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Abstract—Optimizations aimed at improving the efficiency of
on-chip memories in embedded systems are extremely important.
Using a suitable combination of program transformations and
memory design space exploration aimed at enhancing data
locality enables significant reductions in effective memory access
latencies. While numerous compiler optimizations have been
proposed to improve cache performance, there are relatively few
techniques that focus on software-managed on-chip memories. It
is well-known that software-managed memories are important
in real-time embedded environments with hard deadlines as
they allow one to accurately predict the amount of time a given
code segment will take. In this paper, we propose and evaluate
a compiler-controlled dynamic on-chip scratch-pad memory
(SPM) management framework. Our framework includes an
optimization suite that uses loop and data transformations, an
on-chip memory partitioning step, and a code-rewriting phase
that collectively transform an input code automatically to take
advantage of the on-chip SPM. Compared with previous work,
the proposed scheme is dynamic, and allows the contents of the
SPM to change during the course of execution, depending on the
changes in the data access pattern. Experimental results from our
implementation using a source-to-source translator and a generic
cost model indicate significant reductions in data transfer activity
between the SPM and off-chip memory.

Index Terms—Compiler optimizations, dynamic memory man-
agement, embedded systems design, scratch-pad memories (SPM),
systems-on-chip.
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1. INTRODUCTION

MBEDDED systems are systems designed to execute

one or a small set of dedicated application(s), e.g., a
multimedia subsystem, a personal digital assistant, a hand-held
computer, etc. Such systems provide an important substrate
for information technology research since they form key
elements of information appliances. They are often designed
as a system-on-chip (SoC) architecture to cater to the demands
of small form factors. The requirement of fast design cycle
times fuels the need for a high degree of design reuse, in both
hardware and software. Modern design libraries consisting
of processor cores (e.g., the TI TMS320, Strong ARM from
Advanced RISC Machines, SHS from Hitachi), memories (e.g.,
embedded DRAMs, scratch-pad memories, cache memories),
and modules implementing specific functions (e.g., ASICs)
are now available. An SoC is designed by integrating such
predesigned cells along with custom logic on a single chip.

An important characteristic of an SoC design process is
the design of memory configuration and the management of
the flow of data. While it is very important to select a correct
memory configuration, it is equally important to choreograph
the flow of data between on- and off-chip memories in an
optimal manner.

Many SoC applications have significant data processing re-
quirements. In particular, many codes from video processing
and signal-processing domains manipulate large arrays of sig-
nals using multilevel nested loops. An important issue, then, is
maintaining good data locality; that is, satisfying a majority of
data accesses from fast on-chip memories instead of the slower
off-chip DRAMs. Previous research [43] shows that ensuring
good data locality requires exploiting inherent data reuse within
loop nests.

Unfortunately, a simple on-chip cache hierarchy may not
be very suitable for an embedded system, where meeting hard
real-time constraints is critical [21], [22]. In most cases, such
a constraint requires programmers to determine exactly how
much processing time a given code segment will take. The
presence of a cache memory (among some other architectural
features, such as branch prediction and load/store speculation
[20]), makes it nearly impossible to predict execution-time
accurately. While it is possible for the programmer to determine
the worst-case execution time (by assuming that each cache
access will be a miss), there might be orders of magnitude
difference between the actual execution time and this predicted

0278-0070/04$20.00 © 2004 IEEE



244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2004

worst-case behavior. Note that an inability to predict the
execution time of a given piece of code can also adversely
affect the scope and effectiveness of software optimizations.

Consequently, systems that contain a software-managed
scratch-pad memory (SPM) can be of great value, since the
software is in full control of the flow of data between the on-
and off-chip memory in a such a system, thereby enabling
an accurate prediction of data access times in real-time envi-
ronments. While execution time predictability is one of the
reasons for employing an SPM, it is not the only reason. Since
the application code/compiler is in full control of the data flow
in and out of the SPM, we can decide what should be in the
SPM at any given time. In fact, it is possible to pin the most
frequently used data (during execution of a given loop nest)
in the SPM to maximize performance benefits. Note that, in
general, it is not possible to do the same with a cache memory
as, for example, conflict misses can cause the useful data to
be replaced from the cache. In particular, for array-dominated
embedded applications with regular data-access patterns, we
can achieve a near-optimal managements of an SPM.

Previous work on SPM [37] investigates a static data-manage-
ment scheme in which program data structures are partitioned
between the off-chip memory and the SPM, and this data parti-
tioning is maintained throughout execution. In this static parti-
tioning scheme, the scalar variables are stored in the SPM, and
the large data arrays that do not fit in the SPM are stored in the
oft-chip memory (and accessed through on-chip cache). Each of
the remaining arrays is stored in either the SPM or the off-chip
memory so as to minimize the potential conflict misses in the
on-chip cache.

While several applications benefit from this static partitioning
approach, we have come across many codes for which we need
to perform dynamic data transfers between the off-chip memory
and on-chip SPM during the course of execution. As an ex-
ample, consider the matrix multiply code shown in Fig. 4(i) on
page 9. Assuming that the capacity of the SPM is smaller than
the aggregate size of the three arrays involved in this computa-
tion, there are three issues that need to be addressed for effective
use of the SPM.

First, we need to decide which portions of the arrays should
be brought into the SPM at a given time. This decision is crit-
ical because the elements brought in should have a high de-
gree of reuse; otherwise, they would occupy space in the SPM
unnecessarily and waste bandwidth. Consequently, for a given
multidimensional array, it makes a great difference whether a
row-chunk, a column-chunk or a square-chunk is brought into
the SPM as far as data reuse is concerned.

Second, we need to divide the available SPM space among
competing arrays. In this paper, we show that a simple strategy
that divides the memory evenly between competing arrays may
not work well in practice; that is, some arrays must be given
more space in SPM than others.

Third, we need to modify the input code to schedule explicit
data transfers to and from off-chip memory. We discuss a variant
of iteration space tiling, a popular locality optimization tech-
nique to achieve this objective.

This paper addresses these issues in the context of SPM
and array-dominated applications, which are common in the

video signal processing domain. The proposed compilation
framework has been implemented using SUIF, an experimental
compiler [4], and tested on a suite of five applications. Exper-
imental results and comparison with previous work show that
our approach is very effective in reducing the activity between
the on-chip SPM and off-chip memory. In general, such a
reduction can lead to large savings in energy consumption [41],
[25] and effective data-access latency [24].

II. ROADMAP

We start in Section III, with our memory architecture and ex-
ecution model. Our memory system is different from traditional
cache-based systems as it contains an SPM. Since SPM is man-
aged by software, our execution model is also different from that
of a cache-based system. In particular, in a cache-based system,
the software is not involved in data transfers between off-chip
and on-chip memory. In an SPM-based scheme, on the other
hand, the software (in our case, compiler) needs to schedule data
transfers between SPM and main memory. It achieves this by
using a data-oriented version of tiling as explained in Section III.

Section IV presents optimizations performed by our com-
piler to extract the best performance from SPM. First, in
Section IV-B, we give the model used for calculating the
cost of a given (access pattern, memory layout) pair. This
is important to evaluate the performance of a given code
under SPM. Section IV-C presents the desired access patterns,
which will be the target of the optimizations presented in later
subsections. Our optimization algorithm (working on a single
nest) has three main steps. In the first step (Section IV-D), we
use linear algebraic techniques to determine the most suitable
memory layouts and loop transformations from the data lo-
cality perspective. After determining the transformations, our
compiler partitions the available SPM space among competing
array references as explained in Section IV-E. This is important
because, given a nested loop, there might be multiple references
(to different arrays) that exhibit locality and can benefit if the
corresponding data tiles are stored in SPM. The next step
deals with placement of data transfers in appropriate places in
the code and is explained in Section IV-F. Note that suitable
placement of transfers (in the code) is very important, as a
suboptimal transfer can increase the traffic between SPM and
main memory dramatically, thereby degrading the overall
performance.

The approach explained in Sections IV-A through IV-F fo-
cuses on a single nest case. It should be noted that our opti-
mization strategy uses memory-layout transformations. Since
a given array can be accessed by multiple nests and each nest
can demand a different memory layout for a given array, se-
lecting a globally (program-wide) acceptable memory layout
for each array is critical. To address this problem, in Section
IV-G, we show how our strategy can be used (as a component)
in optimizing multiple nests and how it can be extended to an
interprocedural setting. Note that many previous locality opti-
mizations (that target cache-based systems) lack interprocedural
optimizations.

The remaining sections discuss experimental setup and re-
sults (Section V) and related work on software-directed data
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Fig. 1. System architecture and address space partitioning.

flow management (Section VI). Finally, Section VII concludes
the paper with a summary and a brief discussion of ongoing
work.

III. MEMORY ARCHITECTURE AND EXECUTION MODEL

Our data memory architecture consists of three components:
a cache memory, an SPM, and a main memory. The cache
memory and the SPM are on-chip SRAMs (with the same
access latency), and the main memory can be assumed to be
an off-chip DRAM (with a higher access latency). As shown
in Fig. 1, the address space is divided between the on-chip
SPM and the off-chip memory (which is accessed through the
on-chip cache).

Fig. 1 also shows the necessary control signals to activate ei-
ther SPM or cache depending on the memory address issued by
the core. The same data and address buses are fed into cache as
well as the SPM. In this work, we are interested in managing
the data transfers between the off-chip memory and the on-chip
SPM in those situations where the total data size far exceeds the
capacity of the SPM. Therefore, we assume the presence of a
higher level mechanism that decides which data accesses should
bypass the SPM and be accessed through the cache (if it exists).
In that sense, our approach is complementary to the technique
proposed by Panda et al. [37] that focuses on data partitioning
between the off-chip memory and the SPM. We are more inter-
ested in dynamic management of the flow of data between the
SPM and off-chip memory. Therefore, in the rest of the paper,
we drop the cache from consideration. It can be assumed that the
scalar variables in the code are stored in DRAM and accessed
through on-chip cache. Alternately, a small portion of the SPM
can be reserved for scalars throughout execution.

The execution model adopted can be summarized as follows.
The current computation operates only on the datasets available
in the SPM.! If the computation needs a data item that resides in
off-chip DRAM, the item is first read (brought) into the SPM,
and then operated on. The data items modified while they are

'When we performed experiments with static data partitioning, we relaxed
this constraint, and allowed the computation to work with off-chip data directly.

in the SPM should be written back to memory if: 1) the cor-
responding SPM space needs to be reused and 2) the said data
items will be needed in the remainder of the computation. It
should be noted that, in such a system, the on-chip SPM space
is at a premium and, therefore, it is important to make effective
use of the on-chip SPM for high levels of performance.

In order to generate optimized code for a memory architecture
that contains an SPM, the compiler has to schedule explicit data
transfers between the off-chip memory and the SPM, in addition
to performing the conventional optimization steps. To accom-
plish this, the compiler needs to take into account: 1) the data
layout in the off-chip memory; 2) the application access pattern;
and 3) the available memory space in the SPM. As mentioned
earlier, the portions of arrays required by the currently executing
computation are fetched from the off-chip memory to the SPM.
In this paper, we refer to these portions as data tiles or simply
tiles. The larger the tiles the better it is, since working with large
tiles reduces the number of off-chip accesses. However, the data
tiles brought into the SPM should fit in the SPM, and exhibit a
high degree of reuse. Note that the SPM space should be divided
suitably among the data tiles of different arrays. Thus, during
the course of execution, a number of data tiles belonging to a
number of different arrays are brought into the SPM, the new
values for these data tiles are computed, and the tiles are stored
back into appropriate locations in off-chip memory as needed.
Obviously, the input code should be transformed accordingly
and explicit data transfer commands should be inserted into the
code, in order to achieve this objective.

As an example, let us consider the two-level loop nest shown
in Fig. 2(i). A key aspect of the compilation process is the use
of a tiling-like transformation. Tiling (also known as blocking)
[44], [27], [13], [23] is a technique used to improve locality and
parallelism, and is a combination of strip-mining and loop per-
mutation. It creates blocked (sub-matrix) versions of programs
in a systematic way. When tiling is applied to a loop, it replaces
it (in the most general case) with two loops: a tiling loop and
an element loop. The loop nest in Fig. 2(i) can be translated by
the compiler into the code shown in Fig. 2(ii). In this translated
code, the outer loops it and jt are the tiling loops, and the inner
loops i’ and j’ are the element loops.

It should be noted that explicit data transfer -calls
(i.e., read_tile and write_tile) are inserted at tile bound-
aries outside the element loops. The call read._tile
Ulit:it+ S, — 1, jt:jt+ S, —1] — Uv’[0:S, — 1,0 :
Sas — 1] copies the elements of the array U that satisfy the
constraint {(it < i < it+T-1) and (jt < j < jt+T-1}) to
the array U’ [0 : S, — 1,0 : S, — 1]. It should be noted that
while array U resides in off-chip memory, array U’ resides in
the SPM. In other words, read._tile indicates an explicit copy
operation from the off-chip memory to the SPM as depicted
in Fig. 3. The implementation of the write_tile call is similar
except that the direction of the transfer is reversed.

In the rest of this paper, for the sake of clarity, we will write
the compiler-translated version as shown in Fig. 2(iii), where all
element loops are omitted. Note also that each reference inside
the element loops is replaced by its corresponding submatrix
version (in terms of the original array). For example, a reference
suchasU’ [i°][j’],isreplacedbyU[it:it+S,—1,jt:jt+
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for (i=0;i<n;i++)
for (3=0; j<n; j++)
U[i][3] = Uli][3] + VIi]l[3]

®

for (it=0;it<n; it=1it+S,)
for (jt=0; jt<n; jt=3t+S,)

read_tile U[it:it+Sg-1, jt:jt+Se-1] — U’ [0:S5-1,0:Sa-1]
read_tile V[{it:it+Sg-1, jt:jt+Se-1] — V'’ [0:S4-1,0:8,-1]

for(i’=0;i’<Sg;i’ ++)
for (37 =0; 3" <Sa; 3’ ++)

U [171(03") = U [1"1[3") + V' [i'][3"]
write_tile U’ [0:S,-1, [0:Sa-1] — U[it:it+Se-1, jt:jt+S,-1]

(ii)
for (it=0; it<n;it=it+S,)
for (jt=0; jt<n; jt=3t+8Sg)

read_tile U[it:it+Sa-1, jt:jt+S,-1]
read._tile V[(it:it+Sg-1, jt:jt+Sa~1]

Ulit:it+8,-1, jt:Jt+Sa-1]1=Ulit:it+Se-1, jt:jt+Sa-11+V[it:it+Se-1, jt:jt+S,-1]

write_tile U[it:it+S,-1, jt:jt+Se-1]

memory). Therefore, one should be very careful in selecting the
data items to bring into the SPM for a given time frame. This
objective can be achieved by: 1) maximizing the number of ac-
cesses to the data in the SPM and 2) minimizing the number
of data transfers to and from off-chip memory. We will see that
data reuse analysis can be of great help here.

In order to maximize data reuse and minimize the number of
data transfers, our approach follows three complementary steps.

i) Memory Layout Detection and Loop Transforma-
tion: Maximizing data reuse and minimizing the number
of explicit data transfers between the off-chip memory
and the SPM requires a good combination of loop access
pattern and off-chip memory layout. Given a program
that accesses multiple data arrays using multilevel nested

}
(i)
Fig. 2. (i) Two-level nested loop. (ii) Transformed code with explicit data transfers. (iii) Simplified version of (ii).
jt jt+Sg-1
U \ E """""" “
------------ it+ S5-1
data tile - 7/‘ \
\ off-chip memory
‘ sPm
L
Y—m ;
———————————— 51
0 Syt
Fig. 3. Reading a data tile (of size S, X .S, ) from off-chip memory to SPM.

S, — 11, where S, is the size (in array elements) of a dimen-
sion of a data tile (called tile size or blocking factor). Note that
the notation in Fig. 2(iii) clearly indicates the portions of the
original arrays (tiles) involved in the computation for a given it-
eration of the tiling loops.

IV. DYNAMIC MANAGEMENT OF DATA TRANSFERS
A. Overview

The efficient use of an SPM depends critically on maximizing
the reuse of data portions (tiles) brought in from the off-chip
memory. This is crucial because a data item resident in the SPM
without reuse not only occupies space that could have been used
for some other data but also wastes bandwidth (as it needs to
be brought over the interconnect between SPM and off-chip

loops, our approach (explained later in this section) tries
to determine memory layouts for the arrays and loop
transformations for the nests. Optimization algorithms
that achieve this for the case of a single nest and for
the case of whole programs (including interprocedural
analysis) are explained in detail in Sections IV-D and
IV-H, respectively.

ii) Memory Space Partitioning: The management of the
on-chip SPM is important since the SPM is limited in ca-
pacity (i.e., size). A crucial issue here is to determine the
partitioning of the available SPM space between com-
peting arrays. Note that this space partitioning is dynamic
and changes during the course of execution. Our parti-
tioning approach is explained in Section IV-E.

iii) Code Modifications: After deciding the optimal loop
access pattern, memory layouts and a suitable parti-
tioning of the SPM space between arrays, the compiler
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for (i=0;i<n;i++)
for (3=0; j<n; j++)
for (k=0; k<n; k++)
U[i) (3] = Uli][3] + VIil([k] * W[k][3]]

®

for (it=0;it<n;it=it+S,)
for (jt=0; jt<n; jt=7t+Ss)
for (kt=0; kt<n;kt=kt+Sg)
{
read_tile U[it:it+S,-1, jt:jt+Se-1]
read_tile V[it:it+Sgs-1,kt:kt+Sg-1]
read._tile W[kt :kt+Sq-1, jt:jt+Se—1]

Ulit:it+Sg-1, jt:jt+Se-1]1=U[it:it+Se-1, jt:jt+Se-1]
+V[it:it+Se-1,kt:kt+Se-1]1*W[kt:kt+S,-1, jt:jt+S,-1]

write_tile U[it:it+S,-1, jt:jt+Se-1]

(i)

for (it=0;it<n;it=it+Sp)

read_tile V[it:it+Sy-1,1:n]
for (jt=0; jt<n; jt=3t+Sp)

read tile U[it:it+Sp-1, jt:jt+Sp-1]
read_tile W(l:n, jt:3t+Sp-1]

Ulit:it+Sp-1, Jt:3t+Sp-1]=Ulit:it+Sp-1, Jt:3t+Sp-11+V[it:it+Sp-1,1:n]*W[1l:n, jt:jt+Sy-1]

write_tile U[it:it+Sp-1, jt:jt+Sp-1)

(iif)

for (jt=0; jt<n; jt=3t+Sc)

read_tile U[(1:n, jt:jt+S.-1]
for (kt=0; kt<n; kt=kt+S.)

read_tile V[1:n,kt:kt+Sc-11]
read_tile W[kt :kt+Sc-1, jt:jt+Sc-1]

Ull:n, jt:jt+Sc-11=U[1l:n, jt:jt+Sc-11+V[1l:n, kt:kt+Sc-1]1*W[kt:kt+Se—1, jt:jt+Se—1]

}
write_tile U[1:n, jt:jt+Sc-1]

}
(iv)

Fig. 4.

needs to modify the input code accordingly. Our ap-
proach, discussed in Section IV-F, achieves this without
user intervention.

After presenting the generic cost model adopted and the ideal
form of array references from the point of view of scratch-pad
memories, the following subsections discuss each of these steps
in detail. The implementation details and experimental data are
presented in a later section.

B. Cost Model

We assume a generic cost model that can be easily adapted
to work with several performance and/or energy metrics. Each
data transfer from the off-chip memory to the SPM or vice versa
is assumed to incur a fixed startup cost in addition to a cost pro-
portional to the amount of data requested. The startup cost for
a data access (read or write), C, is assumed to include all the
costs due to book-keeping and hand-shaking activity between

(i) Matrix multiply code. (ii) Straightforward translation. (for SPM) using square data tiles for all arrays. (iii-iv) Optimized codes.

the SPM and the off-chip memory and the software overhead in-
volved (e.g., the runtime call activation to initiate the transfer).
Let the cost of transferring a single data item (e.g., an array ele-
ment) between the off-chip memory and the SPM be ¢. Thus, the
cost of transferring £ consecutive elements between the off-chip
memory and the SPM can be modeled as 7' = C + /t. We refer
to this cost as memory access cost, or simply access cost. Note
that the per item transfer cost does not include the cost (e.g.,
time, energy) spent in accessing the off-chip memory circuitry.
Note also that this model is highly simplified, but it is useful for
the purpose of this paper.

As an example, let us consider the matrix multiply code given
in Fig. 4(i). We assume for now that the SPM allocated for a
given computation is of size M, and that this memory is divided
evenly (i.e., equally) among all the arrays involved in the com-
putation; we will relax this “equal division” assumption shortly.
Let us also assume (for simplicity) that each array is of size
n X n, where n is also assumed to be the trip count (number
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Fig. 5. Different tile allocations in the SPM for the matrix multiply code.

of iterations) of all the loops. We assume that d x n < M and
that M is far less than nZ, where d is an integer. In those cases
where n > M, we can apply the technique in this paper recur-
sively (which, in a sense, corresponds to multilevel tiling [26]).
For now, let us suppose that the compiler works on square
tiles of size S, x S, shown Fig. 5(i) and the default array
layout is row-major. The access cost of a tile of size S, X S,
is S,C + S2t, and n?/S? of these data tiles are read (for
array U). Consequently, the total read access cost for array U
is Ty = (n3/S3)(S.C + S2t). The access costs for the other
arrays can be computed similarly. Therefore, the overall access
cost for the nest shown in Fig. 4(ii) (T%,,.;;) considering all
three arrays and the read activity alone can be calculated as

3
n
T(;lvcrall = TU + TV + Tw = 3§ (SaC + Sgt)
3n? 3n3 ’
52" s, M

under the memory constraint 3S? < M. Here, Ty, Ty, and Ty
denote the read access costs for arrays U, V, and W, respectively.
Assuming that the entire available SPM capacity (M) will be
used for this computation (i.e., 3.5, 3 = M), this last formulation
above can be rewritten in terms of M as

o 3n> 3n>

overa. = C + t' 2
I VIE IE ()

This straightforward translation can be improved substantially
using a more careful choice of memory layouts, loop ordering,
and data-tile allocations. First, we observe from Fig. 4(ii) that
it is not necessary to perform all the tile_read and tile_write
activities inside the kt loop. In particular, a data tile of array
U can be read (and written) between the tiling loops jt and
kt. Second, reading square tiles does not allow the compiler
to take advantage of the layout of data in off-chip memory.
For example, the array V is stored in row-major order in the
off-chip memory; therefore, reading a row-chunk instead of
reading a square-chunk should result in fewer transfer calls.

Fig. 4(iii) shows the code corresponding to this scenario. The
corresponding tile allocation is shown in Fig. 5(ii). During the
execution, tiles of sizes .Sy X Sy, Sy X n, and n X Sy, are accessed
for arrays U, V, and W, respectively. In addition to determining
the tile allocation and loop order, our approach assigns memory
layouts to arrays. In the case of Fig. 5(ii), it assigns a row-major
layout for V and a column-major layout for W. The layout of
array U can be either row-major or column-major since we
read square tiles for this array. Here, we have assumed that
the trip counts of the loops are equal to the array sizes in the
corresponding dimensions. Otherwise, the trip count if known
compile time, or an estimate of the trip count based on profiling
or such factors as the array size should be used instead of n.

Note that we have exploited data tile-level temporal locality
by reading the data tiles as early as possible in the nest struc-
ture (instead of reading them repeatedly inside the innermost
tiling loop), and reading as many data items as possible along
the storage direction (the last dimension in the case of row-major
order storage) in a single transfer call. Note also that since the
compiler reads data tiles of sizes S, x n and n x Sy, for ar-
rays V and W, respectively, the tiling loop kt does not appear in
Fig. 4(iii). The overall read access cost of this loop order, layout
assignment, and tile allocation scheme is

2

Tcl))verall = % (SbC + S}?t) + SE(SZJC + TLSbt)
b b
—_ ) —
TU TV

TL2
+ —2(SbC + nSbt)
Sb

—
Ty

_ 2n2 9 n>
_<S—+n)0+<2n +S—)t 3)

b b

under the assumption that 2n.S;, + Sl? < M, and that at most
n array elements can be read with a single read_tile call from
within the code. Note that we have made this assumption just
to keep the presentation simple. Actually, if we can read/write
more than n elements in a single call, the number of transfer
operations in the code can be reduced further. In the best case, a
single row-chunk or column-chunk can be read/written using a
single call from within the code (with a suitable memory layout).
It should also be noted that a single (data transfer) call in the
code can correspond to multiple transfer activities at the hard-
ware level (depending on the bandwidth between the off-chip
memory and the SPM). A reduction in the number of transfer
calls in the code also leads, in general, to a reduction in hard-
ware-level transfer operations.

It should be emphasized that although S} is different from
S, the total memory (SPM) space used in both cases is the
same (a capacity of M elements). As before, assuming that the
maximum available SPM memory is used (i.e., 2n.S, + Sg =
M), we can rewrite this last equation (in terms of M) as

. B ( 2n?
overall — \/m _n
+ <2n2 +

—i—n)C

n3
—_— | t. 4
n2+M—n> @
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Let us now compare Té’veran [from (4)] with T2 ., [from (2)].
Assuming that n =128 and M =8192 (for illustrative purposes
only), as compared to T% . _,;, this version improves the coef-
ficient of C' by 45%, and the coefficient of ¢ by 12.2%. We
should mention that even compared to a modified version of
Fig. 4(ii) which reads the data tiles belonging to array U before
the kt loop to exploit temporal locality, the code in Fig. 4(i)
still brings about an additional reduction of 31.5% in the coef-
ficient of C'. It should be noted that the memory access cost of
the code given in Fig. 4(iv) [and its corresponding tile allocation
depicted in Fig. 5(iii)] is very similar to that of Fig. 4(iii). In this
case, however, the compiler selects a different loop order, and
assigns column-major memory layouts for both U and V.

This example clearly shows that selecting a suitable loop
order, memory layout, and tile allocations can lead to signif-
icant reduction in the number of data transfers as well as in
the amount of data transferred. In the remainder of this paper,
we present a compiler-directed approach to automatically
determine the loop orders, memory layouts, and tile allocations
for a given piece of code. We first discuss the technique within
the scope of a single multilevel nest, and then generalize it to
multiple nests each accessing a subset of the arrays (of signals)
declared in the program.

C. Desired Forms of Array References

In general, we can exploit data locality in the SPM for a given
reference, if the reference exhibits either temporal or spatial
reuse. Consequently, we want each reference to an m-dimen-
sional row-major array U to be in either of the following two
forms, where f; and g; are subscript functions.

* U[f1][f2] .- [fm]: In this form, f,, is an affine function
of all loop indices with a coefficient of 1 for the innermost
loop index whereas f; through f(,,, _1) are affine functions
of all loop indices except the innermost loop index.

* Ulg1][g2] - - - [g9m]: In this form, all g; through g, are affine
functions of all loop indices except the innermost loop
index.

In the first case, we have spatial reuse for the reference in the
innermost loop, and in the second case, we have temporal reuse
in the innermost loop [24]. Note that the second case presents
an opportunity for the compiler to keep data (actually the cor-
responding data tile) in the SPM throughout the execution of
the innermost tiling loop. The first case, on the other hand, en-
ables the compiler to read (resp. write) more consecutive data
items in a single read_tile (resp. write_tile) call. In other words,
the second case helps in reducing the coefficient of both C' and
t whereas the first case helps more in reducing the coefficient
of C. The compiler’s task, then, is to bring each array (refer-
ence) to one of the forms given above. In some codes, the array
references are in one of these forms to begin with. However,
in some other codes, we have references U[h1][h2]. .. [hn] in
which a subscript position other than the last contains the in-
nermost loop index. Examples of this are references with cou-
pled-indices such as U[i+k] [j+k], where k is the innermost
loop index and i and j are other loop indices, and references,
such as V[k] [j], where the access pattern (imposed by the in-
nermost loop k) is orthogonal to the storage pattern (which is
assumed to be row-major by default).

D. Algorithm for Determining Memory Layouts
and Loop Order

In this section, we present a compiler algorithm to transform
a given nested loop, such that the resulting nest will have refer-
ences in one of the forms mentioned above. We assume that the
compiler will determine the most appropriate memory layouts
for each array as well as a suitable loop (i.e., iteration space)
transformation that changes the loop execution order. Note that
the off-chip memory layouts are not assumed to be fixed at any
specific form. The algorithm, however, can be extended to ac-
commodate those cases where some or all the off-chip memory
layouts are fixed at specific forms.

The memory layout for an m-dimensional array can be in
one of m! forms, each corresponding to the linear layout of
data in off-chip memory by a nested traversal of the array axes
in some predetermined order. The innermost axis is called the
fastest-changing dimension. For example, the second dimen-
sion is the fastest changing dimension for row-major memory
layout of a two-dimensional array. The method that we present
can also be used to handle blocked memory layouts by viewing
each block (sub-matrix) as an array element. In other words, the
methods presented in this paper are applicable, with appropriate
modifications, to blocked layout cases as well. In the following,
we assume that the transformed arrays will be stored in memory
as row-major.

In our framework, each execution of an n-level nested loop is
represented using an iteration vector I = (i1,...,1in), where
ij corresponds to the jth loop from the outermost position. We
assume that the array subscript expressions and loop bounds are
affine functions of enclosing loop indices and loop-independent
variables. With this assumption, each reference to an m-dimen-
sional array U is represented by an access (reference) matrix £,
and an offset vector 1, such that £, I + 1., is the element ac-
cessed by a specific iteration I [44]. As an example, consider
a reference U[i-2] [j+2] to a two-dimensional array U in a
two-level loop nest with i is the outer loop and j is the inner
loop. We have

1 0 - -2
E“_[O 1} and Zu—{2]

In general, if the loop nest is [-level and the array in question is
m-dimensional, the access matrix is of size m X [ and the offset
vector is m-dimensional.

The class of loop transformations we are interested in can be
represented using nonsingular square transformation matrices
[44]. For a loop nest of [-levels, the iteration space transfor-
mation matrix 7 is of size [ x [. Such a transformation maps
each iteration vector I of the original loop nest to an iteration
I’ = 71 of the transformed loop nest [43], [44]. Therefore, after
the transformation, the new array access can be represented by
L,T7T + 1, meaning that the new access matrix is £,7 !
[44]. A data transformation, on the other hand, is applied by
transforming the dimensions (subscript expressions) of the ref-
erence. A square nonsingular m x m data transformation ma-
trix M, transforms the reference £, I + 1, (of an array U) to
My L,I + Myl,. Thus, the access matrix is transformed to
M Ly, [29]. In this paper, we are interested in only permutation
matrices for data transformations, i.e., we are only interested in
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INPUT: A nested loop and the access matrices for the references in the nest.
OUTPUT: A loop transformation matrix 7 and a data transformation matrix M; for each array <.

1: determine an access matrix for each array ¢ (1 <1 < s)

2: for each of the 2¢ alternatives do

2.1: determine target £}, L5,...,L.,
2.2: using £;7 ! = L] determinea T

2.3: for each array j with the spatial locality do

2.3.1: let rx be the row (if any) containing the only non-zero element in the last column for £
2.3.2: find an M;; such that £ = ML} will be in the desired form (i.e., ;. will be the last row)

2.4: endfor

2.5: record for the current alternative with the computed coefficients of C and ¢

3: endfor

4: select the most suitable alternative (see the explanation in the text)

5: apply data-conscious tiling (see the explanation in Section 4.6)

Fig. 6. Optimization algorithm.

dimension permutations of which there is a total of m/!. Note that
transforming the dimensions of an array can be thought of mod-
ifying the corresponding memory layout. For example, trans-
forming a given row-major array U using the data transforma-
tion matrix

0 1
M“:[1 0]

corresponds to converting its memory layout to column-major.
Note that, after the transformation, the array will be stored in
off-chip memory as row-major. However, since the array sub-
script functions are permuted by the transformation, the new
access pattern imitates a column-major memory layout. Note
that applying a data transformation also requires modifications
to array declaration [24].

Given an access matrix £,,, our aim is to find matrices 7 and
M., such that the transformed access matrix will be in one of
the two desired forms, as discussed above. Note also that while
7T is unique to a loop nest, we need to find an M,, for each
array. When both loop and data transformations are applied, a
reference £, I + 1, becomes M, £,7 ~*I' + My,. Since, for
a given L, determining both 7" and M, simultaneously, such
that M, £, 7 ! is in a desired form, involves solving a system
of nonlinear equations (not a trivial task), we solve it using a
two-step heuristic approach. In the first step, we find a matrix
T, such that £/, = £, 7~ will have a last column whose en-
tries are all zero except for the element in the 7th row, which is 1
(for spatial locality in the innermost loop); or we find a 7, such
that the last column of £/, = £, 7 ~* consists only of zeros (for
temporal locality in the innermost loop). If the reference is op-
timized for spatial locality in the first step, then, in the second
step, we find a matrix M,,, such that this th row in £/, (men-
tioned above) will be the last row in £/, = ML/, assuming that
following the transformation the array in question will be stored
in off-chip memory in row-major.

The optimization algorithm is given in Fig. 6. We assume that
there is a single uniformly generated reference set (UGR) [17] in
the nest for a given array. A UGR is a set of array references (to
the same array) whose subscript functions differ only in the con-
stant term. For example, for a two-level nested loop with indices
i and j, the references U[i] and U[i+2] are uniformly gener-
ated whereas the references U[i] and U[j-1] are not. Later
on in this paper, we discuss how to handle those cases where
there are multiple UGRs for a given array. Note that as far as
the locality characteristics are concerned, each UGR set can be
treated as a single reference. Therefore, in the following, we use
the terms “array” and “reference” interchangeably. In Step 1 (of
the algorithm in Fig. 6), we determine the UGR for each array
accessed in the nest. Since (for each array) we have two desired
candidate forms (one corresponding to temporal locality in the
innermost loop, and the other corresponding to spatial locality
in the innermost loop), we exhaustively try all the 2° possible
loop transformations in Step 2, each corresponding to a specific
combination of localities (spatial or temporal) for the arrays. In
Step 2.1, we set the desired access matrix £ for each array i
and, in the next step, we determine a loop transformation matrix
7T that obtains as many desired forms as possible. We describe
a typical optimization scenario now. Suppose that, without loss
of generality, in an alternative v, where 1 < v < 2°, we want
to optimize references 1 through b for temporal locality and ref-
erences b + 1 through s for spatial locality. After Step 2.2, we
typically have c references that can be optimized for temporal
locality and d references that can be optimized for spatial lo-
cality, where 0 < ¢ < band 0 < d < (s — b). This means that a
total of s — (¢ + d) references (arrays) exhibit no locality in the
innermost loop. We do not apply any data transformations for
the ¢ arrays that have temporal locality in the innermost loop,
and the associated data tiles can be kept in the SPM throughout
the execution of the innermost tiling loop. For each array (of a
maximum of d arrays) that can be optimized for spatial locality,
within the loop starting at Step 2.3, we find a data transforma-
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tion matrix, such that the resulting access matrix will be in our
desired form.

After computing the number of data references with temporal
and spatial reuse for a given alternative, in Step 2.5, the algo-
rithm records ¢, d, and s — (¢ + d) for this alternative, and es-
timates and records for future use the coefficients of C and ¢.
In estimating these coefficients, an important step is to build a
tiled form of the code and compute the number and volume of
data transfers (which is possible only after a memory space par-
titioning is done as explained in Section 4.5). However, code
generation is not performed at this point, but postponed until
the best (most suitable) alternative is decided upon. After all the
alternatives have been processed, we select the most suitable
one. Although different techniques can be employed to select
the most suitable alternative, we adopt the following strategy
which takes into account constraints (maximum limits) for these
coefficients. If our approach determines four alternatives where
coefe; and coefy; denote the coefficients of C' and ¢ for a given
alternative 1, respectively, it selects the alternative that satisfies
coefo; < coefe max and coefy; < coefy pax, and this alterna-
tive has minimum coefficient values among all those that satisfy
these constraints. Here, coef o max and coef; .« are the max-
imum allowable coefficients for C' and ¢, respectively. In case
we have two alternatives, ¢ and 7, that satisfy these constraints,
and coefc; < coefc; and coefy; > coefy;, the choice depends
on the actual values for the transfer initiation cost and per ele-
ment transfer cost. The estimation of the coefficients for a given
alternative and the partitioning of the memory space are dis-
cussed in the next subsection.

There are three important points to note here. First, for a
given nest with s references, our approach tries 2° different
transformation strategies. This is because for each reference
there are two alternatives: spatial locality and temporal locality.
It should be noted, however, that these trials are done statically
(i.e., at compile time). That is, the compiler checks whether
each reference can be optimized temporal or spatial locality (in
the innermost loop position). As explained above, this problem
is reduced to the problem of finding a suitable transformation
matrix to realize the desired access matrix (i.e., the desired
access pattern). Note that for the spatial locality the last column
of the desired access matrix should be [0,0,0,...,0,0,1]7
(that is, the innermost index—after the transformation—should
appear only in the last subscript position). Similarly, for
the temporal locality, the last column of the desired access
matrix should be [0,0,0,...,0,0,0]7 that is, the innermost
index—after the transformation—should not appear in any
subscript position). Given the original access matrices and
desired access matrices, the compiler then determines the trans-
formation matrix. Second, in completing the partially-filled
loop transformation matrix 7', we use the approach proposed
by Bik and Wijshoff [9] to ensure that the resulting matrix
preserves all data dependences [44] in the original nest. Third,
we also need a mechanism in some cases to favor one or more
arrays over the others. The reason is that it may not always
be possible to find a 7, such that all £} arrays targeted in a
specific alternative can be realized. In those cases, we need to
omit some references from consideration, and attempt to satisfy
(optimize) the remaining. Profile information can be used for
this purpose.

For an example application of the algorithm of Fig. 6, con-
sider once more the matrix multiply code in Fig. 4(i) on page 9.
The access matrices for arrays U, V, and W are

1 0 0
E“‘_o 1 0]
(1 0 O]
L”__o 0 1]
[0 0 1]
Lw__o 1 0]

In this nest, temporal locality can be exploited for only one of
the three arrays. The remaining two arrays can be optimized for
spatial locality. This gives us a total of three alternatives. To keep
the presentation simple, we focus only on one of them. In this
alternative, we attempt to optimize array W for temporal locality
and arrays U and V for spatial locality. Consequently, the desired
access matrices are of the form?

;o [xox 1]
E'“__x x 0]
[ x o x 1]
E'”__x x 0]
,_[x x 0]
E“’__x x 0]

s / !
Here, X denotes ‘don’t care’. Now, using L,,, L,,, Lo, L0, L4,
and L’,,, we can determine

0 0 1
T7'=11 0 0
01 0
We have
[0 0 1]
! -1 _
‘Cu_LuT - -1 0 0-
[0 0 1]
/7 -1 _
‘Cv _L’UT - -0 1 0-
[0 1 0]
/7 -1 _
Lo =L, T = |1 0 0]
So, the transformed code is
for (j = 0; J < n; j++)
for (k = 0; k < n; k++)
for (i = 0; i < n; i++)
Uli1[3]1 = Uli1[3]1 + VIil[k] % W[k][]].

Note that this new access pattern exploits temporal locality
for W in the innermost loop, and imposes a column-major
memory layout for U and V. If the default memory layout is
row-major, these two arrays should be data-transformed using
matrices

0 1
o= [0 1],

Note that, when obtaining the tiled version, we use this trans-
formed code as the starting point. Note also that this version
eventually transforms to the tiled code given in Fig. 4(iv). The

20ther alternatives are also possible.



252 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2004

code in Fig. 4(iii), on the other hand, is obtained using the iden-
tity matrix as loop transformation and exploiting temporal lo-
cality for U and spatial locality for V and W. It should be noted
that, in some codes, after these transformations, our framework
also uses loop fusion to improve locality further. Our loop fu-
sion strategy is very similar to that proposed by McKinley et al.
[32] and its details are beyond the scope of this paper.

E. Memory-Space Partitioning

Once a suitable loop order and memory layouts for the ar-
rays are determined, the compiler needs to partition the amount
of available SPM between the arrays accessed in the nest. Let
us assume first that there is a single reference per array. Our ap-
proach tiles all loops except for the innermost one. For example,
assuming that the current alternative (in matrix-multiply code)
is the loop nest given in previous subsection (i.e., the j, k, i
loop), the compiler tiles both the loops j and k [as shown in
Fig. 5(iii)].

Assuming that the loops are tiled using a blocking factor (tile
size) S, , if the reference in question is of the first desirable form
discussed in Section 4.3, the compiler accesses a data tile of size
Sa X Sqg X S X -+ X S, x n (assuming that n is the number
of iterations of the innermost loop, and the memory layout is
row-major as in the C language). Note that accessing such a data
tile tends to minimize the number of transfer calls per tile. As
for the arrays that fit in the second form, we can access data tiles
of S, X Sy x Sg X -++ X S, as the loops whose indices appear
in some subscript function of this array are tiled. After that, the
data tiles can be hoisted into upper loop positions depending on
the loop indices used by their subscript functions.

However, if we consider the entire UGR set (which might
contain multiple uniformly generated references to the same
array), we need to be more careful in determining the data tile
size for the array. In this work, we use the concept of the spread
of a UGR set [1]. Informally, it consists of all of the elements
that are accessed by the references in the set. Formally, given
a UGR set U[fi1][fi2] - - - [fim], the spread of the subscript po-
sition k is max; j(cix — ¢ji), where ¢;, and c;y, are the coeffi-
cient parts of the kth subscript for arbitrary references ¢ and j,
respectively. What this means that in order to accommodate all
the array elements in kth subscript position, the normal tile size
should be increased by at least max; ;(c;x — ¢;ji) elements. As
an example, if we have a UGR set that contains U[i] [j] and
U[i+ 3] [j + 51, and the original tile size that we would con-
sider if we had only the former reference is S, x S, the final
tile size should be S, + 3 x S, + 5 (to accommodate the whole
set of elements accessed by both the references).

If, on the other hand, we have more than one UGR set for a
given array (which is a rare occurrence in many embedded ap-
plications), our current implementation treats each UGR set as
if it belongs to a different array. This simplification, of course,
causes some performance loss in cases where the references be-
longing two different UGR sets partially overlap. However, it
makes the code generation much simpler.

It should be noted that the compiler performs this memory
space partitioning for each alternative (considered by the algo-
rithm in Fig. 6); however, it does not generate code (i.e., does

not actually tile the nest in question by modifying the internal
data structures of the compiler) until it determines the most
suitable alternative. The code modification step (explained in
Section IV-F) is performed only for the selected best alternative.

F. Code Modification and Generation

An important issue is the placement of transfer calls in a given
tiled nest. In fact, there are two subproblems here: 1) the inser-
tion of the transfer calls in the code and 2) the determination of
the parameters to be passed to them. Determining the insertion
points for the transfer calls is relatively simple. For one, the calls
should definitely be outside the element loops, as these loops
work on the data tiles that are active in the SPM. Then, all that
is left is to examine the subscripts of the reference in question to
determine the indices that occur, and insert the transfer call asso-
ciated with the reference in between the appropriate tiling loops.
For example, in Fig. 4(iii), the subscript functions of array V use
only the tiling loop index it. Since there are two tiling loops in
this code, namely it and jt, we insert the read call for this ref-
erence just after the it loop, as shown in the figure. However,
the other two references (U and W) use the tiling loop index jt;
therefore, we need to place the read routines for these references
inside the jt loop (just before the element loops). The write rou-
tines are placed using a similar reasoning.

For handling the second subproblem, namely, determining
the sections to read and write, we use the method of extreme
values of affine functions first used by Banerjee [7], [44] for
data dependence testing. Given an affine function of a number
of variables and inequalities which represent the bounds for the
variables, the extreme values method determines the maximum
and minimum values of the affine function in the bounded re-
gion. This method applies to nonrectilinear regions as well. We
can describe this method using a simple example. Consider the
affine function f(4,j) = 5¢ — 45 + 4 with the bounding region
{(4,7)]1 <3 <100and i + 2 < j < 200 — 4}. Then

For the upper bound : For the lower bound :
Fli,§) <Bi—dj+4  f(i,§)>5i—4j+4
fl,5) <5i—4(i+2)+4 (i,5) > 5i — 4(200 — i) + 4
Fled) S it fli]) > 9~ 106
fG,5) <96 f(i,j) =2 -

Therefore, the upper bound of f(4,j) is 96 and the lower
bound is —787. That is, the values that the function f take on
fall in the interval —787 : 96.

We use a similar analysis to compute the range of array ele-
ments accessed by a complete execution of the element loops.
Let us concentrate now on the reference U[1] [j] in Fig. 4(i).
Assuming the tiling strategy in Fig. 4(iii), we want to find the
range of elements for each subscript function of this reference.
Since it < i < it 4+ S, — 1, the range of elements accessed
by the first subscriptis it : it + .S, — 1. Similarly, the range of
elements accessed by the second subscriptis jt : jt + S5, — 1.
Consequently, the array section (data tile) that needs to be read
from the off-chip memory for the reference U[i] [j] is it :
it+ S, —1,jt: jt + S, — 1. The array sections for the other
references are found using the same approach.
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INPUT: A series nested loops

OUTPUT: Optimized nest sequence and memory layouts for arrays

1: Transform the program into a sequence of independent loop nests using loop fusion [44], distribution [44], and

code sinking [44].

2: Build an interference graph [5] and identify the connected components. The interference graph is a bipartite
graph (Vy,, V4, E), where V, is the set of loop nests, Vj, is the set of arrays, and E is the set of edges between
loop nodes and array nodes. There is an edge e € E between v, € V, and v, € V,, if and only if v,, references

Vq-

3: For each connected component:

3.1: Order the loop nests according to a cost criterion using profile information.

3.2: Optimize the most costly (i.e., the most important) nest using the technique discussed in the previous

subsection and then tile this nest.

3.3: For each of the remaining nests in the connected component (according to their cost orders):

3.3.1: Optimize the nest being analyzed using the mentioned technique. However, in determining the loop
transformation, first apply the data transformations found so far to respective references. Then, tile

the nest.

3.3.2: Propagate the data transformations found so far to the remaining nests in the procedure.

Fig. 7. Procedure-wide optimization algorithm.

G. Multiple Nests and the Interprocedural Problem

The technique proposed in the previous subsections to bring
an array reference into the desired form involves a data (memory
layout) transformation. Unlike loop transformations, the impact
of a data transformation is global in the sense that it affects the
locality characteristics of all the references to the same array
in every loop nest and in every procedure in the program. In
other words, when a data transformation matrix is applied to a
reference, it should also be applied to all the other references to
the same array whether belong to the same nest or not. Next, we
briefly discuss how to control this global effect. The details of a
global locality analysis for off-chip memory arrays are beyond
the scope of this paper, however.

First, we focus on the intraprocedural locality optimization
problem and present an approach to optimize a series of loop
nests collectively. Note that code sequences that contain con-
secutive loop nests are quite common in video and image pro-
cessing applications. Given a series of nested loops that access
(possibly different) subsets of arrays declared in the procedure,
a sketch of our optimization strategy is shown in Fig. 7.

We now briefly discuss the interprocedural locality optimiza-
tion problem. It is easy to see that a naive approach that remaps
all arrays across procedure boundaries can be prohibitively ex-
pensive and can easily outweigh all gains obtained from SPM
optimizations. Our current approach, instead, propagates data
transformation matrices across procedures. It is similar in spirit
to the global data distribution algorithm proposed by Anderson
in her thesis [5], and can be summarized briefly as follows.

Our approach performs two traversals on the call graph rep-
resentation of the program. A call graph G. = (V., E.) is a
multigraph where each node p; € V. represents a procedure,
and there is an edge e € I, between p; and p; if the former
calls the latter [2]. In such a graph, the leaves represent the pro-
cedures that do not contain any calls. If desired, the edges can

be annotated by some useful information related to call sites,
such as the actual parameters passed to the procedure, the line
number where the call occurs, and so on. Currently, we do not
handle programs that contain recursive procedure calls, and we
do not handle arrays that are explicitly reshaped across proce-
dure boundaries.

Before the first traversal, we run an intraprocedural locality
optimization algorithm (summarized above) on each leaf node.
In the first traversal, called bottom-up, we start with the leaves
and process each node in the call graph if and only if all the
nodes it calls have been processed. After all the callee nodes for
a given caller have been processed, we propagate a system of
equalities (called layout or locality constraints) to the caller. The
solutions to these equalities are such that they give us the loop
and data transformations that collectively bring the references
in the procedure being analyzed to one of the desired forms.

The caller adds this system to its own local set of equalities
(obtained using the intraprocedural locality optimization algo-
rithm) and propagates the resulting system to its callers, and so
on. When we reach the root (the main program), we have all the
locality constraints of the program. We solve these constraints
at the root and determine the data transformation matrices for
the (global and local) arrays accessed by the root and the loop
transformation matrices.

Now, the top-down traversal phase starts; in this traversal,
each caller propagates down the data transformation matrices
determined so far to its callees. Using the equalities solved so
far, the callees, in turn, determine the data transformation ma-
trices for their local arrays as well as the loop transformations
for the nests that they contain. Then, they apply tiling to these
nests. When all the leaf nodes have been processed, the algo-
rithm terminates.

For an illustration of the intraprocedural algorithm, consider
the code fragment below that consists of a sequence of two sep-
arate nests.
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for (i = 0; 1 < n; i+4+4)
for (3 = 0; J < n; j++)
V31011l = VI[31[i] + Uli1([3]
for (i = 0; 1 < n; i++4)
for (3 = 0; J < n; j++)
Wiil[3] = VvI[i1(3] + 1

Assuming the the first nested loop is more important than the
second nest, our approach proceeds as follows. First, it focuses
on the first nest, and assigns a row-major layout for U and a
column-major layout for V. It then moves to the second nest,
and in optimizing this nest it takes into account the layouts of
V and U determined during the optimization of the first nest.
This column-major layout of V requires a loop interchange for
the second nest, thereby placing the i loop in the innermost
position. This new access pattern, in turn, imposes a column-
major layout for array W. Of course, after the optimization of
each nest, the nest should be tiled and explicit data transfer calls
should be inserted in the code.

H. Discussion

In this subsection, we discuss the similarities and differences
between the compiler support required by an SPM-based envi-
ronment (such as ours) and that required by a cache-based envi-
ronment. Note that both the environments benefit from data lo-
cality optimizations, such as code (loop) and array layout (data)
transformations. In fact, both an SPM and a cache based envi-
ronments benefit from obtaining unit-stride accesses in the in-
nermost loop positions. Consequently, our layout optimization
can be used in a cache-based environment as well.

However, there are also significant differences between two
compiler supports. First, the SPM-based compilation strategy is
inherently data oriented. That is, in order to exploit data locality
as much as possible, it tries to reuse the data in the SPM. Conse-
quently, given an SPM content, it needs to execute the iterations
that use the data that reside currently in the SPM. This strategy
leads to an automatic, data-oriented tiling of the code. In other
words, in an SPM-based environment, tiling is mandatory. In
contrast, in a pure cache-based environment, tiling is an optional
optimization (for enhancing cache performance), and, in fact, if
there is no temporal reuse in outer loop positions (of a given
nest), applying tiling is useless. Even in cases (in a cache-based
environment) where tiling is desired, it is applied in an iteration
space oriented manner. This is because since it is not possible
to know what data (at a given time) reside in the cache, a tiling
strategy cannot restructure the code based on cache contents;
rather, some heuristics are used.

Second, explicit management of SPM requires the compiler
to insert explicit data transfer calls in the code. Note that these
are necessary to manage the contents of the SPM dynamically.
In cache memories, on the other hand, the compiler is not re-
quired to do such a thing as the data flow management is han-
dled by hardware automatically. Third, as a result of explicit
management of the SPM space, the compiler needs to divide
this space between competing arrays as discussed earlier in the
paper. Finally, since the compiler/user knows what data are in
the SPM at a given time, we can estimate the execution time of

the program given an access pattern and memory layouts. Such
estimations can then be used for selecting appropriate memory
layouts and loop transformations. While it is also possible to
estimate cache hits/misses in an optimizing compiler, such es-
timates are, in general, far from being accurate. This is because
it is extremely difficult to predict the occurrence and frequency
of conflict misses. Note that in an SPM-based environment con-
flict misses do not exist.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results and compare
our dynamic technique with four other approaches. Our experi-
mental suite consists of five benchmarks: int_mxm, an integer
matrix multiply program (that contains one initialization and
one multiplication nest); full_search and parallel hier,
two different motion estimation codes; rasta_fft, a discrete
Fourier analysis code from MediaBench [28]; and rasta_f1t,
a filtering routine from MediaBench [28]. In order to enable
our implementation to handle rasta fftandrasta_flt, the
pointer references are replaced with their equivalent array coun-
terparts. Unless stated otherwise, the data set sizes (input sizes)
for int_mxm, full_search,parallel hier,rasta_fft, and
rasta_fltare 196 K, 171K, 171 K, 224 K, and 119 K, respec-
tively. We use five different versions of each code:

* tiled is the version in which all arrays involved in the com-
putation are accessed using square data tiles, and all array
layouts are fixed to be row-major. In this version, at a
given time, the SPM space is divided between the involved
arrays evenly. This is a straightforward SPM utilization
strategy.

* static is the version that allocates the entire SPM space for
one chunk of data throughout the execution. In order for
this scheme to be beneficial, we place the most frequently
used data chunk in the SPM.

* c_opt is the dynamic SPM management strategy proposed
in this paper. It determines memory layouts, tile sizes, and
SPM partitioning between arrays automatically, and mod-
ifies the input code accordingly.

* hand is an hand-optimized version. In selecting the tile
shapes, it considers not only the loop nest in question, but
it takes into account the opportunities for tile reuse be-
tween multiple nests. Consequently, it is more global than
our approach. Integrating this version into our framework
is in our future agenda.

* cache is the version that uses the available SPM space as a
conventional cache; that is, the hardware controls the data
transfers between the on-chip memory and the off-chip
memory.

The c_opt version is implemented using SUIF, a
source-to-source translator [4]. The compiler analyzes the
input code, determines the inherent data reuse, selects the
best option, tiles the code accordingly, and inserts explicit
data transfer calls. It should be emphasized that the layout
transformation approach used by our technique works both
intraprocedurally and interprocedurally. Out of the five codes
in our experimental suite, only two codes (rasta_fft and
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program [ tiled copt || hand
int_mxm coef_C- 147,456 || 55.2% || 63.8%
coef_t: 2,724,280 || 30.9% || 47.1%

full_search coef C: 803,462 || 41.4% || 50.8%
coef_t: 8,077,528 || 27.0% || 33.4%

parallel hier || coef-C: 634,016 || 39.7% || 47.0%
coef_t: 5,993,860 || 26.2% || 28.2%

rasta_fft coef C: 845,720 || 36.3% || 47.7%
coef_t: 10,661,036 || 28.5% || 36.1%

rasta-flt coef C: 495,992 || 44.6% || 48.1%
coef t: 6,393,520 || 40.6% || 48.7%

Fig. 8. Number of data transfers and transferred data volume (M = 4 K).
coef_C' is the coefficient of C' and coef _t is the coefficient of ¢. The fourth and
fifth columns are normalized values with respect to the corresponding values in
the third column.

rasta_flt) benefited from interprocedural layout optimiza-
tion. For the purposes of this study, we also collect statistics
during execution by instrumenting the code, such as the
number of data transfer calls (i.e., coefficient of ('), and the
number of data items transferred between the off-chip memory
and the SPM (i.e., coefficient of ). For the experiments that
involve the cache version, we employ a trace-driven cache
simulator (DinerolV) [15]. The memory traces are obtained by
instrumenting the program and recording the address and size
of each array access along with the access type (read or write).
It should be noted that the c_opt and cache versions use exactly
the same memory layouts and loop optimizations in order to
isolate the benefits that are solely due to the management of
the on-chip memory space.

Our presentation is in five parts. Fig. 8 shows the number
of the data transfers (coefficient of C', denoted coef_C), the
transferred data volume (coefficient of ¢, denoted coef_t), and
the percentage improvements for a 4 K SPM for three different
versions of each program. It should be noted the corresponding
values for static are negligible as it loads the SPM only once,
and never loads it again during execution. The column tiled
in Fig. 8 gives the absolute number of data transfers and the
transferred data volume (resulting from the straightforward
SPM management) whereas the last two column present the
percentage improvements (reductions in coefficients) over
tiled. These results are very encouraging, and show that, on
the average, our approach reduces the number of transfers by
43.4% and data volume by 30.6%. Considering the tile sharing
pattern between different nests (that is, the hand version) brings
an additional 8.1% improvement in the number of transfers,
and an additional 9.1% improvement in the transferred data
volume.

Fig. 9 gives the total data access costs (in millions) for four
different versions, again assuming that the size of the SPM (M)
is 4 K. The total data access cost has four components: the
transfer initiation cost (C'), the per item transfer cost (¢), the
off-chip memory access cost (Kog) which does not include
the per item transfer cost, and the on-chip memory access cost
(Kon)- Fig. 9 presents results for nine combinations of the ratio
C :t: Ko : Kog. For example, a ratio, such as 5 : 5 :
1 : 10, indicates that the data transfer initiation cost and per
item transfer cost are the same (5). At the same time, the cost
of off-chip memory (circuitry) access, Kog, is twice that of C,
and the cost ratio between the on-chip and the off-chip memory

program [[ tiled ] static [[ copt | hand
C:t: Kon: Kops =5:5:1:10
int_mxm 5837 27242 | 4530 [ 38.70
full_search 141.95 180.77 || 107.59 || 99.92
parallel hier || 109.85 159.93 85.21 78.69
rasta-fft 180.92 || 1,106.61 || 133.02 || 121.32
rasta_flt 115.15 163.93 75.68 || 68.89
C:t: Kon: Kosp =9:1:1:10
intmxm 48.07 12724 38.05 33.13
full_search 112.86 180.77 85.90 || 79.85
parallel hier 88.41 159.93 68.99 63.97
rasta_fft 141.66 || 1,106.61 || 104.91 95.78
rasta_flt 91.56 163.93 || 61.42 | 56.37
: Kon - Koy =5:5:1:20
int_mxm 85.62 254.48 64.10 53.13
full_search 222.73 361.55 || 166.56 || 154.04
parallel_hier | 169.79 319.87 || 129.56 || 118.85
rasta_fft 287.53 || 2,213.22 || 208.71 || 189.55
rasta_flt 179.09 327.87 || 114.04 || 102.78
C:t: Kon: Kopp =9:1:1:20
int_mxm 75.31 544.85 56.84 47.57
full_search 193.63 361.55 || 144.87 || 133.97
parallel hier || 148.35 319.87 || 113.34 || 104.13
rasta_fft 248.27 || 2,213.22 || 180.60 || 164.02
rasta_flt 155.50 327.87 || 99.79 | 90.25
C:t: Kon: Kogs =5:5:1:5
int_mxm 4475 63.62 ] 3590 [ 31.48
full_search 101.56 90.38 || 78.11 72.86
parallel.hier 79.88 79.97 63.03 58.61
rasta_fft 127.61 553.30 || 95.17 87.20
rasta_flt 83.19 81.96 || 56.50 || 51.95
: Kon : Koy =9:1:1:5
int_mxm 34.45 63.62 ]| 28.65 ] 2591
full_search 72.47 90.38 56.42 52.79
parallel hier 58.44 79.97 46.81 43.89
rasta_fft 88.35 553.30 | 67.06 || 61.67
rasta_flt 59.60 81.96 || 42.24 | 39.42

Fig.9. Total data access costs (in millions) for different versions (M = 4 K).

is 1 : 10. Out of the six combinations considered in Fig. 9, the
first group of two uses aratio 1 : 10 between the costs of on-chip
and off-chip memory accesses (i.e., Ko : Kog = 1 : 10). The
next (resp. the last) group of two alternatives investigates the
case where the off-chip cost is increased (resp. decreased) with
respect to the on-chip cost. Within each group, we experiment
with different relative costs of C' and ¢. Note that the perfor-
mance of the version static is assumed to be independent of C'
and ¢ as their contribution to the overall cost (for that version) is
negligible. From these results, we make two main observations.
First, for all the experiments except when K, : Kog = 1: 5,
the performance of static is very poor, indicating the need for
dynamic management of the SPM space. When K, : Kog =
1 : 5, on the other hand, the accesses to the off-chip memory be-
come less costly, making the performance of the static manage-
ment better (although it is still much worse than others). In the
experiments with the static version, we assumed that the data
that reside in the off-chip memory (not resident in the SPM)
is accessed directly and not cached (e.g., using a conventional
cache). We also performed another set of experiments where the
non-SPM data is accessed through an on-chip cache. The exper-
iments performed with 1, 2, and 4 K direct-mapped and 4-way
set-associative caches showed that the performance of the static
version is improved by 8.1% to 10.2% (over static without cache
support) which is still much worse than the performance of the
other versions. Moreover, note that, the static version uses more
on-chip storage space (i.e., cache + SPM) than the others in
this second set of experiments. We do not present detailed re-
sults due to lack of space. Another observation from Fig. 9 is
that c_opt significantly improves over tiled and its performance
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([ SPM Capacity (M) || tiled || static ]| c.opt || hand
C:t: Kon: Kopp =5:5:1:10
2K 76.04 || 385.27 || 56.94 ][ 47.65
4K 58.37 || 272.42 || 45.30 || 38.70
8K 46.04 || 192.63 || 37.19 || 32.46
16K 37.39 || 136.21 || 31.46 || 28.06
32K 31.31 96.31 || 27.43 || 24.96
64K 27.03 68.10 |[ 24.59 || 22.78
128K 24.02 48.15 || 22.58 || 21.24
C:t: Kon: Kogy =9:1:1:20
2K 100.33 || 770.54 || 73.27 || 60.21
4K 75.31 || 544.85 || 56.84 || 47.57
8K 57.89 || 385.27 || 45.42 || 38.78
16K 45.71 || 272.42 || 37.37 || 32.60
32K 37.16 || 192.63 || 31.71 || 28.25
64K 31.16 || 136.21 || 27.72 || 25.19
128K 26.93 96.31 || 24.91 || 23.03

Fig. 10. Total data access costs (in millions) for different versions of the
int_mxm code (total data size = 196 K).

is close to that of hand. For example, when C : ¢ : K, :
Kog = 5:5:1: 10, our approach reduces the total data access
cost over tiled by 26.3% on average. With the same parameters,
hand improves over tiled by 32.8%; that is, 6.5% better than
c_opt.

We now focus on the int mxm code and study the perfor-
mance of different versions under different SPM capacities
using two example sets of the (C' : t : Ko, : Ko) parameters.
Note that the total input size is fixed across different SPM
capacity values. We observe from the results given in Fig. 10
that the effectiveness of our approach (over tiled) increases
as the capacity of the SPM is reduced. For example, with
C:t: Kon: Keg =9 :1: 1 : 20, the improvement
obtained by c_opt (over tiled) is 7.5%, 18.2%, and 27.0% for
M =128 K, M = 16 K, and M = 2 K, respectively. These
results indicate that our approach is able to take advantage
of small on-chip memories better, which is good because the
dataset sizes keep getting bigger and bigger. We observed a
similar trend with other codes as well.

We now focus on the problem of exploiting SPM from a
slightly different perspective. So far, we have shown that our
approach significantly outperforms a straightforward strategy
under the assumption of a fixed SPM capacity. In other words,
we have focused on improving performance by keeping the
on-chip memory capacity constant. We now investigate the
problem of reducing the required SPM capacity by keeping
the performance constant. For example, recall that the number
of transfer calls for the codes in Fig. 4(ii) and (iii) were,
respectively

3 2
SL(% and coefg, = SL;,
If we want to keep these coefficients equal, then we have

3n®  2n? 2n

52 S, +n b

coefg, = +n.

3 = G(Sa)
352 -1

a

where G(.) is a function. Now, given an original SPM capacity
M, from M = 353, we can find an S,, and then using S, =
G(S,), we can find an Sj, and, finally, substituting this S
in 2nS, + S = M’ can give us a new SPM capacity M’
(smaller than M) which, if used in conjunction with the code
in Fig. 4(iii), will result in the same number of transfer calls had

M | %red || M
1K | 243 2K

Yored || M
28.8 4K

Y%ored || M
33.1 8K

Yored || M
39.7 || 16K

Y%ored
45.7

Fig. 11. Percentage reduction in memory size keeping the performance
constant for the full_search code.

we used original capacity M with the code in Fig. 4(ii). Note
that a similar formulation can be constructed if we want to keep
the transfer volume or even total access cost fixed. Fig. 11 gives
(for the full_search code) the percentage reduction (denoted
%red) in SPM size when the total access cost is fixed for dif-
ferent values of M using C' : ¢t : Ko, : Kog = 5:5:1:10.
We see from this table that, on the average, a 34.3% reduction in
SPM capacity is obtained by keeping the total access cost fixed.

Finally, we compare the performance of a dynamically
managed SPM to the performance of a traditional data cache
memory. Fixing? C' : ¢t : Ko, : Kog = 5 : 5 : 1 : 10,
Fig. 12 shows the percentage increases in total data access cost
when an on-chip cache memory is used instead of the SPM
(with ¢\_opt). We experimented with sizes of 8 and 32 K. It
is assumed that the block size used in transfers between the
cache/SPM and off-chip memory is 32 bytes. These results
show that, on the average (i.e., across all benchmarks and cache
configurations experimented with), using a conventional cache
instead of SPM increases the total data access cost by 39.8%
(assuming that the cache and SPM have the same capacity).
Note that similar results have also been reported by Benini et al.
[8]. We also observe that increasing the associativity from 1
(direct-mapped case) to 2 improves cache performance whereas
going from 2 to 4 in general degrades the performance of the
conventional cache version (due to the overhead factor we used
and the lack of a significant drop in the number of conflict
misses as a result of increased associativity). These results
clearly show that, even under the same set of optimizations, the
SPM-version outperforms the cache version significantly.

It is also important to see whether working with a larger con-
ventional cache can outperform SPM. To check this, we per-
formed another set of experiments, where we kept the SPM size
at 8 K and increased the data cache size from 8 to 128 K. The
results given in Fig. 13 are the averages over all associativities
(1, 2, and 4) and write policies (WT and WB). These results re-
veal that even if we use a data cache size of 32 K, we are still
able to achieve better results with an SPM of 8 K. Only when
the data cache size is increased to 64 K, the cache version starts
to outperform the SPM-based system. What this means is that
using an SPM in conjunction with our optimizations can gen-
erate better results (in some cases) than using a conventional
cache with the same set of optimizations.

VI. RELATED WORK

Several strategies have been proposed to improve cache
performance, including prefetching [35], data copying between
different portions of the address space [27], [40] and locality
optimizations for array-based codes [6], [12], [24], [36], [43],
[44]. Dynamic techniques, such as access reordering on-the-fly

3This is assuming a direct-mapped cache. For a two-way (resp. four-way) as-
sociative cache, we assume K ,, = 1.1 (resp. K,,, = 1.2) to take into account
the additional overhead due to associativity.
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Fig. 12. Percentage increase (over dynamically-managed SPM) in total data access cost when a conventional on-chip cache is used (WT =
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between the processor and memory (using a specialized hard-
ware unit), have also been used [13]. While these techniques
reduce the number of cache misses, they do not completely
eliminate them, and they do not solve the problem of unpre-
dictable data access latency associated with cache memories.
Recently, a number of runtime-based approaches [3], [16], [19],
[33], [34] have been proposed to improve locality of irregular
array applications. While these techniques specifically focus
on irregular applications, the framework proposed in this paper
targets embedded applications with regular access patterns.
The IMEC group in Belgium [10], [11] has investigated the
problem of constructing customized memory hierarchies for
low power, and pioneered the work on applying loop trans-
formations to minimize power dissipation in data dominated
embedded applications. Memory optimizations for embedded
systems are addressed, among others, by Panda er al. [38] and
Shiue and Chakrabarti [39]. Panda er al. [38] use the cache

Percentage increase (over an 8 K dynamically-managed SPM) in total data access cost when conventional data caches of different sizes are used.

size and the processor cycle count as performance metrics,
and propose a method for off-chip data placement. Shiue
and Chakrabarti [39] extend Panda et al.’s approach to take
into account the energy consumption as well. They show the
importance of including energy as a key metric, and perform
experiments with different cache topologies and tile sizes.
Hallnor and Reinhardt [18] propose a new software-man-
aged cache architecture and a new data replacement algorithm.
Mandhani et al. [30] discuss a technique that utilizes an existing
cache as software-managed memory (with small architectural
modifications.) They increase the instruction set architecture
(ISA) with block load/store instructions, and discuss an ad-
dressing scheme for this architecture. In contrast, our approach
employs an SPM, and we present an optimization strategy that
utilizes both loop and data transformations for effective use of
this memory. In addition, our approach does not require any
ISA modification and does not incur any reconfiguration cost.
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Cooper and Harvey [14] present two compiler-directed
methods for the software management of a small cache for
holding spilled register values. They show that using the
coloring paradigm from register allocation can significantly
reduce the amount of memory required for the program. Our
work, on the other hand, tries to utilize the software-managed
memory for general array-based computations, and not just
for minimizing the negative impact of spill code on memory
performance.

Wang et al. [42] propose a framework for analyzing the flow
of values and data reuse for on-chip memories. They do not
perform any interprocedural analysis and assume that the loops
are perfectly-nested. They also impose specific forms on array
references and assume that the subscripts are not coupled. The
technique they use eventually results in suitable groupings of
array statements from locality and bandwidth perspectives. Our
technique focuses more on the optimization of the flow of data
in a given loop nest (or whole program), and deals with issues,
such as memory layout determination and insertion of explicit
data transfer calls in the code. Also, we use a larger suite of opti-
mizations (e.g., interprocedural analysis and layout transforma-
tions) and are able to handle a larger class of array references.

Panda et al. [37] present an elegant static data partitioning
scheme for efficient utilization of SPM. Their approach is aimed
at eliminating potential conflict misses due to the limited asso-
ciativity of an on-chip cache. This approach benefits applica-
tions with a number of small (and highly reused) arrays that can
fit in the SPM. Our work, in contrast, is oriented more toward
dynamically managing the on-chip SPM by keeping the data
transfers under compiler control. In a sense, these two works
are complementary. In addition, our work uses a powerful op-
timization scheme and we show that the performance of the
on-chip SPM may not be satisfactory in the absence of com-
piler optimizations.

Benini er al. [8] discuss a powerful memory management
scheme that is based on keeping the most frequently used data
items in a software-managed memory instead of a conventional
cache. This approach is a static management technique as it
does not adapt the contents of the on-chip memory to the dy-
namically changing working sets. On the other hand, it is not
limited to array-dominated codes. Also, it is oriented more to-
ward building such an application-specific memory architec-
ture. Our work, on the other hand, focuses on a dynamic strategy
in which portions of datasets involved in a given computation
move back and forth between the on-chip and off-chip memory
under compiler control. Our locality optimization framework at-
tempts to decrease the frequency and volume of these explicit
data transfers by using a suitable combination of loop and data
transformations.

VII. SUMMARY AND FUTURE WORK

Conventional on-chip cache memories may not be very
suitable for embedded systems where meeting hard real-time
constraints is critical. Consequently, systems that contain a
software-managed SPM can be of great interest as they exhibit
highly predictable data access latencies. This paper presents
a compiler-directed approach for the dynamic management
of an SPM for array-based applications from the image and

video processing domains. Our approach uses a set of compiler
optimizations and a strategy for partitioning the on-chip
memory space aimed at utilizing the on-chip memory space as
effectively as possible. We compare the proposed scheme to a
technique that adopts a static SPM management scheme (which
fixes the contents of the SPM at the beginning of the execution),
a technique that partitions the available on-chip space between
competing arrays evenly, and a conventional cache scheme.

Our current work along this direction includes dynamic
management of multiple on-chip SPMs, and enhancing our
optimization suite to include multiarray transformations, such
as array interleaving. Work is also underway in addressing
the problem of effective management of data flow in memory
hierarchies constructed from multiple cache memories and
SPMs.
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