
Code Size Optimization for Embedded Processors using Commutative
Transformations

Sai Pinnepalli†, Jinpyo Hong‡, J. Ramanujam†, Doris L. Carver†

†Louisiana State University, ‡Korea University of Technology and Education

Abstract

Code optimization of the offset assignment
generated in embedded systems allows for power and
space efficient systems. We propose a new heuristic
that uses edge classification to commutatively
transformation and optimize the assignment. We
introduce concept of breakable and unbreakable edges,
which assists in selecting edges for path cover and
edges for commutative transformation.

1. Introduction

Embedded processors (e.g., fixed-point digital
signal processors, micro-controllers) are found
increasingly in audio, video and communications
equipment, cars, etc. thanks to the falling cost of
processors [11]. These processors have limited code
and data storage. Therefore, making efficient use of
available memory is very important. On these
processors, the program resides in the on-chip ROM;
therefore, the size of the code directly impacts the
required silicon area and hence the cost. Current
compiler technology for these processors typically
targets code speed and not code size [1, 11]; the
generated code is inefficient as far code size is
concerned. An unfortunate consequence of this is that
programmers are forced to hand optimize their
programs. Compiler optimizations specifically aimed
at improving code size will therefore have a significant
impact on programmer productivity [8-10].

DSP processors such as the Texas Instruments
TMS3205 and embedded micro-controllers provide
addressing modes with auto-increment and auto-
decrement. This feature allows address arithmetic
instructions to be part of other instructions. Thus, it
eliminates the need for explicit address arithmetic
instructions wherever possible, leading to decreased
code size. The memory access pattern and the
placement of variables have a significant impact on
code size. The auto-increment and auto-decrement
modes can be better utilized if the placement of
variables is performed after code selection. This
delayed placement of variables is referred to as offset
assignment.

This paper considers the simple offset assignment
(SOA) problem where the processor has one address
register. A solution to the problem assigns optimal
frame-relative offsets to variables of a procedure,
assuming that the target machine has a single indexing
register with only the indirect, auto-increment and
auto-decrement addressing modes. The problem is
modeled as follows. A basic block is represented by an
access sequence, which is a sequence of variables
written out in the order in which they are accessed in
the high level code. This sequence is in turn further
condensed into a graph called the access graph whose
nodes represent variables and with weighted undirected
edges. The weight of an edge (a, b) is the number of
times variables a and b are adjacent in the access
sequence. The SOA problem is equivalent to a graph
covering problem, called the Maximum Weight Path
Cover (MWPC) problem. A solution to the MWPC
problem gives a solution to the SOA problem. This
paper presents a technique that modifies the access
pattern using algebraic properties of operators such as
commutativity. The goal is to reduce the number of
edges of non-zero weight in the access graph. Rao and
Pande [12] have proposed some optimizations for the
access sequence based on the laws of operator
commutativity and associativity. Their algorithm is
exponential. Here, we present an efficient polynomial
time heuristic.

The rest of this paper is organized as follows.
Section 2 introduces the commutative transformation
and Section 3 provides a motivating example. Section
4 introduces the classification of edges in the access
graph into breakable and unbreakable edges, which is a
key idea in this paper. Section 5 presents our heuristic
and Section 6 presents a detailed example.
Experimental results demonstrating the efficacy of our
approach are presented in Section 7. Related work is
discussed in Section 8 and Section 9 concludes with a
summary and discussion of ongoing and planned work.

2. Commutative transformation

Two operands x and y are said to be commutative
under an operator α if they satisfy x α y = y α x

Some instructions have commutable operations,

13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications(RTCSA 2007)
0-7695-2975-5/07 $25.00 © 2007

while others do not. An instruction ADD(a, b) is
equivalent to “ = a + b”. In this operation, a and b are
commutable since a + b = b + a. Similarly MUL(a, b),
which is the same as “ = a * b”, is commutable since a
* b = b * a.

Some instructions such as SUB(a, b) and DIV(a, b)
are not commutable. SUB(a, b) is equal to “ = a – b”
and a - b ≠ b – a, unless a = b; DIV(a,b) is equal to “=
a / b” and a / b ≠ b / a unless a = b.

From the definition of a commutative operation,
some instructions might appear to be commutative, but
commutative operations in such instructions is not
allowed due to the implementation of the operation.
For example MPYA(a, b, c) is equal to t = MPY(a, b),
followed by ADD(t, c) where t is an internal variable
and the result of MUL(a, b) is stored temporarily in
this variable. This operation may be represented as “(a
* b) + c”. This operation implies that (a * b) + c = c +
(a * b). Algebraically, this assertion is true. But, while
computing the values, the ADD operation cannot be
completed before the MUL operation is complete.
However MUL(a,b) within MPYA is still commutable.
Such operations are implemented in a MAC.

f1 s1 l1 f2 s2 l2 f3 s3
l3

l1 ← f1 + s1
l2 ← f2 + s2
l3 ← f3 + s3

(a) (b)

f1 s1 l1 s2 f2 l2 f3 s3
l3

l1 ← f1 + s1
l2 ← s2 + f2
l3 ← f3 + s3

(c) (d)
(1) w(s2,l2)—
(2) w(11,f2)—
(3) w(11,s2)++
(4) w(f2,l2)++

(e)

Figure 1. Commutative Transformation Concepts

Operation such as SUB(a, b) may be considered

equal to ADD(-b,a) ≡ ADD(SIG(b),a). Such an
operation makes ADD non atomic, and the nature of
the operation also makes ADD non-commutative as
SIG has to be completed before addition is performed.
Similarly DIV(a,b) ≡ MUL(INV(b),a) makes MUL
non-commutative. This operation is not atomic, and
MUL is dependent on the result of the INV operation.

We note that commutativity is limited to atomic
operations such as ADD and MUL that do not depend
on internal results. In all the examples and

experiments, we considered one or two operands only;
but the results may be extended to any commutative
transformation.

Consider the access sequence shown in Figure 1(a)
and its basic block in Figure 1(b). Consider a valid
commutative transformation of the second statement in
Figure 1(b). This transformation results in a new set of
statements in Figure 1(d). The statement l2 ← f2 +
s2 is transformed into l2 ← s2 + f2 . This changes
the access sequence from ‘f1 s1 l1 f2 s2 l2 f3
s3 l3’ to ‘f1 s1 l1 s2 f2 l2 f3 s3 l3’. The
commutative transformation in statement 2 may be
represented as change in the weights of edges
<s2,l2>,<l1,f2>,<l1,s2>, and <f2,l2>. This
change is represented in Figure 1(e) as increment and
decrement of weights for the corresponding edges.

In some instances, the weight of an edge may go
from 1 to 0, which implies that the edge being
considered will not exist in the new access graph.
Similarly the weight of an edge may change from 0 to
1, which implies creation of a new edge in the access
graph. We exploit this feature in our heuristic to
improve the cost of the assignment.

3. Motivating example

Consider the basic block in Figure 2.

e ← d
a ← f + e
f ← d
a ← d + e
d ← e + b
f ← b
f ← c + a
e ← d

Figure 2. Basic Block for Example

The corresponding access graph for this basic block

is shown in Figure 3. This basic block results in a cost
of 8 using Hong’s heuristic [6] with “b f d e a c”
as its layout. Edges not part of the layout need
additional instructions, which is the cost of the layout.
For this example we consider a different assignment
with a cost of 10, the layout for which is “c a f d
e b”. Edges involved in the layout are shown in bold.
We have primarily chosen edges <d,f> and <d,e>
while ignoring the edge <a,e> all of which have a
weight 3. All three of the transitions between a and e
may be transformed using commutative
transformations. a ← f + e may be transformed to
a ← e+ f. This reduces the weight of edge <a,e>.
A similar transformation may be made to the statement

13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications(RTCSA 2007)
0-7695-2975-5/07 $25.00 © 2007

a ← d + e. This transformation will further reduce
the weight of edge <a,e>. In addition a
transformation of the statement d ← e + b to d ←
b + e can reduce the weight of the edge <a,e> to 0.
We only perform two of these transformations that
affect the edge <a,e>. The resulting basic block and
its access graph are shown in the Figure 4 and Figure
5, respectively.

Figure 3. Access Graph for Basic Block in Figure 2

This example suggests that a mechanism for

classifying edges of the access graph may be beneficial
in commutatively transforming the graph and therefore
the offset assignment associated with it.

e ← d
a ← e + f
f ← d
a ← d + e
d ← b + e
f ← b
f ← c + a
e ← d

Figure 4. Basic Block for Access Graph in Figure 3

4. Classification of edges

We identify the edges that can be transformed and

edges that cannot be transformed. Edges that can be
commutatively transformed are defined as “breakable”
edges, while edges that cannot be commutatively
transformed are defined as “unbreakable”.

Figure 5. Access Graph for Basic Block in Figure 4

Statement “C ← A + B” generates an access
sequence ABC. The statement may also be
commutatively transformed as “C ← B + A”, which
generates an access sequence BAC. Edge AB still exists
in the transformed access sequence as BA. This edge is
“unbreakable”. While edge BC can be eliminated in the
second access sequence, such edges are “breakable”.

The following cases define other “breakable” (BR)
and “unbreakable” (UB) edges. If both operands in the
following statement are same, the edge between the lhs
(left hand side) of the current statement and node in the
rhs (right hand side) of the next statement is
“unbreakable”. If the two operands are different, the
edge is breakable.

S1: C ←
S2 Z ← X + X

The edge <C,X> is “unbreakable” and edge <Z,X> is
“unbreakable” in the above code segment.

S1: C ←
S2: Z ← X + Y

The edge <C,X> is classified as “breakable”, as is the
edge <Z,Y>. The newly added edges after
commutative transformation are <C,Y> and <Z,X>.

S1: C ←
S2: Z ← X

The edges <C,X> and <Z,X> are “unbreakable”.
S1: C ←
S2: C ← A + B

13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications(RTCSA 2007)
0-7695-2975-5/07 $25.00 © 2007

The edges <C,A> and <C,B> are “unbreakable”. It
may be argued that this situation is a case for dead-
code elimination, where statement S1 may be deleted.
Statements in this form are not a complete
representation of a task of the embedded system. Since
the program code is executed in real-time, it is possible
to have a synchronous effect due a change in the value
set at an address, i.e., values set in C have an effect on
the operation of the device.

We group each edge into groups of breakable and
unbreakable edges. When we choose the edges, our
heuristic gives preference to unbreakable edges over
breakable edges.

5. Heuristic xformSOA

We propose a heuristic that uses classification of the

edges in an access graph to derive an empirically
optimal offset assignment. The principal idea of this
heuristic is presented in the Figure 6. We find an
initial assignment that gives a cost C to compare the
effects of the transformation on the initial layout of the
access graph (G). In practice, we used a standard SOA
heuristic to compare the final result of all of the
transformations.

This heuristic iterates (line 2) until there are no
further transformations that reduce the cost of the
previous iterations (line 5). After each set of
transformations that affect the access graph, we find
the cost of the new assignment C’ (line 4). If C’ is less
than or equal to C, the cost estimated in the earlier
iteration, the transformed graph G’ becomes the new
access graph G (line 6).

0: flag ← 1
1: C ← measure(layout(G))
2: while (flag == 1) {
3: G’ ← xform(G)
4: C’ ← measure(layout(G’)
5: if (C’ ≤ C) {
6: G ← G’
7: flag ← 1 }
8: else
9: flag ← 0 }
10: optimalSOA(G)

Figure 6. xformSOA Heuristic

This heuristic has two procedures: xform and

measure. Procedure measure, shown in Figure 7, finds
an offset assignment for a graph using the
classification of edges such as breakable and
unbreakable. An edge whose weight is 3 might have
any combination of breakable and unbreakable edges

(3BR+0UB, 2BR+1UB, 1BR+2UB, and 0BR+3UB,
where BR is a breakable edge and UB is unbreakable
edge). Procedure xform, Figure 8, transforms a given
access graph (G) and its basic block to obtain a
different access sequence.

measure(G, B) {
// G is access graph, B is the basic block defining G
 BRsort ← sorted list of breakable edges (B)
 UBsort ← sorted list of unbreakable edges(B)
// this is essentially SOA with UB
 P ← MWPC with UBsort
//add additional edges to path cover
 add edges from BRsort not yet covered
 C ← wt of uncovered edges // cost of uncovered
edges
 return(C)
}

Figure 7. Procedure Measure for xformSOA

Heuristic

Procedure measure classifies edges in G into two

categories – breakable and unbreakable. In steps 2 and
3 of the procedure, a sorted list of breakable edges
(BRsort) and another of unbreakable edges (UBsort)
are created. If two edges have the same weight in
UBsort, then the edge with higher total edge weight is
given higher priority. If two edges in BRsort have the
same edge weight, then the current implementation
gives higher priority to the edge with the larger weight.
Other such tie-break possibilities can also be
considered; this is a subject of future investigation.

From the sorted list of unbreakable edges (UBsort),
a Maximum Weight Path Cover (MWPC) is generated.
The process of generating this path is akin to the
generation of offset assignment in other heuristics.
Edges from BRsort are then considered for addition to
the path. Any edges that are not part of the path are
now considered to contribute to the cost of the offset
assignment (C). C is the return value of this procedure.

After the path cover is obtained, edges may be left in
BRsort, that can be transformed. These edges are then
transformed and a measure of comparison for each of
these transformations is computed as shown in step 5
in Figure 8. A transformation is accepted only if ∆eff is
non-negative. (Transformations may also be limited to
∆eff, as a variation)

A measure of this transformed access graph (G’’) is
obtain using procedure measure(G’’). If this cost is
lower than the cost computed in the earlier iteration,
the cycle of procedure xform and procedure measure
are repeated. Once xformSOA stops improving the cost
of the access graph, the cost of the access graph is
computed using any benchmark heuristics, labeled

13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications(RTCSA 2007)
0-7695-2975-5/07 $25.00 © 2007

optimalSOA, which obtain assignments using only the
edge weights and not their classifications.

0: xform(G) {
1: G’ ← G
2: for each edge e that is uncovered {
3: for each breakable instance j of edge e {
4: G’’ ← xform of edge instance (G’)
5: ∆eff ← (
6: # of covered / self edges whose weight ↑
7: + # of uncovered edges whose weight ↓
8: - # of uncovered edges whose weight ↑)
9: if ∆eff ≥ 0
10: G’ ← G’’}}}

Figure 8. Procedure xform for xformSOA Heusristic

6. Detailed example

Consider the following basic block used in Atri et al.

[2-4]. This basic block shown in Figure 9 yields the
access graph shown in the Figure 10. The edges of this
access sequence are classified into breakable and
unbreakable edges as shown in the Figure 11. The
basic block is converted into access sequence ‘a b c
d e f b a a e f d c b a f’ by xformSOA
heuristic.

c ← a + b
f ← d + e
a ← b + a
d ← e + f
b ← c
f ← a

Figure 9. Basic Block from Atri et al. [2-4]

In procedure measure for the SOA, the edges are
first computed as shown in Figure 11(a). These edges
are classified into UBsort (unbreakable) and BRsort
(breakable) edges. For example, there are two instances
of edge <c,d>, one between statements “c ← a + b”
and “f ← d + e” and second between statements “d ←
e + f” and “b ← c”. The first edge can be eliminated by
commuting the statement “f ← d + e” into “f ← e + d”.
However, the second edge cannot be commuted. Hence
edge <c,d>, whose weight is two, is classified both in
breakable edges and unbreakable edges. i.e., edge
<c,d> cannot be completely eliminated. It can at most
be reduced to an edge of weight 1.

Using the classification, measure derives an
assignment as highlighted in the access graph shown in
Figure 12. The xform procedure then commutes edges
in BRsort that do not negatively affect the cost of the

assignment. From the graph, edges <a,e>, <d,f>,
<a,f>, and <b,f> are the edges not included in the
cover. It is desirable that these edges be commuted so
that the cost of edges not covered by the MWPC is
reduced, if not fully eliminated. Of the four edges,
<a,e>, <d,f>, and <b,f> are classified as breakable
edges. Breaking the edge <a, e> requires commuting
“d ← e + f” to “d ← f + e” resulting in the elimination
of edge <d, f>. The result of this transaction is
w<a,e>--, w<d,f>--, w<a,f>++, and w<d,e>++.
The net result is the elimination of two breakable edges
not part of the path cover (<a,e> and <d,f>), and
increase in the weight of an edge that is not part of the
path cover (<a,f>) and one that is part of the path
cover (<d,e>). This commutative transformation
affects the net weight by “-1”. The edge <b,f> may
also be broken by transforming “a ← b + a” into “a ←
a + b”. This transformation does not affect the cost but
changes the access graph. After the first iteration of
transformations, the basic block with transformations
that amount to “-1” is shown in the Figure 13.

Figure 10. Access Graph for the Basic Block in
Figure 9

The access graph and measure is computed for the

new basic block. The access graph after the
transformations is shown in Figure 14.

It is evident from the access graph that the cost of
the new assignment is 2. It is possible to further reduce
the cost if <d,e> is breakable and its transformation
only decreases the cost. This assignment is feasible
only by reversing earlier transformation of “d ← e + f”
to “d ← f + e”. We stop the transformations here with
an optimal cost of two. This access sequence is then
presented to a benchmark SOA. The SOA algorithm
used in our heuristic is Hong et al.’s SOA algorithm.
The cost returned for this assignment is also 2. We
consider these transformations empirically optimal.

13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications(RTCSA 2007)
0-7695-2975-5/07 $25.00 © 2007

Edge weights

b-f: 1
a-b: 3
d-e: 1
a-e: 1
a-f: 1
c-d: 2
b-c: 2
e-f: 2
d-f: 1

(a)

Unbreakable
Edges

a-b: 3
c-d: 1
b-c: 1
e-f: 1
d-e: 1
a-f: 1

(b)

Breakable
edges

c-d: 1
e-f: 1
b-c: 1
b-f: 1
d-f: 1
a-e: 1

(c)

Figure 11. Edge Classification for the Basic Block in
Figure 9

Figure 12. Measure of Access Graph in Figure 10

c = a + b
f = d + e
a = a + b
d = f + e
b = c
f = a

Figure 13. Basic block after transformations

The other basic block (Figure 15) in the motivating

example also commutes to an optimal solution in three
stages as shown in the Figure 17. The final
transformation resulting from the xformSOA heuristic,
shown in Figure 16, yields an optimal cost of 2.

Figure 14. Access Graph for Basic Block in Figure
13

c = a + b
f = d + e
c = d + a
a = a + d
d = a
b = f

Figure 15. Basic block from Atri’s Motivating

Example

c = b + a
f = e + d
a = d + a
c = d + a
d = a
b = f

Figure 16. Transformed Basic Block of Figure 15

7. Experimental results
The xformSOA heuristic was tested with random

sequences of varying lengths |S| and number of
variables |V|. It is assumed that 80 % of the statements
are of the form x ← y + z (two operands in the rhs),
and 20 % of the statements are of the form x ← y (one
operand in rhs). Each test was repeated 1000 times
before generalizing the result. The results of these tests
are tabulated in Table 1.

The benefit is compared in an SOA heuristic not part
of xformSOA. We use Hong’s SOA heuristic to check
initial and final costs. We observe that at least 60 % of
the time there could be benefits in commutatively

13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications(RTCSA 2007)
0-7695-2975-5/07 $25.00 © 2007

transforming statements. In some instances the benefits
were observed in more than 90% of access sequences.
The change in cost is as high as 12 with some access
sequences

Table 1. Results of an Implementation of

xformSOA

|S| |V| %
affected

Max.
Change

25 6 63.8 5
50 9 81.2 10
50 20 88.9 10
100 20 88.2 12
100 60 78.4 7
100 80 76.6 6
1000 300 90.4 10

Table 2. Effect of transformations on some

benchmarks
Code Cost before Cost after

GauHer 15 15
GauLeg 21 19
qGauss 9 6

chenDCT 95 87
chenDCT1 95 89
chenIDCT 124 124
chenIDCT1 124 116

leeDCT 92 88
leeDCT1 92 89
leeIDCT 121 116
leeIDCT1 121 115
Complex

Multiplication
6 3

All random sequences were assumed to be

commutative. The benchmark programs were allowed
to commute instances of type x – y as (-y) + x. The
benchmarks were also tested while restricting such
commutation. With this heuristic, a restricted
transformation designates some edges earlier
considered as breakable as unbreakable, which alters
the selection of edges for commutative transformation.
In some instances restricting transformation resulted in
lower costs.

This implementation was tested on motivating
examples used in other research. The xformSOA
heuristic produced the optimal value. In addition the
heuristic was also tested on some benchmark
algorithms shown in Table 2. Commutative
transformations demonstrate benefits in most cases.
Complex Multiplication lists largest possible benefit.

1 SUB was not allowed to commute

(a)

(b)

(c)

Figure 17. Transformation of Basic Block from

Figure 16

13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications(RTCSA 2007)
0-7695-2975-5/07 $25.00 © 2007

8. Related work

Offset assignment problem has addressed by

addressed by many heuristics including Hong [6] and
Leupers [11]. These heuristics attempt to provide an
optimal solution to a given access sequence. Further,
some heuristics attempt to modify a given assignment
or initial access sequence to obtain a better assignment

Atri et al. [2-4], have shown two different ways of
solving the offset assignment problem. They present a
heuristic that incrementally checks for the best possible
location for edges that are not part of the path cover.
The edges that are not part of the assignment are sorted
in the descending order of their weight. Each of these
edges is found an appropriate location in the
assignment. This heuristic has been found to be quite
effective in Leupers’ comparison of SOA heuristics
[7]. This approach may be used in conjunction with
any heuristic.

Atri et al., Rao and Pande [12] approach the SOA
problem by first performing commutative
transformation. Atri et al. look for edges of weight one
that may be commutatively transformed to reduce the
number of edges in access graph. They propose metrics
that quantify each transformation. Transformations that
have benefits are considered, while transformations
that increase the cost of an assignment are ignored.
Rao and Pande find all possible legal combinations of
a basic block and its transformations. SOA is
performed on each of these transformations. This
approach is exhaustive.

9. Conclusion

Optimal offset assignment is desired in embedded
systems for the code to function efficiently. In this
paper we propose a heuristic that uses knowledge of
basic block, not just access sequence, and performs
commutative transformations to generate a more
efficient code. The heuristic uses knowledge of degree
of nodes, average weight, and average edges that may
or may not be transformed to determine path cover. We
introduce a host of tie-breakers that assist in offset
assignment.

The problem of finding an optimal solution is NP-
complete. The heuristic was attempted on some
randomly generated sequences. The heuristic needs to
be applied to a larger set of examples to obtain reliable
statistics. Also, further inspection of test cases might
reveal other tie-breakers that could provide a more
efficient solution.

Adaptation of this heuristic to use Modify Register
and for the case of multiple address registers (GOA) is
being explored at this time.

10. Acknowledgments

We acknowledge the support of the National

Science Foundation through grants 0073800, 0103933,
0121706, 0508245, 0509442, 0541409, the Department
of Electrical and Computer Engineering at Louisiana
State University, and the Center for Computation and
Technology at Louisiana State University. ATT’s
graphing tool neato was used extensively to generate
the graphs.

11. References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers, Principles,

Techniques and Tools. Addison Wesley, Boston 1988.
[2] S. Atri. Improved Code Optimization Techniques for

Embedded Processors. M.S. Thesis, Department of Electrical
and Computer Engineering, Louisiana State University,
December 1999.

[3] S. Atri, J. Ramanujam, and M. Kandemir. Improving offset
assignment on embedded processors using transformations. In
Proc. High Performance Computing-HiPC 2000, pp. 367-374,
December 2000.

[4] S. Atri, J. Ramanujam, and M. Kandemir. Improving variable
placement for embedded processors. In Languages and
Compilers for Parallel Computing, (S. Midkiff et al. Eds.),
Lecture Notes in Computer Science, vol. 2017, pp. 158-172,
Springer-Verlag, 2001.

[5] D. Bartley. Optimization Stack Frame Accesses for Processors
with Restricted Addressing Modes. Software Practice and
Experience, 22(2):101-110, February 1992.

[6] J. Hong. Memory Optimization Techniques for Embedded
Systems, PhD Thesis etd-0712102-103747, Dept. of Electrical
and Computer Engineering, Louisiana State University, July
2002.

[7] R Leupers. Offset Assignment Showdown: Evaluation of DSP
Address Code Optimization Algorithms. Compiler
Construction, 12th International Conference, pages 290-302,
CC 2003

[8] S. Liao. Code Generation and Optimization for Embedded
Digital Signal Processors. PhD thesis, MIT Department of
EECS, January 1996.

[9] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang, G.
Araujo, A. Sudarsanam, S. Malik, V. Zivojnovic and H. Meyr.
Code Generation and Optimization Techniques for Embedded
Digital Signal Processors. In Hardware/Software Co-Design,
Kluwer Acad. Pub., G. De Micheli and M. Sami, Editors, 1995.

[10] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang.
Storage assignment to decrease code size. ACM Transactions
on Programming Languages and Systems, 18(3):235-253, May
1996.

[11] P. Marwedel, G. Goossens (eds.): Code Generation for
Embedded Processors, Kluwer Academic Publishers, 1995

[12] Rao and S. Pande. Storage Assignment Optimizations to
Generate Compact and Efficient Code on Embedded DSPs.
SIGPLAN ’99, Atlanta, GA, USA, pages 128-138, May 1999

13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications(RTCSA 2007)
0-7695-2975-5/07 $25.00 © 2007

