
Memory Offset Assignment for DSPs

Jinpyo Hong1 and J. Ramanujam2

1 School of Internet-Media Engineering
Korea University of Technology and Education, Cheonan, Korea

jphong1@kut.ac.kr
2 Dept. of Electrical and Computer Engineering

Louisiana State University, Baton Rouge, LA, USA
jxr@ece.lsu.edu

Abstract. Compact code generation is very important for an embedded system
that has to be implemented on a chip with a severely limited amount of size.
Even though on-chip data memory optimization technique has been given more
attention, on-chip instruction memory optimization should not be neglected. We
propose in this paper some algorithms for a memory offset assignment for embed-
ded DSP processors in order to minimize the number of instructions for address
register operations. Extensive experimental results demonstrate the efficacy of
our solution.

1 Introduction

Embedded DSP processors contain an address generation unit (AGU) that enables the
processor to compute the address of an operand of the next instruction while execut-
ing the current instruction. An AGU has auto-increment and auto-decrement capability,
which can be done in the same clock of execution of a current instruction. It is very
important to take advantage of AGUs in order to generate high-quality compact code.
In this paper, we propose heuristics for the single offset assignment with modify reg-
isters (SOA-MR) problem and the general offset assignment (GOA) problem in order
to exploit AGUs effectively. Experimental results show that our proposed methods can
reduce address operation cost and in turn lead to compact code. The storage assignment
problem was first studied by Bartley [6] and Liao [8,9,10]. Liao showed that the offset
assignment problem even for a single address register is NP-complete and proposed a
heuristic that uses the access graph, which can be constructed from a given access se-
quence. The access graph has one vertex per variable and edges between two vertices
in the access graph indicate that the variables corresponding to the vertices are accessed
consecutively; the weight of an edge is the number of times such consecutive access
occurs. Liao’s solution picks edges in the access graph in decreasing order of weight
as long as they do not violate the assignment requirement. Liao also generalizes the
storage assignment problem to include any number of address registers. Leupers and
Marwedel [11] proposed a tie-breaking function to handle the same weighted edges,
and a variable partitioning strategy to minimize GOA costs. They also show that the
storage assignment cost can be reduced by utilizing modify registers. In [1,2,3,14], the
interaction between instruction selection and scheduling is considered in order to im-
prove code size. Rao and Pande [13] apply algebraic transformations to find a better

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 80–87, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Memory Offset Assignment for DSPs 81

access sequence. They define the least cost access sequence problem (LCAS), and pro-
pose heuristics to solve the LCAS problem. Other work on transformations for offset
assignment includes those of Atri et al. [4,5] and Ramanujam et al. [12]. Recently, Choi
and Kim [7] presented a technique that generalizes the work of Rao and Pande [13].

The remainder of this paper is organized as follows. In Section 2 and 3, we propose
our heuristics for SOA with modify registers, and GOA problems. We also explain the
basic concepts of our approach. In Section 4, we present experimental results. Finally,
Section 5 provides a summary.

2 Our Approach to the SOA-MR Problem

2.1 The Single Offset Assignment (SOA) Problem

Given a variable set V = {v0, v1, · · · , vn−1}, the single offset assignment (SOA) prob-
lem is to find the offset of each variable vi, 0 ≤ i ≤ n − 1 so as to minimize the
number of instructions needed only for memory address operations. In order to do that,
it is very critical to maximize auto-increment/auto-decrement operations of an address
register that can eliminate the explicit use of memory address instructions.

Liao [8] proposed a heuristic that finds a path cover of an access graph G(V, E) by
choosing edges in decreasing order of the number of transitions in an access sequence
while avoiding cycles, but he does not say how to handle edges that have the same
weight. Leupers and Marwedel [11] introduced a tie-breaking function to handle such
edges. Their result is better than Liao’s as expected.

2.2 Our Algorithm for SOA with an MR

Definition 1. An edge e = (vi, vj) is called an uncovered edge when variables that
correspond to vertices vi and vj are not assigned adjacently in a memory.

After applying the existing SOA heuristic to an access graph G(V, E), we may have
several paths. If there is a Hamiltonian path and SOA luckily finds it, then memory
assignment is done, but we cannot expect that situation all the time. We prefer to call
those paths partitions because each path is disjoint with others.

Definition 2. An uncovered edge e = (vi, vj) is called an intra-uncovered edge when
variables vi and vj belong to the same partition. Otherwise, it is called an inter-
uncovered edge. These are also referred to as intra-edge and an inter-edge respectively.

Definition 3. Each intra-edge and inter-edge contributes to an address operation cost.
We call these the intra-cost and the inter-cost respectively.

Uncovered edges account for cost if they are not subsumed by an MR register. Our goal
is to maximize the number of uncovered edges that are subsumed by an MR register.
The cost can be expressed by the following cost equation.

cost =
∑

ei∈intra edge

intra cost(ei) +
∑

ej∈inter edge

inter cost(ej).

82 J. Hong and J. Ramanujam

It is clear that a set of intra-edges and a set of inter-edges are disjoint because from
Definition 2, an uncovered edge e cannot be an intra-edge and an inter-edge at the same
time. First, we want to maximize the number of intra-edges that are subsumed by an
MR register. After that, we will try to maximize the number of inter-edges that will be
subsumed by an MR register. We think this approach is reasonable because when the
memory assignment is fixed by a SOA heuristic, there is no flexibility of intra-edges in
such a sense that we cannot rearrange them. So, we want to recover as many intra-edges
as possible with an MR register first. Then, with the observation that we can change the
distances of inter-edges by rearranging partitions, we will try to recover inter-edges
with an MR register.

a b c d e gf h i

a b c d e fhi g c ie d b a hgf

ce d b a fgi h

a b c d e f ihg

pi

(b) pi ◦ pj

cost = 3

(c) pi ◦ reverse(pj)

cost = 4

(d) reverse(pi) ◦ pj

cost = 4

(e) reverse(pi) ◦ reverse(pj)

cost = 2

(a) MR = 2

pj

Fig. 1. Merging combinations

There are four possible merging combinations of two partitions. Figure 1 shows those
four merging combinations. Intra-edges are represented by a solid line, and inter-edges
by a dotted line. In Figure 1-(a), there are 6 uncovered edges among which there are
3 intra-edges and 3 inter-edges. So, the AR cost is 6. First, we try to find the most
frequently appearing distance of intra-edges. In this example, distance 2 is the one be-
cause distance(a, c) and distance(b, d) are 2 and distance(f, i) is 3. By assigning
2 to an MR register, we can recover two out of three intra-edges, which reduces the
cost by 2. When an uncovered edge is recovered by an MR register, the correspond-
ing line is depicted by a thick line. Next, we want to recover as many inter-edges as
possible by making the distance of inter-edges 2 by applying proper merging combi-
nation. In Figure 1-(b), the two partitions are concatenated. One inter-edge,e = (e, g)
will be recovered, because distance(e, g) in a merged partition is 2. So, the cost is
3. In Figure 1-(c), the first partition is concatenated with the reversed second one. No
inter-edge will be recovered. The cost is 4. In Figure 1-(d), the reversed first partition
is concatenated with the second one. No inter-edge will be recover, either. The cost is
4. In Figure 1-(e), the two partitions are reversed and concatenated. It is actually equal
to exchanging the two partitions. Two inter-edges will be recovered. In this case, we
recover four out of six uncovered edges by applying our method. Figure 2 shows our
MR optimization algorithm.

Memory Offset Assignment for DSPs 83

Procedure SOA mr
begin

Gpartition(Vpar, Epar) ← Apply SOA to G(V, E);
Φm sorted ← sort m values of edges (v1, v2) by frequency in descending order;
M ← the first m of Φm sorted;
optimizedSOA ← φ;

for each partition pair of pi and pj do
Find the number, m(pi,pj) of edges, e = (v1, v2), e ∈ E, v1 ∈ pi, v2 ∈ pj

such that their distance (m value) = M from four possible merging combinations,
and assign a rule number that can generate m = M most frequently to (pi, pj);

enddo

Ψsorted par pair ← Sort partition pairs (pi, pj) by m(pi,pj) in descending order;

while (Ψsorted par pair �= φ) do
(pi, pj) ← choose the first pair from Ψsorted par pair;
Ψsorted par pair ← Ψsorted par pair − {(pi, pj)};
if (pi /∈ optimizedSOA and pj /∈ optimizedSOA)

optimizedSOA ← (optimizedSOA ◦ merge by rule(pi, pj));
Vpar ← Vpar − {pi, pj};

endif
enddo

while (Vpar �= φ) do
Choose p from Vpar;
Vpar ← Vpar − {p};
optimizedSOA ← (optimizedSOA ◦ p);

enddo

return optimizedSOA;
end

Fig. 2. Heuristic for SOA with MR

3 General Offset Assignment (GOA)

The general offset assignment problem is, given a variable set V = {v0, v1, · · · , vn−1}
and an AGU that has k ARs, k > 1, to find a partition set P = {p0, p1, · · · , pl−1}, where
pi∩pj = φ, i �= j, 0 ≤ i, j ≤ l−1, subject to minimize GOA cost

∑l−1
i=0 SOA cost(pi)

+l, where l is the number of partitions, l ≤ k. The second term l is the initialization
cost of l ARs. Our GOA heuristic consists of two phases. In the first phase, we sort
variables in descending order of their appearance frequencies in an access sequence,
i.e., the number of accesses to a particular variable. Then, we construct a partition set P
by selecting the two most frequently appearing variables, which will reduce the length
of the remaining access sequence most, and making them a partition, pi, 0 ≤ i ≤ l − 1.
After the first phase, the way we construct a partition set P , we will have l, l ≤ k,

84 J. Hong and J. Ramanujam

partitions that consist of only 2 variables each. Those partitions have zero SOA cost,
and we have the shortest access sequence that consists of (|V | − 2l) variables. In the
second phase, we pick a variable v from the remaining variables in the descending
order of frequency, and choose a partition pi such that SOA cost(pi ∪{v}) is increased
minimally, which means that merging a variable v into that partition increases the GOA
cost minimally. This process will be repeated (|V | − 2l) times, till every variable is
assigned to some partition.

4 Experimental Results

We generated access sequences randomly and apply our heuristics, Leupers’ and Liao’s.
We repeated the simulation 1000 times on several problem sizes. Our experiments show
that introducing an MR can improve the AGU performance and that an optimization
heuristic for an MR register is needed to maximize a performance gain. Our experi-
ments show that the results of 2-AR AGU are alway better than 1AR 1MR’s and even
ARmr op’s. It is because even if we apply a MR optimization heuristic, which is nat-
urally to be more conservative than GOA heuristic of 2-AR in such a sense that only
after several path partitions are generated by SOA heuristic on entire variables, a MR
optimization heuristic would try to recover uncovered edges whose occurrences heavily
depend on SOA heuristic. A GOA heuristic can exploit a better chance by partitioning
variables into two sets and applying SOA heuristic on each partitioned set. However,
GOA’s gain over ARmr op does not come for free. The cost of the partitioning of vari-
ables might not be negligible as it was shown in section 3. However, from the perspec-
tive of performance of an embedded system, our experiment shows that it is better to
pay that cost to get performance gain of AGU. The gain of 2-AR GOA over ARmr op is
noticeable enough to justify our opinion. When an AGU has several pairs of a AR and
an MR, in which AR[i] is coupled with MR[i], our path partition optimization heuristic
can be used for each partitioned variable set. Then, the result of each pair of the AGU
will be improved as we observed in Figure 3. Figures 3 shows bar graphs based on the
results of randomly generated access sequences. When an access graph is dense, two
heuristics perform similarly as shown in Figure 3-(a). In this case, introducing a mr

(a) |S|=100, |V|=10

0

10

20

30

40

50

60

Liao Leupers

C
o
s
t

Coarse W_mr W_mr_op

(b) |S|=100, |V|=50

40

42

44

46

48

50

52

54

Liao Leupers

C
o
s
t

Coarse W_mr W_mr_op

(c) |S|=100, |V|=80

0

5

10

15

20

25

30

35

Liao Leupers

C
o
s
t

Coarse W_mr W_mr_op

(d) |S|=200, |V|=100

85

90

95

100

105

110

115

Liao Leupers

C
o
s
t

Coarse W_mr W_mr_op

Fig. 3. Results for SOA and SOA mr

Memory Offset Assignment for DSPs 85

Fig. 4. Results for GOA FRQ

optimization technique does not improve performance much. Figure 3-(b), 3-(d) show
that when the number of variables is 50% of th length of an access sequence, intro-
ducing optimization technique can reduce the costs. Figure 3-(c) shows that when the
access graph becomes sparse, the amount of improvement becomes smaller than when
the graph is dense, but it is still reduce the costs noticeably. Except the case when an
access graph is very dense like in Figure 3-(a), applying our mr optimization technique
is beneficial in all heuristics including Liao’s and Leupers’. Figure 4 shows that our
GOA FRQ algorithm outperforms Leupers’ in many cases. Especially in Figure 4, we
can witness that beyond certain threshold, our algorithm keeps its performance stable.
However, Leupers’ algorithm tries to use as many ARs as possible, which makes per-
formance of his algorithm deteriorated as the number of ARs grows. Line graphs in
Figure 4 shows that our mr optimization technique is beneficial, and that 2 ARs config-
uration always outperforms ar mr op as we mentioned earlier.

We experiment DSP benchmarks like BIQUAD ONE, COMP (Complex multipli-
cation), and ELLIP (Elliptical wave filter) and also numerical analysis algorithms like
GAULEG (Gauss-Legendre weights and abscissas), GAUHER (Gauss-Laguerre
weights and abscissas) and GAUJAC (Gauss-Jacobi weights and abscissas) from [15].
We also use several programs such as CHENDCT, CHENIDCT, LEEDCT and LEEI-
DCT from JPEG-MPEG package. Figure 5 shows the improvements of results of 1AR
1MR, ARmr op, and 2 ARs to 1 AR. Improvement is computed as (1AR−x

1AR × 100),
where x is one of the above three AGUs. Except COMP which is too simple to show
a meaningful result, introducing extra resource (MR) in AGU is always beneficial. The
average improvement of rest 5 algorithms of including MR is 18.5%. With the same
amount of resources (1 AR and 1 MR), we achieve more gains by applying our MR
optimization technique. The average improvement of our MR optimization is 25.4%.
The average improvement of 2 ARs is 44.2%. MR takes a supplemental role to re-
cover edges that were not included in path covers. With understanding such a role of
MR, superiority of the result of 2ARs over MR and MR OP is understandable. How-
ever, we believe that improvement of our MR optimization technique shows that more

86 J. Hong and J. Ramanujam

Fig. 5. Improvements of 1AR 1MR, MR OP and 2ARs to 1 AR

aggressive method for MR optimization should be enforced and that MR be given more
attention in a sense that setting value 1 to MR has an exactly same effect as AR’s auto-
increment/-decrement, which means MR has more flexibility than AR++ and AR--.
Our MR optimization technique can be used to exploit m ≥ 1 pairs of (AR,MR) in
AGU.

5 Summary

We have found that several fragmented paths are generated as the SOA algorithm trys
to find a path cover. We have proposed a new optimization technique of handling these
fragmented paths. As the SOA algorithm generates several fragmented paths, we show
that our optimization technique of these path partitions is crucial to achieve an extra
gain, which is clearly captured by our experimental results. We also have proposed
usage of frequencies of variables in a GOA problem. Our experimental results show
that this straightforward method is better than the previous research works.

Acknowledgments. This work is supported in part by the US National Science Founda-
tion through awards 0073800, 0103933, 0121706, 0508245, 0509442 and 0541409.

References

1. G. Araujo. Code Generation Algorithms for Digital Signal Processors. PhD thesis, Princeton
Department of EE, June 1997.

2. G. Araujo, S. Malik, and M. Lee. Using Register-Transfer Paths in Code Generation for
Heterogeneous Memory-Register Architectures. In Proceedings of 33rd ACM/IEEE Design
Automation Conference, pages 591-596, June 1996.

3. G. Araujo, A. Sudarsanam, and S. Malik. Instruction Set Design and Optimization for Ad-
dress Computation in DSP Architectures. In Proceedings of the 9th International Symposium
on System Synthesis, pages 31-37, November 1997.

4. S. Atri, J. Ramanujam, and M. Kandemir. Improving offset assignment on embedded proces-
sors using transformations. In Proc. High Performance Computing–HiPC 2000, pp. 367–374,
December 2000.

5. Sunil Atri, J. Ramanujam, and M. Kandemir. Improving variable placement for embedded
processors. In Languages and Compilers for Parallel Computing, (S. Midkiff et al. Eds.),
Lecture Notes in Computer Science, vol. 2017, pp. 158–172, Springer-Verlag, 2001.

6. D. Bartley. Optimization Stack Frame Accesses for Processors with Restricted Addressing
Modes. Software Practice and Experience, 22(2):101-110, February 1992.

Memory Offset Assignment for DSPs 87

7. Y. Choi and T. Kim. Address assignment combined with scheduling in DSP code generation.
in Proc. 39th Design Automation Conference, June 2002.

8. S. Liao. Code Generation and Optimization for Embedded Digital Signal Processors. PhD
thesis, MIT Department of EECS, January 1996.

9. S. Liao et al. Storage Assignment to Decrease Code Size. In Proceedings of the ACM
SIGPLAN ’95 Conference on Programming Language Design and Implementation, pages
186–196, 1995. (This is a preliminary version of [10].)

10. S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. Storage assignment to decrease
code size. ACM Transactions on Programming Languages and Systems, 18(3):235–253, May
1996.

11. R. Leupers and P. Marwedel. Algorithms for Address Assignment in DSP Code Genera-
tion. In Proceedings of International Conference on Computer-Aided Design, pages 109-112,
1996.

12. J. Ramanujam, J. Hong, M. Kandemir, and S. Atri. Address register-oriented optimizations
for embedded processors. In Proc. 9th Workshop on Compilers for Parallel Computers (CPC
2001), pp. 281–290, Edinburgh, Scotland, June 2001.

13. A. Rao and S. Pande. Storage Assignment Optimizations to Generate Compact and Efficient
Code on Embedded Dsps. SIGPLAN ’99, Atlanta, GA, USA, pages 128-138, May 1999.

14. A. Sudarsanam and S. Malik. Memory Bank and Register Allocation in Software Synthesis
for ASIPs. In Proceedings of International Conference on Computer Aided Design, pages
388-392, 1995.

15. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (Editors), Numerical
Recipes in C: The Art of Science Computing, Cambridge University Press, pages 152-155,
1993.

	Introduction
	Our Approach to the SOA-MR Problem
	The Single Offset Assignment (SOA) Problem
	Our Algorithm for SOA with an MR

	General Offset Assignment (GOA)
	Experimental Results
	Summary

