
Improving Offset Assignment for Embedded Processors

Sunil Atri1, J. Ramanujam1, and Mahmut Kandemir2

1 Dept. Elec. & Comp. Engr., Louisiana State University
({sunil,jxr}@ee.lsu.edu)

2 Dept. Comp. Sci. & Engr., The Pennsylvania State University
(kandemir@cse.psu.edu)

Abstract. Embedded systems consisting of the application program ROM,
RAM, the embedded processor core, and any custom hardware on a single wafer
are becoming increasingly common in application domains such as signal pro-
cessing. Given the rapid deployment of these systems, programming on such sys-
tems has shifted from assembly language to high-level languages such as C, C++,
and Java. The processors used in such systems are usually targeted toward spe-
cific application domains, e.g., digital signal processing (DSP). As a result, these
embedded processors include application-specific instruction sets, complex and
irregular data paths, etc., thereby rendering code generation for these processors
difficult. In this paper, we present new code optimization techniques for embed-
ded fixed point DSP processors which have limited on-chip program ROM and
include indirect addressing modes using post-increment and decrement opera-
tions. We present a heuristic to reduce code size by taking advantage of these ad-
dressing modes. Our solution aims at improving the offset assignment produced
by Liao et al.’s solution. It finds a layout of variables in RAM, so that it is possible
to subsume explicit address register manipulation instructions into other instruc-
tions as a post-increment or post-decrement operation. Experimental results show
the effectiveness of our solution.

1 Introduction

With the falling cost of microprocessors and the advent of very large scale integra-
tion, more and more processing power is being placed in portable electronic devices
[5, 8, 9, 12]. Such processors (in particular, fixed-point DSPs and micro-controllers)
can be found, for example in audio, video, and telecommunications equipment and have
severely limited amounts of memory for storing code and data, since the area available
for ROM and RAM is limited. This renders the efficient use of memory area very crit-
ical. Since the program code resides in the on-chip ROM, the size of the code directly
translates into silicon area and hence the cost. The minimization of code size is, there-
fore, of considerable importance [1, 2, 4, 5, 6, 7, 8, 13, 14, 15, 16], while simultaneously
preserving high levels of performance. However, current compilers for fixed-point DSPs
generate code that is quite inefficient with respect to code size and performance. As a
result, most application software is hand-written or at least hand-optimized, which is a
very time consuming task [7]. The increase in developer productivity can therefore be
directly linked to improvement in compiler techniques and optimizations.

S.P. Midkiff et al. (Eds.): LCPC 2000, LNCS 2017, pp. 158–172, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Improving Offset Assignment for Embedded Processors 159

Many embedded processor architectures such as the TI TMS320C25 include indi-
rect addressing modes with auto-increment and auto-decrement arithmetic. This feature
allows address arithmetic instructions to be part of other instructions. Thus, it elimi-
nates the need for explicit address arithmetic instructions wherever possible, leading
to decreased code size. The memory access pattern and the placement of variables has
a significant impact on code size. The auto-increment and auto-decrement modes can
be better utilized if the placement of variables is performed after code selection. This
delayed placement of variables is referred to as offset assignment.

This paper considers the Simple Offset Assignment (SOA) problem where there is
just one address register. A solution to the problem assigns optimal frame-relative off-
sets to the variables of a procedure, assuming that the target machine has a single in-
dexing register with only the indirect, auto-increment and auto-decrement addressing
modes. The problem is modeled as follows. A basic block [10] is represented by an ac-
cess sequence, which is a sequence of variables written out in the order in which they are
accessed in the high level code. This sequence is in turn further condensed into a graph
called the access graph with weighted undirected edges. The SOA problem is equiv-
alent to a graph covering problem, called the Maximum Weight Path Cover (MWPC)
problem. A solution to the MWPC problem gives a solution to the SOA problem. We
present a new algorithm, called Incremental-Solve-SOA, for the SOA problem and
compare its performance with previous work on the topic.

The remainder of this paper is organized as follows. We present a brief explanation
of graphs and some additional required notation and background in Section 2. Then, in
Section 3, we consider the problem of storage assignment, where the arithmetic permit-
ted on the address register is plus or minus 1. We present our experimental results in
Section 4. We conclude the paper with a summary in Section 5.

2 Background

We model the sequence of data accesses as weighted undirected graphs [7]. Each vari-
able in the program corresponds to a vertex (or node) in the graph. An edge i, j indicates
that variable i is accessed after j or vice-versa; the weight of an edge w(i, j) denotes
the number of times variables i and j are accessed successively.

Definition 1 Two paths are said to be disjoint if they do not share any vertices.

Definition 2 A disjoint path cover (which will be referred to as just a ‘cover’) of a
weighted graph G(V, E) is a subgraph C(V, E′) of G such that, for every vertex v in
C, deg(v) < 3 and there are no cycles in C. The edges in C may be a non-contiguous
set [3].

Definition 3 The weight of a cover C is the sum of the weights of all the edges in C
[5]. The cost of a cover C is the sum of the weights of all edges in G but not in C:

cost(C) =
∑

(e∈E)∧(e�∈C)

w(e)

160 Sunil Atri, J. Ramanujam, and Mahmut Kandemir

LOAD *(AR0)+

ADD *(AR0)+

ADD *(AR0)

STOR *(AR0)

LOAD *(AR0)

SUB *(AR0)

STOR *(AR0)+

LOAD *(AR0)+

ADD *(AR0)−

STOR *(AR0)

LOAD *(AR0)

SUB *(AR0)

STOR *(AR0)

LOAD *(AR0)

SUB *(AR0)

STOR *(AR0)

LDAR AR0, &c

ADAR AR0, 3

SBAR AR0, 3

ADAR AR0, 4

ADAR AR0, 2

SBAR AR0, 2

SBAR AR0, 5

ADAR AR0, 4

SBAR AR0, 4

ADAR AR0, 4

SBAR AR0, 2

acc c

acc acc + d

acc acc + f

 c acc

acc h

acc acc − c

 a acc

acc b

acc acc + e

 b acc

acc g

acc acc + b

 c acc

acc a

acc

acc a

acc − c

&c

&d

&f

&c

&h

&c

&a

&b

&e

&b

&g

&b

&c

&a

&c

&a

c = c + d + f;
a = h + c;
b = b + e;
c = g − b;
a = a − c;

(c)

(a) (b)

AR0

c d f h a e gb

AR0

AR0

AR0

AR0

AR0

AR0

AR0

AR0

AR0

AR0

AR0

AR0

AR0

AR0

AR0

AR0

Fig. 1. Code example from [5,6].

2.1 Motivating Example

As mentioned earlier, many embedded processors provide register indirect addressing
modes with auto-increment and auto-decrement arithmetic [5]. It is possible to use these
modes for efficient sequential access of memory and improve code density. The place-
ment of variables in memory has a large impact on the exploitation of auto-increment
and auto-decrement addressing modes, which is in turn affected by the pattern in which
variables are accessed. If the assignment of location of variables is done after code se-
lection, then we get the freedom of assigning locations to variables depending on the
order in which the variables are accessed. The placement of variables in storage has a
considerable impact on code size and performance.

Consider the C code sequence shown in Figure 1(a), an example from [5]; let the
placement of variables in memory be as in Figure 1(b). This assignment of variables
to memory locations here is based on first use, i.e., as the variables are referred to in

Improving Offset Assignment for Embedded Processors 161

the high level code, the variables are placed in memory. The assembly code for this
section of C code is shown in Figure 1(c). The first column shows the assembly code,
the second column shows the register transfer, and the third, the contents of the address
pointer. The instructions in bold are the explicit address pointer arithmetic instructions,
i.e., SBAR, Subtract Address Register and ADAR, Add Address Register. The objective
of the solution to the SOA problem is to find the minimal address pointer arithmetic in-
structions required using proper placement of variables in memory. A brief explanation
of Figure 1 follows.

The first instruction LDAR AR0, &c loads the address of the first variable ‘c’ into
the address register AR0. The next instruction LOAD (AR0)+ loads the variable ‘c’ into
the accumulator. This instruction shows the use of the auto-increment mode. Ordinarily,
we would need an explicit pointer increment to get it to point to ‘d’ which is the next
required variable, but it is subsumed into the LOAD instruction in the form of a post-
increment operation, indicated by the trailing ‘+’ sign. The pointer decrement operation
can also be similarly subsumed by a post-decrement operation indicated by a trailing ‘-’
sign for example as in the ADD *(AR0)- instruction. It can be seen, that the instructions
in bold are the ones that do only address pointer arithmetic in Figure 1(a). The number
of such instructions in the generated code may be very high, as typically the high-level
programmer does not consider the variable layout while writing the program. AR0 is
auto-incremented after the first LOAD instruction. Now, AR0 is pointing to ‘d’, as ‘d’ is
the next variable required, so it can be accessed immediately without having to change
AR0. Similarly for variable ‘f ’, the next variable required is ‘c’, which is at a distance
2 from ‘f ’. Consider the STOR instruction that writes the result back to ‘c’, an explicit
SBAR AR0, 2 instruction has to be used to set AR0 to point to ‘c’, because the address
of ‘f ’ and that of ‘c’ differ by two and auto-decrement cannot be used along with the
previous ADD instruction. This can be seen in the other instances of ADAR and SBAR,
where for every pair of accesses that do not refer to adjacent variables, either an SBAR
or ADAR instruction must be used. In total, ten such instruction are needed to execute
the code in Figure 1(a), given the offset assignment of Figure 1(b).

2.2 Assumptions in SOA

The simple offset assignment (SOA) problem is one of assigning a frame-relative offset
to each local variable to minimize the number of address arithmetic instructions (ADAR
and SBAR) required to execute a basic block. The cost of an assignment is hence defined
by the number of such instructions. With a single address register, the initializing LDAR
instruction is not included in this cost. We make the following assumptions for the
SOA problem: (1) every data object is of size one word; (2) a single address register
is used to address all variables in the basic block; (3) one-to-one mapping of variables
to locations; (4) the basic block has a fixed evaluation order; (and) (5) special features
such as address wrap-around are not considered.

2.3 Approach to the Problem

The SOA problem can be formulated as a graph covering problem, called the Maximum
Weight Path Covering Problem (MWPC) [5, 6]. From a basic block, a graph, called the

162 Sunil Atri, J. Ramanujam, and Mahmut Kandemir

access graph is derived, that shows the various variables and their relative adjacency
and frequency of accesses. From the solution to the MWPC problem, a minimum cost
assignment can be constructed.

2 1 1

1

2

21

4
1

d

fh

c

a

e

g

b

c d f c h c a b e b g b c a c a

(a)

(b) (c)

c d f h eba g

offset assignment

4

1 2

2

1

1

1 1
2

h

a

c

b

e

f

d

g

Fig. 2. (a) Access sequence; (b) Access graph; (c) Offset assignment and cover C (thick
edges).

Given a code sequence S that represents a basic block, one can define a unique
access sequence for that block [6]. In an operation ‘z = x op y’, where ‘op’ is some
binary operator, the access sequence is given by ‘xyz’. The access sequence for an
ordered set of operations is simply the concatenated access sequences for each operation
in the appropriate order. For example, the access sequence for the C code example in
Figure 1(a) is shown in Figure 2(a).

With the definition of cost given earlier, it can be seen that the cost is the number
of consecutive accesses to variables that are not assigned to adjacent locations. The
access sequence is the sequence of memory references made by a section of code and
it can be obtained from the high-level language program. The access sequence can
be summarized in an edge weighted, undirected graph. The access graph G(V, E) is
derived from an access sequence as follows. Each vertex v ∈ V of the access graph
corresponds to a unique variable in the basic block. An edge e(u, v) ∈ E between
vertices u and v exists with weight w(e) if variables u and v are adjacent to each other
w(e) times in the access sequence. The order of the accesses is not significant as either
auto-increment or auto-decrement can be performed. The access graph for Figure 2(a)
is shown in Figure 2(b).

Improving Offset Assignment for Embedded Processors 163

2.4 SOA and Maximum Weight Path Cover

Given the definitions earlier in this paper, if a maximum weight cover for a offset as-
signment graph is found, then that also means that the minimum cost assignment has
also been found. Given a cover C of G the cost of every offset assignment implied by C
is less than or equal to the cost of the cover [5]. Given an offset assignment A and an ac-
cess graph G, there exists a disjoint path cover which implies A and which has the same
cost as A. Every offset assignment implied by an optimal disjoint path cover is optimal.
An example of a sub-optimal path cover is shown in Figure 2(c). The thick lines show
the disjoint path cover and the corresponding offset assignment is also shown. The cost
of this assignment is 10. This can be seen from the edges not in the cover.

h g e f dbca

a

e

g

d

b

c

h f

(a)

(b)

2

4

1

1
2

2

1

11

Fig. 3. Optimal offset assignment and cover C (thick edges).

3 An Incremental Algorithm for SOA

3.1 Previous Work

Bartley [2] and Liao [5, 6] studied the simple offset assignment problem. Liao for-
mulated the simple offset assignment problem. The problem was modeled as a graph
theoretic optimization problem similar to Bartley [2] and shown to be equivalent to the
Maximum Weighted Path Cover (MWPC) problem. This problem is proven to be NP-
hard. A heuristic solution to the above problem proposed by Liao will be explained in
the following subsection. Consider the example shown earlier. Using Liao’s algorithm
we get an offset assignment as shown in Figure 3(a) which is implied by the access
graph in Figure 3(b). The cover of the access graph is shown by the heavy edges, and
in this case it is optimal. This can be seen from the graph itself. Picking any of the

164 Sunil Atri, J. Ramanujam, and Mahmut Kandemir

LOAD *(AR0)+

LOAD *(AR0)−

LOAD *(AR0)+

LDAR AR0, &c

ADAR AR0, 4

acc c

acc h

&c

&a

&b

&e

c = c + d + f;
a = h − c;
b = b + e;
c = g − b;
a = a − c;

(a) (b)

c h g b f de

AR0

AR0

AR0

AR0

a

STOR *(AR0)+

SBAR AR0, 5

ADAR AR0, 6

ADD *(AR0)

acc c

&f

&d

ADD *(AR0)− acc

acc acc + f

&h

&c

&cAR0

AR0

AR0

AR0

AR0

AR0

SUB *(AR0)− acc acc − c

STOR *(AR0) a acc

acc b

ADD *(AR0)− acc acc + e

 b

LOAD *(AR0)+

STOR *(AR0)− acc

acc g

SUB *(AR0) acc acc − b

SBAR AR0, 3

AR0 &b

AR0 &g

AR0 &b

AR0 &c

STOR *(AR0)− c acc AR0 &a

LOAD *(AR0)+ acc a AR0 &c

SUB *(AR0)− acc acc − c

acc + d

AR0 &a

STOR *(AR0) a acc

(c)

Fig. 4. Code after the optimized offset assignment.

four non-included edges will cause the dropping of some edge from the cover which
will in turn increase the cost of the cover. The assembly code for the offset assignment
implied by the cover is shown in Figure 4(c). The address arithmetic instructions are
highlighted and there are four such instructions corresponding to the four edges not in
the cover. For example because ‘a’ and ‘b’ could not be placed adjacent to each other,
we need to use the instruction ADAR *(AR0) 4. The offset assignment that this section
of code needs to use is shown in Figure 4(b), along with the C code (Figure 4(a)) for
reference. Leupers and Marwedel [4] present a heuristic for choosing among different
edges with the same weight in Liao’s heuristic.

3.2 Liao’s Heuristic for SOA

Because SOA and MWPC are NP-hard, a polynomial-time algorithm for solving these
problems optimally is not likely to exist unless P=NP. Liao’s heuristic for the simple

Improving Offset Assignment for Embedded Processors 165

offset assignment problem is shown in Figure 5. This algorithm is similar to Kruskal’s
minimum spanning tree algorithm [3]. The heuristic is greedy, in the sense that it re-
peatedly selects the edge that seems best at the current moment.

1 // INPUT : Access Sequence, L
2 // OUTPUT : Constructed Assignment E′

3 Procedure Solve− SOA(L)
4 G(V, E) AccessGraph(L)
5 Esort Sorted edges in E in descending order of weight
6 // Initialize C(V ′, E′) the constructed cover
7 E′

 { }
8 V ′

 V
9 while (|E′| < |V | − 1 and Esort not empty) do
10 e first edge in Esort

11 Esort Esort − e
12 if ((e does not cause a cycle in C) and
13 (e does not cause any vertex in V ′ to have degree > 2))
14 add e to E′

15 else
16 discard e from Esort

17 endif
18 enddo
19 return E′

Fig. 5. Liao’s maximum weight path cover heuristic [5].

Consider the algorithm Solve-SOA(L) in Figure 5. This algorithm takes as input a
sequence ‘L’ which uniquely represents the high level code, and produces as output an
offset assignment. In line 4, graph G(V, E) is produced from the access sequence ‘L’.
Producing the access sequence takes O(L) time. Line 5 produces a list of sorted edges
in descending order of weight. C(V ′, E′) is the cover of the graph G, which starts with
all the vertices included but no edges. The condition for the while statement makes
sure that no more than V − 1 edges are selected, as that is the maximum needed for
any cover. If the cover is disjoint, the order in which the disjoint paths are positioned
does not matter as far as the cost of the offset assignment is concerned, because the
cost of moving from one path to another will always have to be paid. The complexity
of Liao’s heuristic is O(|E| log |E| +|L|) [5], where |E| is the number of edges in the
access graph and |L| is the length of the access sequence. Construction of the access
sequence takes O(|L|) time. The (|E| log |E|) term is due to the need to sort the edges
in descending order of weight. The main loop of the algorithm runs for |V | iterations.
The test for a cycle in line 12 takes constant time, and the total time for the main loop is
bounded by O(E). The test for a cycle is achieved in constant time by using a special
data structure proposed by Liao [5].

166 Sunil Atri, J. Ramanujam, and Mahmut Kandemir

3.3 Improvement over Solve-SOA

Before suggesting the improvement, we want to point out two deficiencies in Solve-
SOA. First, even though the edges are sorted in descending order of weight, the order
of consideration of the edges of the same weight are ordered is not specified. We be-
lieve this to be important in deriving the optimal solution. Second, the maximum weight
edge is always selected since this is a greedy approach. The proposed Incremental-
Solve-SOA heuristic addresses both these cases. This algorithm takes as input an offset
sequence, produced either by Liao’s Solve-SOA or by some other means, and tries to
include edges not previously included in the cover. Consider the example of Figure 6.
The code sequence is shown in Figure 6(a) and the corresponding access sequence is
in Figure 6(b). The access graph which in turn corresponds to this access sequence is
shown in Figure 6(c). Let us now run Liao’s Solve-SOA using the access sequence in
Figure 6(b); one possible outcome is shown in Figure 7(a). The offset assignment asso-
ciated with the cover is a, d, b, c, e or d, b, c, e, a. This is clearly a non-optimal solution.
The cost of this assignment is 2. The optimal solution would be d, b, a, c, e. It is possible
to have achieved the optimal cost of 1 by having considered either edge (a, b) or edge
(a, c) before edge (b, c). But since Solve-SOA does not consider the relative position-
ing of the edges of the same weight in the graph, we get the cost of 2. The solution
that is produced by the proposed Incremental-Solve-SOA is d, b, a, c, e as shown in
Figure 7(b).

d = a + b;

e = b - c;
a = c + 2;

a b d b c e c a

b c

d e

a

(a)
(b)

(c)

2

1 1

1

2

Fig. 6. An example where Solve-SOA could possibly return suboptimal results.

b c

d e

a

2 2

1 1

1

(a)

d, b, c, e, a

b c

d e

a

2 2

1 1

1

(b)

d, b, a, c, e

Fig. 7. Suboptimal and optimal cover of G.

Improving Offset Assignment for Embedded Processors 167

b c

d e

a

2 2

1 1

1
b c

d e

a

2 2

1 1

1

b c

d e

a

2 2

1 1

1
b c

d e

a

2 2

1 1

1

0

0

d, b, c, e, a
(a)

d, a, b, c, e
(b)

d, b, a, c, e
(c)

d, c, e, a, b
(e)

d, c, e, b, a
(d)

Fig. 8. Four different offset assignments.

Incremental-Solve-SOA Figure 9 shows the proposed algorithm. The algorithm picks
the maximum weight edge not included in the cover and tries to include that. This is
done as follows. Let the maximum weight edge not included in the cover be between
two variables a(n) and a(n + x), in that order. We consider the case where we try to
include that edge and see the effect on the cost of an assignment. There are four offset
assignments when we try to bring two variables together not previously adjacent. The
initial offset assignment is ...a(n−1)a(n)a(n+1)...a(n+x−1)a(n+x)a(n+x+1)....
We consider the following four sequences that would result when edge (a(n)a(n + x))
is included in the cover:

(1) ...a(n − 1)a(n + x)a(n)a(n + 1)...a(n + x − 1)a(n + x + 1)...
(2) ...a(n − 1)a(n)a(n + x)a(n + 1)...a(n + x − 1)a(n + x + 1)...
(3) ...a(n − 1)a(n + 1)...a(n + x − 1)a(n)a(n + x)a(n + x + 1)...
(4) ...a(n − 1)a(n + 1)...a(n + x − 1)a(n + x)a(n)a(n + x + 1)...

The cost of each of these is evaluated and the best assignment, i.e., the one with the least
cost of the four is chosen for the next iteration. A running minimum cost assignment,
BEST, is used to store the best assignment discovered. This is returned at the end of the
procedure.

Theorem 1 The Incremental-Solve-SOA will either improve or return the same cost
assignment.

Proof : As different assignments with different costs are produced, a running mini-
mum is maintained. If the minimum is the initial assignment that is the one considered
again, and finally returned when all the edges are locked, or there are no non-zero edges
available for inclusion. 2

168 Sunil Atri, J. Ramanujam, and Mahmut Kandemir

1 // INPUT : Access Sequence AS, Initial Offset Assignment, OA
2 // OUTPUT : Final Offset Assignmnet
3 Procedure Incremental-Solve-SOA(AS, OA)
4 G = (V, E) AccessGraph(AS)
5 BEST Initial offset assignment OA
6 repeat
7 EU

sort Sorted list of unselected edges from BEST configuration
8 OUTER FLAG FALSE
9 Unlock all edges in EU

sort

10 INNER BEST BEST
11 repeat
12 INNER FLAG FALSE
13 e topmost edge from EU

sort

14 (A0, ..., A3) The four possible assignments due to e
15 // An assignment is illegal if it involves changing a locked edge;
16 // Otherwise, an assignment is legal
17 S the set of legal assignments from (A0, ..., A3)
18 if (S has at least one legal assignment)
19 INNER FLAG TRUE
20 CURRENT MinCost(S)
21 lock the edges that change
22 Delete the locked edges from EU

sort ensuring that EU
sort stays sorted

23 if (CostOf(CURRENT) < CostOf(INNER BEST))
24 INNER BEST CURRENT
25 endif
26 else (EU

sort �= φ)
27 INNER FLAG TRUE
28 endif
29 until (INNER FLAG �= TRUE)
30 if (CostOf(INNER BEST) < CostOf(BEST))
31 BEST INNER BEST
32 OUTER FLAG TRUE
33 endif
34 until (OUTER FLAG �= TRUE)
35 return BEST

Fig. 9. Incremental-Solve-SOA

In the example, the initial assignment is d, b, c, e, a, that has a cost of 2. Let us
try to include edge (b, a). The resulting four assignments for the initial assignment of
d, b, c, e, a with cost = 2 are:

(1) d, a, b, c, e cost = 3
(2) d, b, a, c, e cost = 1

(3) d, c, e, b, a cost = 4
(4) d, c, e, a, b cost = 4

Improving Offset Assignment for Embedded Processors 169

These four assignments are shown in Figure 8(b)-(e). Figure 8(a) shows the initial offset
assignment for the purpose of comparison.

Detailed Explanation of the Incremental-Solve-SOA The input is an access sequence
and the initial offset assignment, that we will attempt to improve upon. The output is the
possibly improved offset assignment. In line 4, we call the function AccessGraph to
obtain the access graph from the access sequence. BEST is a data structure that stores
an offset assignment along with its cost. It is initialized with the input offset assign-
ment in line 5. Lines 6 thru 34 is the outer loop. The exit condition for this loop is the
OUTER FLAG being set to FALSE. Line 7 produces EU

sort holds the sorted list of edges
present in the access graph but not in the cover, in decreasing order of weight. This is
done so as to be able to consider edges for inclusion in the order of decreasing weight.
The edges carry a flag that is used for ‘locking’ or ‘unlocking’ edge. The ‘lock’ on an
edge, if broken, is used to indicate an edge available for inclusion in the cover. Lines
11 thru 29 form the inner loop. The exit condition for this loop the INNER FLAG being
FALSE. In line 13, the top most edge is extracted from EU

sort and the four assignments
are produced as explained in the earlier section on reordering of variables. These four
assignments are stored in (A0, ..., A3). The cover formed by each is checked to see if
a locked edges not included earlier in being included, or if a locked edge included in
earlier is being excluded. The assignments where this does not happen are included in
S. This is done line 17. Of these the legal assignments are stored in the set S in line 17.
In line 18 if there is at least one assignment available, set S is not empty, then the mini-
mum cost one of those is assigned to CURRENT in line 20 and INNER BEST is set to
TRUE. The edges which undergo transitions as explained earlier are locked in line 21.
INNER BEST maintains a running minimum cost assignment for the inner loop, and
if the CURRENT cost is less than INNER BEST, then that is made the INNER BEST.
EU

sort is reassigned for the list of unselected and unlocked edges from the CURRENT
cover in line 22. If no legal assignments could be found for the edge extracted from
EU

sort in line 17, and there is at least another edge available for consideration, then the
INNER FLAG is set to TRUE. This is done in lines 26 and 27. Once there are no more
legal assignments and there are no more edges in EU

sort available, we exit the inner loop
and check if the cost of INNER BEST is less than the BEST found. If there is an im-
provement we perform the whole process of the inner loop all over again. This is made
possible be setting OUTER FLAG to TRUE. If no improvement was found, then we
exit the outer loop too and the BEST offset assignment discovered is returned in line
35.

3.4 Complexity of Incremental-Solve-SOA

As mentioned before, the running time of Liao’s Solve-SOA heuristic is O(|E| log |E|+
|L|), where |E| is the number of edges in the access graph and |L| is the length of
the access sequence. The running time of the Incremental-Solve-SOA is O(|E|) for
the inner while loop. Sorting the edges in descending order of weight for EU

sort takes
O(|E| log |E|) time,and the marking of the edges is O(|E|), the number of iterations
of the outer loop in our experience runs for a constant number of times, an average of

170 Sunil Atri, J. Ramanujam, and Mahmut Kandemir

2. So, the complexity of each outer loop iteration in practice is O(|E| log |E|). This is
the same as Liao’s, though in practice we need to incur a higher overhead; but, the use
of our heuristic is justified by the fact that the code produced by this optimization will
be executed many times whereas the compilation is done only once. Also, its use could
possibly result in a smaller ROM area.

4 Experimental Results

We implemented both Solve-SOA and Incremental-Solve-SOA. The results shown
in Table 1 are for the case where the initial offset assignment used was the result of
using Liao’s heuristic (If the initial offset assignment is an unoptimized one, the im-
provements will be much higher).

Table 1. Results from Incremental-Solve-SOA as compared to Solve-SOA.

Number of Size of % Cases % Improvement in the
Variables Access Sequence Improved Improved Cases

5 10 2.4 37.08
5 20 4.6 19.00
8 16 4.0 17.13
8 30 7.4 8.71
8 40 6.0 6.85

10 50 7.8 4.87
10 100 5.4 2.41
15 20 4.8 12.66
15 30 4.4 7.46
15 56 5.4 3.29
15 75 5.4 2.37
20 40 2.8 5.38
20 75 4.0 2.71
20 100 3.4 1.92

The experiments were performed by generating random access sequences and using
these as input to Liao’s heuristic. The offset sequence returned was then used, in turn,
along with the access sequence in the Incremental-Solve-SOA to produce a possible
change in the offset sequence. This change is guaranteed to be the same or better as
reflected in Table 1. The third column shows the percentage improvement in the number
of cases is of relevance here, as it shows an improvement in the cost of the cover of
the access graph. It is always possible to increase all the edge weights in the access
graph by some constant value to achieve a higher magnitude improvement for the same
change in cover, but the change in cover would still be the same.

In Table 1, the first column lists the number of variables, the second column lists
the size of the access sequence. The third column shows the average improvement in

Improving Offset Assignment for Embedded Processors 171

the number of cases. That is, for example in the first row, there was an improvement on
an average of 2.4% of all the random access sequences considered. The fourth column
shows, of the improved cases, the extant of improvement. For the first row that would
be 37.08% improvement in 2.5% of the cases.

The overall average improvement (in the third column) is 5.23%. This figure reflects
the cases in which Incremental-Solve-SOA was able to improve upon the cover of
the access graph given the offset assignment produced from Liao’s Solve-SOA as input.
The improvement takes significance from the many times the code would be executed,
and also that it would result in a saving of ROM area.

5 Conclusions

Optimal code generation is important for embedded systems in view of the limited area
available for ROM and RAM. Small reductions in code size could lead to significant
changes in chip area and hence reduction in cost. We looked at the Simple Offset As-
signment (SOA) problem and proposed a heuristic which, if given as input, the offset
assignment from Liao or some other algorithm will attempt to improve on that. It does
this by trying to include the highest weighted edges not included in cover of an access
graph. The proposed heuristic is quite simple and intuitive. Unlike algorithms that are
used in different computer applications, it is possible to justify a higher running time
for an algorithm designed for a compiler (especially for embedded systems), as it is
run once to produce the code, which is repeatedly executed. In the case of embedded
systems, there is the added benefit of savings in ROM area, possibly reducing the cost
of the chip.

In addition, the first author’s thesis [1] addressed two important issues: the first one
is the use of commutative transformations to change the access sequence and thereby
reducing the code size; the second deals with exploiting those cases where the post-
increment or decrement value is allowed to be greater than one. We are currently ex-
ploring several issues. First, we are looking at the effect of statement reordering on code
density. Second, we are evaluating the effect of variable life times and static single as-
signment on code density. In addition, reducing code density for programs with array
accesses is an important problem.

Acknowledgments

The work of J. Ramanujam is supported in part by an NSF grant CCR-0073800 and by
NSF Young Investigator Award CCR–9457768.

References

[1] S. Atri. Improved Code Optimization Techniques for Embedded Processors. M.S. Thesis,
Department of Electrical and Computer Engineering, Louisiana State University, December
1999.

[2] D. Bartley. Optimizing Stack Frame Accesses for Processors with Restricted Addressing
Modes. Software - Practice and Experience, 22(2):101-110, Feb. 1992.

172 Sunil Atri, J. Ramanujam, and Mahmut Kandemir

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivist. Introduction to Algorithms. MIT Press,
1990.

[4] R. Leupers and P. Marwedel. Algorithms for address assignment in DSP code generation.
In Proc. International Conference on Computer Aided Design, pages 109–112, Nov. 1996.

[5] S. Y. Liao, Code Generation and Optimization for Embedded Digital Signal Processors,
Ph.D. Thesis. MIT, June 1996.

[6] S. Y. Liao, S. Devadas, K. Keutzer and S. Tjiang, and A. Wang. Storage Assignment to De-
crease code Size Optimization. In Proc. 1995 ACM SIGPLAN Conference on Programming
Language Design and Implementation. pages 186-195, June 1995.

[7] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang, G. Araujo, A. Sudarsanam, S. Malik,
V. Zivojnovic and H. Meyr. Code Generation and Optimization Techniques for Embedded
Digital Signal Processors. In Hardware/Software Co-Design, Kluwer Acad. Pub., G. De
Micheli and M. Sami, Editors, 1995.

[8] P. Marwedel and G. Goossens, editors. Code Generation for Embedded Processors, Kluwer
Acad. Pub., 1995.

[9] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill 1994.
[10] S. S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann Publish-

ers, San Francisco, CA, 1997.
[11] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Approach. Mor-

gan Kaufmann Publishers, San Mateo, CA, 1990.
[12] P. G. Paulin, M. Cornero, C. Liem et al. Trends in Embedded System Technology, an Indus-

trial Perspective. Hardware/Software Co-Design, M. Giovanni M. Sami, editors. Kluwer
Acad. Pub., 1996.

[13] Amit Rao and Santosh Pande. Storage assignment optimizations to generate compact and
efficient code on embedded DSPs. Proc. 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation. pages 128–138, June 1999.

[14] A. Sudarsanam, S. Liao, and S. Devadas. Analysis and Evaluation of Address Arithmetic
Capabilities if Custom DSP Architectures. In Proceedings of 1997 ACM/IEEE Design Au-
tomation Conference. pages 297-292, 1997.

[15] A. Sudarsanam and S. Malik. Memory Bank and Register Allocation in Software Synthesis
for ASIPs. In Proceedings of 1995 International Conference on Computer-Aided Design.
pages. 388-392, 1995.

[16] A. Sudarsanam, S. Malik, S. Tjiang, and S. Liao. Optimization of Embedded DSP Programs
Using Post-pass Data-flow Analysis. In Proceedings of 1997 International Conference on
Acoustics, Speech, and Signal Processing.

	Introduction
	Background
	Motivating Example
	Assumptions in SOA
	Approach to the Problem
	SOA and Maximum Weight Path Cover

	An Incremental Algorithm for SOA
	Previous Work
	Liao's Heuristic for SOA
	Improvement over Solve-SOA
	Complexity of Incremental-Solve-SOA

	Experimental Results
	Conclusions

