 Multiple Address Registers

Thus for we have focused on the address register assignment problem under the
assumption of a single address register in the AGU. This subsection describes
a heuristic approach that makes use of multiple address registers when the
AGU architecture supports it (e.g., as in the case of Analog Devices ADSP21xx
digital signal processor line). The idea is to reduce the number of transitions on
the CLTG (using multiple address registers) that do not have a corresponding

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

240 • G. Chen et al.

edge in the CLTG beyond the reduction obtained when we have a single address
register.

Our solution starts by building the CLTG and finding all paths on it using
the technique explained for the single address register case. Then, starting with
the longest path, it improves the cost of the traversal (associated with the path
being considered) by making use of extra address registers available. That is, it
traverses the paths one-by-one and attempts to eliminate the number of explicit
address register loads using a minimum number of address registers. Suppose
that we have R address registers and Q paths. First, we try to assign a register
per path. The idea here is to eliminate the extra loads (to address registers)
that would occur if we use just one register and frequently transition between
two paths (i.e., touch variables from different paths) during execution. When we
use a register per path, we do not have to worry about path transitions. (Note,
however, that using more address registers means more register initializations
and, thus, larger basic block size.) If R ≥ Q , it is always possible to allocate
one address register per path. On the other hand, if R < Q , we allocate ad-
dress registers to paths starting with the longest paths. In this case, the paths
without private registers reuse registers of other paths, as in the case when
we have a single address register. If R > Q , the remaining address registers
(after assigning one per path) are then distributed across paths and utilized as
explained in the following.

Let us focus on a specific path. Our approach, which is a greedy heuristic is, to
start with, one address register; we try to access as many variables as possible
using this register. In case we need to perform a transition that needs explicit
load, the approach allocates a new address register. In each step, it checks
whether the next variable can be addressed using one of the address registers
already in use by this path and, if so, it uses the appropriate register; otherwise,
if there is an available (unused) register, it uses that; if not, it performs an
explicit load to one of the address registers in use.

As an example, consider the traversal shown in Figure 5,i. Suppose that
we are in node a (during the traversal of a path), and need to visit node b
next (that is, we need to take the edge marked using “*”). Also, suppose that
a and b are not consecutive in memory and we have another address register
at our disposal. Assuming that the next node to be visited following b is c. Our
approach considers four possibilities:

1. b and c are consecutive in memory, but a and c are not consecutive. In this
case, we load the second address register with the address of b. After that,
during accessing b, we postincrement/decrement the second address register
to point c. This situation is depicted in Figure 5,ii, where AR1 and AR2 denote
the first and the second address registers, respectively.

2. b and c are not consecutive in memory, but a and c are consecutive. In this
case, we load the second address register with the address of b. Also, before
that, during accessing a, we postincrement and decrement the first address
register to point c. This situation is illustrated in Figure 5,iii.

3. Both b and c and a and c are consecutive in memory. This case is shown
in Figures 5,iv and v. In this case, to decide whether to use the first or the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 241

Fig. 5. (i) An example access sequence. (ii–vi) Different address register assignments.

second address register to point to the variable c, we consider the location
of the next variable to be accessed following c. If this variable (labeled d
in Figures 5,iv and v) and b are consecutive in memory, it is better to use
the first address register to access c (Figure 5,iv); otherwise, if d and a are
consecutive, we use the second address register for c (Figure 5,v).

4. None of the cases above apply. In this case, if available, we use a different
address register for pointing to c (AR3 in Figure 5,vi). Otherwise, we use
either the first or the second address register.

We have observed from our experiments and experience that, in most cases,
the number of paths in a basic block is close to the number of address registers
(when there are multiple registers in the architecture). Thus, each path can use
its own address register.

3.5 Addressing Using Larger Increments/Decrements

In some embedded architectures, it is possible to use postincrement/decrement
addressing modes with an increment/decrement value of l > 1. One way of im-
plementing this is to embed the increment/decrement value l in the instruction
format. Our approach can easily be made to work with those architectures as
well. The idea is to relax the constraints adopted during the construction of
an LTG. Recall that when building an LTG with l = 1, we have inserted an
edge from a node vi to a node vj if, and only if, the variables represented by
vi and vj are consecutive in the storage sequence. If l > 1, we can have an
edge between nodes vi and vj as long as the variables represented by these
nodes are r locations apart from each other, where r < l . Two nodes vi and vj

are r locations apart from each other in a given storage sequence if there are
exactly r variables between them. They are called 0 locations apart if they are
consecutive in memory.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

242 • G. Chen et al.

As an example, assume a storage sequence of a, b, c, d and an assignment
statement a = d + c. Assuming l = 1 and we have a single address register, the
only edges in the LTG are those between d and c. In this case, the two possible
access sequences, d, c, a and c, d, a, have the same quality and incur an
explicit load to the address register before accessing variable a. However, if
l = 2, we will have an edge from c to a, in addition to the edges in the previous
case (when l = 1). In this case, the access sequence d, c, a is clearly preferable
over the sequence c, d, a, as (in the former) going from c to a can be done using
the postdecrement addressing mode with a decrement value of 2.

4. COMPUTATION RESTRUCTURING: PARTIALLY FIXED-STORAGE
SEQUENCE CASE

Thus, we have assumed that the storage sequence (storage pattern) of variables
is fixed completely. That is, a storage location is assigned to each program
variable. In this section, we describe how to optimize an access sequence when
only a subset of the variables have fixed-memory locations. This is called the
partially fixed storage. Specifically, given a partially fixed-storage pattern of a
basic block, we address two subproblems:

1. Determining the best access sequence for all variables in the basic block;

2. Determining the storage sequence for the variables in the basic block whose
memory locations are yet to be determined.

This problem is important because the compiler employs it during procedure-
wide optimization (as will be discussed in the next section). Our approach to
the problem involves the following three steps:

1. Determine the best access (possibly partial) pattern for the partial storage
order given;

2. Determine the storage sequence for the variables whose memory locations
are yet to be determined;

3. If there is further flexibility, then determine the best access pattern for the
portions of the basic block that involves the variables whose storage sequence
was determined in Step (2).

Consider the following program fragment assuming a single address register
and a partially fixed-storage sequence of e, b, d.

e = e + d

a = d + c

f = 3c + b

a = (a * c) + (a * g)

Figure 6,i shows the CLTG for this basic block, under the given partial storage
sequence. Clearly, there is just one path in this case. Transforming the code in
accordance with this path gives us:

e = d + e

f = b + 3c

a = d + c

a = (a * c) + (a * g)

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 243

Fig. 6. (i) An example CLTG. (ii) An access graph for partially fixed storage sequence. (iii) Selected

maximum weight cover.

Note that this transformation (which corresponds to Step 1 above) involves
one statement interchange and one commutativity transformation. In the next
step (which is Step 2 above), the compiler attempts to determine a storage
sequence for the variables whose storage locations are yet to be determined. We
achieve this using a modified version of Liao’s heuristic [1996]. Liao summarizes
the access sequence using what he called the access graph. In this graph, each
variable is represented by a node and a weighted edge between two variables
corresponds to the number of transitions between them. Liao then runs an
algorithm on this graph to select a path cover, with no node having more than
two selected edges incident on it.

The variables represented by the nodes connected by a selected edge are
assigned to consecutive memory locations. The objective is to maximize the
total weight of the edges selected (which corresponds to capturing the most
frequent transitions). We modify this heuristic as follows. Let L = {vi} be the
set of all variables vi that have already been assigned to consecutive storage
locations. Let us assume for now that there is only a single such set. We use bL
to denote the first (start) node of L, and tL to denote the last (terminal) node.
Each node in the modified access graph corresponds to either a single node vj

such that vj /∈ L or a block node vL that represents L. There exists an edge
between vj (/∈ L) and vL if, and only if, there is an edge between vj and bL or
an edge between vj and tL. We also keep track of whether the edge between vj

and vL is because of (incident on) bL or tL.
Figure 6,ii shows this modified access graph for our example. Note that

this access graph is constructed by taking into account the transformations
(both inter- and intrastatement) done in the previous step. Next, we run Liao’s
heuristic [1996] on this access graph. Figure 6,iii show the maximum weight
cover detected by the heuristic. Afterward, we determine the complete storage
order (sequence) for the variables. In our example, this sequence is e, b, d,
f, c, a, g. Although it does not occur in this example, in some cases, the com-
piler may have additional scope and may apply Step 3 above to further modify
the access pattern to accommodate the needs of the variables whose storage
locations have been determined in Step (2). Note that although we explain this
strategy assuming that there is a single block node (L), it is straightforward to
extend the approach to multiple block nodes. Note also that since our approach
is essentially basic block oriented, we can expect its effectiveness to increase

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

244 • G. Chen et al.

Fig. 7. An example weighted control-flow graph (WCFG). S and T denote the start and terminal

nodes, respectively.

when it is used in conjunction with techniques that increase basic block sizes
(e.g., superblocks/hyperblocks).

5. INTRAPROCEDURAL OPTIMIZATION STRATEGY

We now present a unified strategy that employs both access sequence and stor-
age sequence transformations to make effective use of address registers. The ap-
proach works on a representation called weighted control-flow graph (WCFG),
which is a CFG with weighted nodes (basic blocks). A node weight specifies the
number of times the corresponding basic block is entered (dynamic execution
frequency). This is typically calculated by considering the execution frequen-
cies of edges and branch probabilities. Eckstein and Krall [1999] discuss the
importance of procedure level address register assignment.

Let us start by considering the WCFG shown in Figure 7, which corresponds
to the code fragment below.

B#2 a8 = a10 + a4

a3 = a3 + 5

a16 = a15 - 4

if (...) go to B#4
B#6 a1 = a3 + a4

a2 = a2 + a1

go to B#3
B#4 a8 = a8 - 5

a14 = a12 + a13

if (...) go to B#5
B#1 while (...)

a1 = a4 + a3

a4 = a3 + 1

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 245

a8 = a10

go to B#3
B#5 a12 = a12 + a20 * a20

a20 = a12 - 3

B#3 a10 = a3 + a4

a17 = a20 + a8

if (...) go to B#2

For simplicity, in this graph, the weights are abstracted out. Instead, the ba-
sic blocks are labeled such that a basic block with label B#i is more frequently
executed than a basic block with label B#j if i<j; that is, we assign the basic
block labels to indicate the relative execution frequencies (for ease of presenta-
tion). In our current implementation, we run the code with sample inputs and
determine the execution frequency of each basic block.

Our approach to this global (procedure-wide) optimization problem is as fol-
lows. After determining the execution frequencies of basic blocks and labeling
them, we visit basic blocks one-by-one and optimize a basic block completely
before moving to the next one. The optimization order is determined by the
weights (i.e., basic block labels).

The first (most frequently executed) basic block is optimized using Liao’s
heuristic (explained in Section 2). After optimizing this basic block, we deter-
mine a storage sequence for all the variables accessed by this basic block. Note
that this step determines only a partial storage sequence (called the storage
subsequence) as the variables accessed by this block form, in general, a subset
of all the variables declared in the program. We then move to the next most
frequently executed basic block and optimize it using the approach explained
in Section 3 or Section 4, depending on whether all the variables manipulated
by this basic block have already fixed memory (storage) locations or not. After
optimizing this basic block, new storage subsequences (for the variables ac-
cessed by this second most frequently executed basic block, but not accessed by
the most frequently executed basic block) are determined. Afterward, we move
to the third most frequently executed basic block and, in optimizing it (using
the techniques given in Section 3 and Section 4), we take into account all the
storage sequences determined so far. In this way, our approach handles the ba-
sic blocks one-by-one and, in optimizing each of them, it considers the storage
sequences found so far. If at a given point, the storage location for each variable
in the code is fixed (i.e., a complete storage sequence is determined), the re-
maining basic blocks are optimized using the technique discussed in Section 3.
At the end of the process, if the storage sequences found do not form a single
connected component, they are made so using a postprocessing pass.

Let us consider our current example given above. We start the optimiza-
tion process with B#1 (as we assumed that this is the most frequently executed
basic block). An application of Liao’s heuristic [1996] to this basic block gen-
erates a maximum weight cover which gives the first storage subsequence as
a1, a3, a4, a10, a8 (see Figure 8,i). Subsequently, we move to B#2. Consider-
ing the storage pattern just found (when optimizing B#1), we interchange the
order of two statements and apply commutativity transformation to one of the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

246 • G. Chen et al.

Fig. 8. Intermediate (storage) subsequences from an optimization. The incremental changes are

marked using dashed edges whereas the solid edges denote the storage subsequence(s) inherited

from optimizing previous basic blocks.

assignment statements. The resulting basic block is as follows:

B#2 a3 = a3 + 5

a8 = a4 + a10

a16 = a15 - 4

if (...) go to B#4

After that, we determine a storage subsequence involving a16, a15, and a8,
considering this transformed basic block. Simply, a15 should be stored immedi-
ately after a8 and a16 should be stored immediately after a15. Figure 8,ii shows
the updated storage sequence. Next, we move to optimize B#3. Again, taking
into account the storage subsequences determined so far, the compiler first at-
tempts to optimize the access sequence of this basic block. In this specific case,
it uses only commutativity transformation. The transformed basic block is:

B#3 a10 = a3 + a4

a17 = a8 + a20

if (...) go to B#2

and the latest form of the storage sequence is depicted in Figure 8,iii. It should
be noted that, although from the perspective of basic block B#3, it would be
best to store a8 and a20 consecutively in memory, since during the optimization
of B#1 and B#2 we decided to make a10 and a15 neighbors of a8, this require-
ment of B#3 cannot be satisfied. Consequently, the only incremental addition in
Figure 8,iii with respect to Figure 8,ii is the storage subsequence of a20, a17.
A similar problem occurs when we move to optimize the basic block B#4. For
this basic block, the best alternative would be storing a12 or a13 next to a8, but
both of a8’s neighbors have already been fixed earlier in the optimization pro-
cess. The entire storage sequence following the optimization of B#4 is illustrated
in Figure 8,iv. The code of this basic block remains unmodified. In optimizing
B#5, we determine that a12 and a20 should be brought together in memory (see
Figure 8,v). Finally, when we move to optimize B#6, we apply commutativity
transformation to the first assignment statement and make a1 and a2 consec-
utively accessed. The updated storage sequence is depicted in Figure 8,vi. The

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 247

transformed basic block is as follows:

B#6 a1 = a4 + a3

a2 = a2 + a1

go to B#3

At this point, we have visited and optimized all basic blocks. From Figure 8,vi,
we can distinguish two disjoint clusters (storage subsequences). The variables
within each cluster should be stored in consecutive memory locations, as dic-
tated by the edges between them. The positions of clusters in memory with
respect to each other may not be as important (they can even be stored in stor-
age locations that are far apart). In our example, one possibility is connecting
the two clusters by storing a16 and a17 consecutively in memory. Our current
implementation, however, applies a postprocessing pass and determines the
best way of connecting the clusters. The idea is to select a cluster first and then
consider which one of the remaining clusters is the most suitable candidate
to be attached to this cluster. This is accomplished by traversing the code and
checking the number of times that the end points of other clusters are accessed
immediately after or immediately before the endpoints of the cluster in ques-
tion. After choosing a candidate and connecting the two clusters, we apply the
same strategy recursively to other clusters. It should be emphasized that our
cluster-combining strategy is just one possible alternative; it is possible to de-
velop more sophisticated strategies. However, our experience shows that, as far
as the memory layout is concerned, the most important issue is the placement
of the variables within a cluster; relative placements of clusters with respect to
each other are of secondary importance.

An advantage of our approach is that it first optimizes the most frequently ex-
ecuted basic blocks (when we have no storage constraint) from which we expect
the most benefits. For example, in an application that contains several nested
loops, the proposed technique first optimizes the inner loop bodies where a large
portion of the execution time is expected to be spent. The overall complexity of
our approach is O(K (ElogE+ L)+KL3), where K is the number of basic blocks,
L is the maximum length of any access sequence in any basic block, and E is the
maximum number of edges in access graph of any basic block. Here, the term
ElogE + L is because of storage pattern detection, and L3 is because of access
pattern optimization. Assuming that K � L and K � E, we can express the
overall complexity as O(K 4).

6. INTERPROCEDURAL OPTIMIZATION STRATEGY

In this subsection, we show how our strategy can be made to work in an in-
terprocedural setting. This is important because real embedded applications
usually contain multiple procedures. To employ our approach in an interproce-
dural setting, we need a strategy to resolve the cases where different procedures
demand different storage sequences for the same set of variables. We attempt
to achieve this using a two-pass optimization strategy that operates on the call
graph representation of the application. A call graph [Muchnick 1997] is a di-
rected graph, G = (V , E). The finite set of nodes, V , consists of the procedures
that may be called in the program. For any two procedures (nodes) f and g

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

248 • G. Chen et al.

in V , if there is a potential call to g by f then the (directed) edge (f , g) ap-
pears on the graph. The complete collection of edges is denoted by E. A root
node of a call graph G = (V , E) is a procedure, which is not called by any other
procedure; it corresponds to the main procedure in a C program. While, if de-
sired, the edges of the call graph can be marked using the information about
parameters passed/results returned, in this work, it is sufficient to work with a
plain (unmarked) call graph. Since call graph traversal is a standard compiler
technique, we give only a high-level view of our interprocedural strategy here.

Our optimization strategy operates on the call graph representation of the
program and makes two passes over it: a bottom-up pass and a top-down pass.
The bottom-up pass proceeds from the leaves of the call graph to its root,
whereas, the top-down pass traverses the call graph from the root to the leaves.

The bottom-up pass works as follows. First, each procedure is analyzed and
a local access graph is built for it using Liao’s approach. This CLTG is, in fact, a
combination of the individual access graphs (one per basic block). While it is pos-
sible to operate on this local access graph directly and determine the storage
assignments (i.e., variable layouts), such an approach may not be very suit-
able as other procedures can also manipulate the same variables and different
procedures might demand different storage assignments. Therefore, instead of
operating on local access graphs right away, our approach propagates them up
in the call graph. That is, after building a local access graph, the procedure
passes it to its parent(s). However, during this propagation, the compiler also
performs necessary variable mappings (between actual parameters and formal
parameters). It is to be noted that, in general, such mappings require merging
the nodes. As an example, suppose that a procedure (called P1) has two formal
parameters z1 and z2. Assume further that this procedure is called using the
actual parameters z3 and z4 by another procedure (named P2). In processing
P1, our approach builds a local access graph that uses z1 and z2. When this
graph is passed to P2, the nodes are renamed as z3 and z4 and are merged with
the z3 and z4 nodes that are already in the local graph of P2. In this way, each
procedure (once it gets the local access graphs from its children), it combines
them with its own local access graph, and passes the resulting combined access
graph to its parents. Thus, at the end of this bottom-up pass, we have at the
root (that is, the main procedure) a large combined access graph. It should be
noted, however, that the local variables in a given procedure are not considered
in the local access graph; instead, the local access graph involves only the global
variables and formal parameters. The reason for this is that the best storage
assignment decisions for local variables can be done only within the procedure
that declares them, not at the root; thus, there is no need to propagate them
up.

In the next step, we use Liao’s heuristic and solve this combined graph at the
root and determine the storage assignments for all variables that reach to the
root as well as its (the root’s) local variables. Following this, our top-down pass
(over the call graph) begins. In the top-down pass, first, the root passes the stor-
age assignments it has determined to its children. In obtaining these storage
assignments, we make use of the strategy discussed in Section 5 to determine
the best code transformations (that satisfy the storage sequences found by the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 249

root) and the storage sequence for its local variables. This is repeated by each
procedure until we reach and process the leaves of the call graph after which
the algorithm terminates.

It should be noted that our approach does not employ optimizations such
as procedure inlining [Waddell and Dybvig 1997; Muchnick 1997] or cloning
[Muchnick 1997]. This is because, while such optimizations might be very ef-
fective from the performance angle, they also increase code size (in some cases
very significantly). Therefore, they should be applied with care in embedded sys-
tems. As a part of our future work, we will focus on integrating our approach
with inlining/cloning taking into account memory space limitations.

7. EXPERIMENTAL RESULTS

7.1 Simulation Environment

In this section, we present experimental data showing the efficacy of our ap-
proach. We report experimental data at the basic block level, procedure level,
and whole program level for illustrating the effectiveness of our algorithms at
the basic block (Section 3), procedure (Section 5), and whole program (Section 6)
levels.

Our experimental environment includes a simulator for Texas Instrument’s
SM320C6201, which is a high-performance fixed-point digital signal proces-
sor (DSP) with a 6.7 ns instruction cycle time. It has eight functional units, a
512K-Bit Internal Program Cache, and a 512K-Bit Dual-Access Internal Data
Cache. The architecture we simulated has 32 general-purpose registers (later
we change this value to conduct a sensitivity analysis). To obtain the optimized
versions of the codes in our experimental suite, the SUIF back-end [Robert P.
Wilson et al. 1994] is modified to generate code for the SM320C6201, which is
then fed to the simulator. Before our optimization pass is activated, the input
code has been optimized using high-level (e.g., loop and data transformations for
cache locality [Wolfe 1996; Kandemir 2001]) as well as low-level (e.g., instruc-
tion scheduling, dead code elimination, common subexpression elimination, and
global register allocation [Briggs 1992]) optimizations. In particular, we have
performed all low-level optimizations that would be performed by a commer-
cial compiler for SM320C6201. More specifically, we have paid attention to
include VLIW architecture specific optimizations, such as software pipelining,
data path partitioning, instruction packing, unrolling and other low-level loop
optimizations (e.g., loop-invariant code hoisting), and a limited form of predica-
tion. These optimizations try to make sure that there are no superfluous vari-
ables in the code fed to our optimization. Note that all optimizations other than
address register assignment have been used for original (the base versions) and
optimized codes in exactly the same way. The only difference between the orig-
inal and optimized codes is that the latter use the address register assignment
strategy discussed in this work.

We consider seven embedded benchmark codes from MediaBench [Lee et al.
1997]: djpeg (decompression for still images), cjpeg (compression for still im-
ages), adpcm (adaptive audio coding), mpeg2decode (decompression for video),

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

250 • G. Chen et al.

Fig. 9. Benchmark codes used in the experiments and their important characteristics (all size

values are in bytes).

mpeg2encode (compression for video), rasta (speech recognition algorithm), and
g.721 (CCITT voice compression). MediaBench is a suite of embedded media
benchmarks. Figure 9 gives some useful information about these benchmarks.
The second column gives the code size for each benchmark in bytes. The third
column and fourth column show, respectively, the number of basic blocks in the
code and execution cycles. The next two columns present information about the
procedures for which we report separate experimental data. The fifth column
gives the procedure name and the next column gives its size in bytes. The last
two columns present information about the basic blocks for which we present
separate data. These columns give the basic block number (its Id in the control-
flow graph) and its size in bytes.

7.2 Code Size Improvement

We start by presenting the basic block results in Figure 10. The graph in this
figure shows code sizes for fourteen different basic blocks randomly selected
from our benchmarks (each benchmark contributes two basic blocks). We as-
sume a default storage sequence (order) in which the variables are stored in
memory in the order of their first accesses within the basic block. Specifically,
if the first access to variable a occurs in the code earlier than the first access
to variable b, a’s location in memory has a lower address than b’s location. All
bars in Figure 10 represent basic block sizes normalized with respect to that
of the original basic blocks (given in the last column of Figure 9). For each ba-
sic block, we experimented with five different optimized versions: L gives the
normalized code size resulting from Liao’s approach. L + P is the same as L
except that in breaking ties (when there exist multiple edges to choose from) it
uses the heuristic proposed by Leupers [Leupers and Marwedel 1996]. L + RP
gives the result when Liao’s approach is followed by Rao and Pande’s [1999]
heuristic, which uses only intrastatement transformations, such as commuta-
tivity and associativity. CT is our strategy, based on computation transforma-
tion (Section 3). Finally, L + CT is Liao’s approach followed by our method in
Section 3. From the results in Figure 10, we observe that the average (normal-
ized) basic block sizes because of L, L + P, L + RP, CT, and L + CT are 76.10,

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 251

Fig. 10. Normalized basic block sizes. In the x-axis, x. y .z denotes the zth basic block of procedure

y in benchmark x. All values are normalized with respect to the size of the original basic blocks.

Fig. 11. Normalized procedure sizes. In the x-axis, x. y denotes procedure y in benchmark x. All

values are normalized with respect to the size of the original procedures.

74.77, 69.43, 69.91, and 60.01%, respectively. One can also see that while there
are cases where CT does not perform very well (as it does not optimize variable
storage sequence), when it is combined with Liao’s approach (that is, L + CT)
it generates very good results. These results clearly emphasize the importance
of optimizing both memory layout and access patterns (even at the basic block
level).

We next move to the procedural level optimization and present in Figure 11
the procedure sizes for a total of eight procedures selected from our seven

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

252 • G. Chen et al.

Fig. 12. Normalized benchmark code sizes. All values are normalized with respect to the size of

the original benchmarks.

benchmarks. As before, these values are normalized with respect to those of
the original codes (procedures) without any size optimization (see the sixth
column in Figure 9). We conducted experiments with five different versions. L,
L + P, L + RP, and CT are the same as have been discussed above except that L
is the result of Liao’s procedure-wide offset assignment approach, as explained
in his Ph.D. thesis [Liao 1996]. CDT is the result of our intraprocedural strategy
detailed in Section 5. Note that while CT only uses computation transforma-
tions, CDT uses both computation and layout optimizations. The normalized
procedure sizes because of L, L + P, L + RP, CT, and CDT are 86.11, 83.38, 77.02,
78.61, and 66.32%, respectively. We see that combining computation and data
transformations is very important at the procedure level.

Next is the presentation of the results when we target an entire benchmark.
Figure 12 gives the normalized code sizes at the whole application level for
our seven benchmarks. We use the same five versions discussed in the previ-
ous paragraph. However, CDT here corresponds to the interprocedural strategy
discussed in Section 6. All bars in this figure are normalized with respect to val-
ues in the second column of Figure 9. These results show that using both access
sequence and storage sequence transformations generates much better results
than pure storage sequence based or pure access sequence based optimizations
(the average percentage reductions in normalized code sizes are 21.33, 30.80,
and 39.86%, for L, CT, and CDT, respectively). Note that CT performs better than
L. This is because determining suitable storage orders for variables when the
entire application is considered is difficult, as different parts of the application
can demand different storage orders for the same set of variables. In contrast,
each part of the application can be optimized independently using computation
transformations (CT). CDT attempts to capture the interaction among different
procedures (in the same application) by propagating access graphs over the
call graph. One might also consider an alternative (and easier to implement)
strategy which can be described as follows. We can first run the intraprocedural

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 253

Fig. 13. Influence of interprocedural analysis and the theoretical best.

optimization strategy of Section 5 for each procedure. This gives us a storage
sequence for each procedure (note that these storage sequences are potentially
different from each other). Then, whenever we move from one procedure to
another (i.e., visit a call graph edge), we can reshuffle the storage sequence
(i.e., change the layout of variables). The downside of this strategy is that these
reshufflings increase both code size (as the compiler needs to insert code to
implement them) and execution cycles. The graph in Figure 13 compares this
strategy (denoted by CDT-) with CDT. As before, each bar is normalized with
respect to the code size of the original benchmark (given in the second column
of Figure 9). The normalized code sizes of CDT and CDT- are 60.14 and 66.28%,
respectively, indicating that performing interprocedural analysis is important.
In fact, all seven benchmarks benefit from interprocedural, analysis, to some
extent.

Thus for all results have been obtained using a single address register. To
quantify the impact of using multiple address registers, we conducted exper-
iments using 2, 4, 8, and 16 address registers. Figure 14 gives the impact of
using different number of address registers with CDT. Each point in this graph
corresponds to the average (across all benchmarks) code size normalized with
respect to that of the original codes. We see that, in general, the best reduc-
tions are obtained when the number of address registers is two (an exception
is mpeg2encode, where using four address registers generates the best result).
Increasing the number of address registers further does not help, because the
initializations of these registers start to take a large percentage of code space
for a given basic block. However, we can also observe from Figure 14 that, ex-
cept for one benchmark (mpeg2decode), we achieve at least 15% reduction in
code size even when 16 address registers are employed, which indicates that
our strategy is effective across different numbers of address registers.

While it is encouraging to see that our approach brings large savings in code
size, it is also important to quantify how close it comes to the best possible
optimized code. Unfortunately, it is very difficult to generate a code by hand or

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

254 • G. Chen et al.

Fig. 14. Normalized code sizes with different number of address registers when our approach is

used (|AR| means the number of address registers).

compiler, and claim that it is optimal, as there are many different ways that
explicit assignments to address registers can be eliminated. Therefore, the last
bar (for each benchmark) in Figure 13 (denoted Best) gives the theoretical best,
a result obtained by eliminating all explicit address register assignments from
the code generated by CDT. Obviously, it is not possible to create such a legal
code (i.e., a code without any address register assignments); however, it gives
us a lower bound to compare. We see that, as compared to the CDT version, Best
brings 8% more improvement in code size.

In our next set of experiments, we measure our code size savings with differ-
ent numbers of general-purpose registers. Recall that the default numbers of
general-purpose registers used in our experiments so far was 32. The graphs in
Figure 15 plot the normalized code sizes for the entire benchmarks with varying
number of general-purpose registers for the CT (top) and CDT (bottom) schemes.
In all these experiments, we use only a single address register. We see from
these results that as the number of general purpose registers is increased, we
observe a drop in the effectiveness of our code restructuring-based approach.
This is because, as we increase the number of registers, more variables are
captured within the register file, and this reduces the opportunities for our ap-
proach, as has been discussed earlier. However, it is encouraging to see that,
even with 128 registers, the average code size savings are 14.04 and 25.16%
with CT and CDT, respectively. These results clearly show that the proposed
approach is successful even with large register files.

7.3 Execution Time Impact

Our main focus in this work is on reducing code sizes of applications. How-
ever, as we discussed earlier, reducing the number of explicit load operations
to address registers might also reduce the execution time as there are fewer
instructions to execute. However, by reducing the number of address register
instructions, we may also adversely affect the effectiveness of some low-level

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 255

Fig. 15. Normalized code sizes with different number of general-purpose registers. Top: CT scheme;

bottom: CDT scheme.

optimizations. To evaluate this tradeoff, we performed another set of experi-
ments where we measured the execution cycles of our benchmark codes with
and without the use of our optimization (CDT) as well as other strategies evalu-
ated in this work. Table I presents the execution cycles (for the single address
register case) for different versions and all benchmark codes in our suite. Each
value in this figure is normalized with respect to the corresponding value in
the fourth column of Figure 9. The average reductions (over all benchmarks)
in execution cycles with L, L + P, L + RP, CT, and CDT are 4.06%, 5.54, 4.93,
6.57, and 10.77%, respectively. Note that these values are not as good as the
savings in code space as our target architecture is a VLIW machine and can
accommodate some of the explicit loads in unused execution slots.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

256 • G. Chen et al.

Table I. Normalized Execution Cycles for Different

Optimized Versions Compared to Original Codes (see Fourth

Column of Figure 9)

Versions

Benchmark L L + P L + RP CT CDT

djpeg 96.62 94.17 93.28 93.96 88.16

cjpeg 92.08 91.18 98.27 91.95 86.14

adpcm 95.21 95.05 93.16 94.98 93.27

mpeg2decode 97.07 95.28 94.88 94.51 91.20

mpeg2encode 98.63 94.79 99.52 94.60 90.36

rasta 96.51 95.67 94.37 92.19 87.34

g.721 95.47 95.11 92.00 91.80 88.11

Fig. 16. Comparison with the commercial compiler.

7.4 Comparison with Commercial Compiler

Recall that all the energy and performance savings reported so far were nor-
malized with respect to a base version explained in Section 7.1. While this base
version implements almost all low-level and high-level optimizations known
to be effective for array-intensive applications, it is also important to compare
our approach against the commercial compiler. Figure 16 presents our code
size and execution cycle improvements, normalized with respect to the corre-
sponding values achieved by the commercial compiler for SM320C6201. The
commercial compiler is run with the -msl1 and -O1 options (we have not used
the -O2 option since it increased the code size dramatically for all benchmark
codes in our experimental suite). With the -O1 option, the compiler performs
local common subexpression elimination, copy/constant propagation, loop rota-
tion, and removal of unused code. With the -ms1 option, it tries to reduce code
size (through address register assignment and other optimizations). Since the
commercial compiler can use only a single address register, we report the re-
sults with 1 address register and 32 general-purpose registers. We see from the
results in Figure 16 that our savings with respect to the commercial compiler
are similar to those against the base version used so far. This is because both
the base version and the commercial compiler employ a similar set of code/data

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

Reducing Code Size Through Address Register Assignment • 257

Table II. Percentage Increase in Compilation Times

Versions

Benchmark L L + P L + RP CT CDT

djpeg 41.81 44.37 70.16 38.27 88.14

cjpeg 67.70 71.10 98.43 72.03 127.63

adpcm 53.56 58.04 78.87 61.27 146.04

mpeg2decode 58.05 61.15 70.20 70.93 167.13

mpeg2encode 77.82 80.02 113.55 75.24 154.77

rasta 49.52 52.88 72.84 68.49 122.98

g.721 64.17 69.14 95.11 80.18 172.06

optimizations. Consequently, while the actual values may change, the trends
we observe in Figures 12, and 16, and Table I are similar, emphasizing the
impact of code restructuring for signal processors.

7.5 Increase in Compilation Time

Table II presents the percentage increase in compilation times as a result of
code size optimization. The percentage increases are with respect to the origi-
nal compilation times (i.e., the compilation times of the codes without any code
space optimization, but with all other high-level and low-level optimizations).
We see that the average increases in compilation times because of L, L + P,
L + RP, CT, and CDT are 58.94, 62.38, 85.59, 66.63, and 139.82%, respectively. It
should be emphasized that long compilation times in embedded computing are
not as problematic as they are in general-purpose computing. This is because
a given embedded system typically runs a single (or a small set of) applica-
tion(s), and long compilation times can be compensated for by improved code
and implementation quality of high-volume products.

8. SUMMARY AND FUTURE WORK

In this work, we have presented a compilation framework that employs both
program restructuring and storage-order optimizations to reduce the size of
the generated code for embedded processors by eliminating as many explicit
address register loads as possible. Reducing code size is extremely important
as in many embedded systems a reduction in code size means a reduction in
memory size. Our experimental results on basic blocks, procedures, and whole
benchmarks from the MediaBench suite have shown the effectiveness of our
solution in reducing code sizes. We have also found that our approach is bene-
ficial from the performance angle as well. Work in progress includes the inves-
tigation of different ways of combining storage layout and code-restructuring
transformations, incorporating partitioning of variables among different ad-
dress registers, and studying the impact of SSA transformation on code size.
We also plan to perform experiments with different architectures as different
instruction set architectures (ISA) can lead to different code sizes [Davidson
and Vaughan 1987].

REFERENCES

BARTLEY, D. 1992. Optimizing stack frame accesses for processors with restricted addressing

modes. Software—Practice and Experience 22, 2 (Feb.), 101–110.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

258 • G. Chen et al.

BRIGGS, P. 1992. Register allocation via graph coloring. Tech. Rep. (Apr.) Ph.D. Thesis, Computer

Science Department, Rice University, Houston, TX.

CINTRA, M. AND ARAUJO, G. 2000. Array reference allocation using ssa-form and live range growth.

In Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embed-
ded Systems.

CORMEN, T., LEISERSON, C., AND RIVEST, R. 1990. Introduction to Algorithms. MIT Press, Cambridge,

MA.

DAVIDSON, J. W. AND VAUGHAN, R. A. 1987. The effect of instruction set complexity on program

size and memory performance. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems. 60–64.

ECKSTEIN, E. AND KRALL, A. 1999. Minimizing cost of local variables access for dsp-processors. In

Proceedings of the Workshop on Languages, Compilers, and Tools for Embedded Systems. 20–27.

ROBERT P. WILSON, ROBERT S. FRENCH, CHRISTOPHER S. WILSON, SAMAN P. AMARASINGHE, JENNIFER M.

ANDERSON, STEVE W. K. TJIANG, SHIH-WEI LIAO, CHAU-WEN TSEENG, MARY W. HALL, MONICA S. LAM, AND

JOHN L. HENNESSY 1994. Suif: An infrastructure for research on parallelizing and optimizing

compilers. SIGPLAN Notices 29, 12 (Dec.), 31–37.

KANDEMIR, M. 2001. A compiler technique for improving whole program locality. In Proceedings
of the 28th Annual ACM Symposium on Principles of Programming Languages.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1997. Mediabench: A tool for evaluating and

synthesizing multimedia and communications systems. In Proceedings of the 30th International
Symposium on Microarchitecture. 330–335.

LEUPERS, R. AND MARWEDEL, P. 1996. Algorithms for address assignment in dsp code generation.

In Proceedings of the International Conference on Computer Aided Design. 109–112.

LIAO, S. 1996. Code generation and optimization for embedded digital signal processors. Tech.

Rep. Ph.D. Thesis, MIT, Cambridge, MA.

LIAO, S. Y., DEVADAS, S., KEUTZER, K., TJIANG, S., AND WANG, A. 1995. Storage assignment to decrease

code size optimization. In Proceedings of the 1995 ACM SIGPLAN Conference on Programming
Language Design and Implementation. 186–195.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA.

RAO, A. AND PANDE, S. 1999. Storage assignment optimizations to generate compact and effi-

cient code on embedded dsps. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation.

UDAYANARAYANAN, S. AND CHAKRABARTI, C. 2001. Address code generation for dsps. In Proceedings
of the 38th Design Automation Conference.

WADDELL, O. AND DYBVIG, R. K. 1997. Fast and effective procedure inlining. In Proceedings of the
4th International Symposium on Static Analysis. Springer-Verlag Lecture Notes in Computer

Science, vol. 1302. 35–52.

WOLFE, M. 1996. High Performance Compilers for Parallel Computing. Addison Wesley, Reading,

MA.

Received April 2003; revised March 2005; accepted July 2005

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.

