
Improving Offset Assignment on Embedded Processors
Using Transformations

Sunil Atri1, J. Ramanujam1�, and Mahmut Kandemir2��

1 ECE Dept., Louisiana State University, Baton Rouge LA 70803, USA
2 CSE Dept., The Pennsylvania State University, University Park, PA 16802, USA

Abstract. Embedded systems consisting of the application programROM,RAM,
the embedded processor core and any custom hardware on a single wafer are be-
coming increasingly common in areas such as signal processing. In this paper, we
address new code optimization techniques for embedded fixed point DSP proces-
sors which have limited on-chip program ROM and include indirect addressing
modes using post increment and decrement operations. These addressing modes
allow for efficient sequential access but the addressing instructions increase code
size. Most of the previous approaches to the problem aim to find a placement or
layout of variables in the memory so that it is possible to subsume explicit ad-
dress pointer manipulation instructions into other instructions as a post-increment
or post-decrement operation. Our solution is aimed at transforming the access
pattern by using properties of operators such as commutativity so that current
algorithms for variable placement are more effective.

1 Introduction

Embedded processors (e.g., fixed-point digital signal processors, micro-controllers) are
found increasingly in audio, video and communications equipment, cars, etc. thanks
to the falling cost of processors [6]. These processors have limited code and data stor-
age. Therefore, making efficient use of available memory is very important. On these
processors, the program resides in the on-chip ROM; therefore, the size of the code
directly impacts the required silicon area and hence the cost. Current compiler technol-
ogy for these processors typically targets code speed and not code size; the generated
code is inefficient as far code size is concerned. An unfortunate consequence of this is
that programmers are forced to hand optimize their programs. Compiler optimizations
specifically aimed at improving code size will therefore have a significant impact on
programmer productivity [4,5].

DSP processors such as the TI TMS320C5 and embedded micro-controllers provide
addressing modes with auto-increment and auto-decrement. This feature allows address
arithmetic instructions to be part of other instructions. Thus, it eliminates the need for

� Department of Electrical and Computer Engineering. Louisiana State University. Baton Rouge,
Louisiana 70803-5901. {jxr,sunil}@ee.lsu.edu

�� Department of Computer Science and Engineering. Pennsylvania State University. University
Park, PA 16802-6106. kandemir@cse.psu.edu

M. Valero, V.K. Prasanna, and S. Vajapeyam (Eds.): HiPC 2000, LNCS 1970, pp. 367–374, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



368 S. Atri, J. Ramanujam, and M. Kandemir

explicit address arithmetic instructions wherever possible, leading to decreased code
size. The memory access pattern and the placement of variables has a significant impact
on code size. The auto-increment and auto-decrement modes can be better utilized if
the placement of variables is performed after code selection. This delayed placement of
variables is referred to as offset assignment.

This paper considers the simple offset assignment (SOA) problem where there is just
one address register. A solution to the problem assigns optimal frame-relative offsets
to variables of a procedure, assuming that the target machine has a single indexing
register with only the indirect, auto-increment and auto-decrement addressing modes.
The problem is modeled as follows.A basic block is represented by an access sequence,
which is a sequence of variables written out in the order in which they are accessed in
the high level code. This sequence is in turn further condensed into a graph called the
access graph whose nodes represent variables and with weighted undirected edges. The
weight of of an edge (a, b) is the number of times variables a and b are adjacent in the
access sequence. The SOA problem is equivalent to a graph covering problem, called
theMaximumWeight Path Cover (MWPC) problem. A solution to the MWPC problem
gives a solution to the SOA problem. This paper presents a technique that modifies
the access pattern using algebraic properties of operators such as commutativity. The
goal is to reduce the number of edges of non-zero weight in the access graph. Rao and
Pande have proposed some optimizations for the access sequence based on the laws of
commutativity and associativity [7]. Their algorithm is exponential. In this paper, we
present an efficient polynomial time heuristic.

2 Commutative Transformations

The access sequence has a great impact on the cost of offset assignment. We explore
opportunities for better assignments that can be derived by exploiting the commutativity
and other properties of operators in expressions. We propose a heuristic that attempts
to modify the access sequence so as to achieve savings in the cost of the final offset
assignment.We base our heuristic on the assumption that reducing the number of edges in
an access graphwill lead to a lowcost assignment (see [1] for a justification).Towards this
end, we identify edges that can be possibly be eliminated by a reordering transformation
of the access sequence, which is in turn (because of a transformation in a statement in the
C code basic block) based on the rule of commutativity. The edges we target for this kind
of transformation are those with weight one. We consider the case where there are only
two or less variables on the RHS of a statement. The statements considered are those
that are amenable to commutative reordering. Let us focus now on the set of ordered
statements as in Figure 1(a); they have an access sequence as shown in Figure 1(b). The
variables shown in the boxes are those whose relative position cannot be changed. A
change in l2 for example will require statement reordering as shown in Figure 1(c). The
weight change will be:

(1) w(l2, f3)-- (2) w(l1, f2)-- (3) w(l0, f1)--
(4) w(l1, f3)++ (5) w(l2, f1)++ (6) w(l0, f2)++



Improving Offset Assignment on Embedded Processors Using Transformations 369

l 1s1f1 l 2s2f2 l 3s3f3

(b)

l 3 f3 s3= + ;

l 2 f2 s2= + ;

l 1 s1f1= + ;

(a)

l 3 f3 s3= + ;

l 1 s1f1= + ;

l 2 f2 s2= + ;

l 0 f0 s0;= +

l 2s2f2 l 1s1f1 l 3s3f3

(c)

f0 s0 l 0

l 3 f3 s3= + ;

l 1 s1f1= + ;

l 2 f2s2 l 1s1f1 l 3s3f3l 2s2 f2

(d) (e)

= + ;

Fig. 1. Commutative transformation concept.

where the trailing ++ or -- indicate a increase in weight by one or a decrease in weight by
one, respectively.This can be seen in Figure 1(c).Wewill explore variable reordering due
to commutativity rather than statement reordering; the latter requires data dependence
analysis.

There are differentways to evaluate the cost or benefit of a transformation.The onewe
propose is computationally much less expensive than Rao and Pande’s procedure [7,1].
Consider again the access sequence shown in Figure 1(b).Without loss of generality, we
can assume that the weight of the edgew(s2, l2) = 1. Then if we try the sequence shown
in Figure 1(b), we have a modification in the access sequence, which, corresponds to
the commutative transformation shown in Figure 1(d). This transformation can now be
evaluated in twoways. The first, is to do a local evaluation of the cost, and the second one,
is to run Liao’s algorithm (or Incremental-Solve-SOA) on the changed access sequence.
We propose two procedures based on these two methods of evaluating benefit.

We discuss the local evaluation first. As before, consider Figure 1(b) which is the
access sequence, with the variables that cannot be moved marked by a box. As we had
assumed the weight of the edge (s2, l2) was one and also that reducing the number
of edges is possibly beneficial, reducing the weight of (s2, l2) to zero will effectively
remove the edge from the access graph. If we wish to reduce w(s2, l2) from one to zero
then the following four edge weight reductions will occur.

(1) w(l1, s2)++
(2) w(l1, f2)- -
(3) w(s2, l2)- -; note that w(s2, l2) = 0 is possible here
(4) w(f2, l2)++

We define the primary benefit as the following value: (the number of non-zero edges
turning zero) − (number of zero edges turning non-zero). In addition, we define a
secondary benefit = (the sum of the increases in the weights of already present edges)
+ (the sum of the increases in the weights of self-edges).



370 S. Atri, J. Ramanujam, and M. Kandemir

If there are two edges with the same primary benefit, then the tie-break between them
is done using the secondary benefit measure. The second method of evaluating benefit
is to run Liao’s heuristic, compute the cost, and select the edge giving the least cost. Of
course, this option has a higher complexity.

2.1 Detailed Explanation of the Commutative Transformation Heuristic

Wenowdiscuss in detail our commutative transformation heuristic, calledCommutative-
Transformation-SOA(AS), given in Figure 3. This heuristic is greedy, in that, it performs
the transformation that appears to be the best at that point in time. Lines 1 and 2 indicate
that the input is the unoptimized access sequence AS and the output is the optimized
access sequence ASo. We build the access graph by a call to the AccessGraph(AS)
function. We also initialize the optimized access sequence ASo with the starting access
sequence AS. Lines 8 to 14 constitute the first loop. Here we assign the Primary Benefit
and Secondary Benefit measure to the edges of weight one. Edges with negative primary
benefit are not considered and so we compute the secondary benefit only if there is a
non-negative primary benefit. The data structure E1

sort is used to hold the various edges
in descending order of the primary benefit, and if the the primary benefit is the same,
then the secondary benefit is used as a tie-breaker in finding the ordering of the edges. T
hold the set of edges that are considered as a set in the while loop. The compatibility of
an edge is required as it is possible that a transformation made to ASo could be undone
by the transformation motivated by another incompatible edge.As an example, consider
Figure 2(a). The primary benefit of removing edge (a, b) from the access graph is 2, as
edges (a, b) and (c, d) become zero weight edges. Now, if we try to remove edge (d, a)
from the access graph, whose primary benefit is 1, we reintroduce edges (a, b) and (c, d),
while removing edge (d, a). This is not the desired change, so when the transformation
to remove edge (a, b) is made then the edge (d, a) should not be considered anymore.

We have included the if statement since, if there is no primary benefit, i.e., Primary
Benefit is zero, it need not be included for consideration in the subsequentwhile loop. In
thewhile loop from line 19 to line 27 for the same highest primary and secondary benefit
measure, the maximal set of compatible edges are extracted from E1

sort and assigned to
H . Transformation to ASo is performed in line 25. Once the transformations are done,
The set of chosen edges is updated to contain the edges in C. Finally, when E1

sort is
empty, we return the optimized access sequence ASo.

a c

db
2

1

2

1

3

1

a c a b c d a c b

(a)

a c

db

2

1

4

1

a c a c b d a c b

(b)

a c a c b d c a b

a c

db

1

1

1

4

1

1

(c)

Fig. 2. Incompatible edges (a, b), and (d, a).



Improving Offset Assignment on Embedded Processors Using Transformations 371

1 // INPUT : Access Sequence AS
2 // OUTPUT : Optimized Access Sequence ASo

3 Procedure Commutative-Transformation-SOA(AS)
4 (G = (V,E)) ←AccessGraph(AS)
5 ASo ← AS
6 S ← the set of all edges with weight one
7 E1

sort ← φ
8 for (each edge (u, v) ∈ S) do
9 Compute Primary Benefit((u, v))
10 if (Primary Benefit (u, v) is positive)
11 Compute Secondary Benefit((u, v))
12 Add (u, v) to E1

sort

13 endif
14 enddo
15 // In the next sorting step, the Secondary Benefit is used to break ties
16 Sort the entries in E1

sort in descending order of Primary Benefit
17 // T holds the set of edges of weight one that are chosen
18 T ← φ
19 while (E1

sort �= φ)
20 // Extract Edges extracts (removes) the set of all edges with the
21 // highest primary benefit and the same largest secondary benefit.
22 // LetH = {e0, e1, ..., er} be these edges
23 H ← Extract Edges(E1

sort)
24 C ← the maximum compatible subset ofH ∪ T
25 Perform Transformation(ASo, C)
26 T ← T ∪ C
27 endwhile
28 return(ASo)

Fig. 3. Commutative-Transformation-SOA.

2.2 Commutative Transformation Heuristic Example

We now show the working of the heuristic through an example. Consider the access se-
quence Figure 4(b), with the resulting access graph in Figure 4(c). The edges of weight
1 are: (a, f), (a, b), (b, c), (c, d), (e, f), (d, e), (b, f) and (d, f). Table 1 summarizes
the different computation of the benefits. The first column lists the edges and the sec-
ond column shows the transition which would need to occur in the access sequence in
Figure 4(a). The third column shows the number of non-zero edges turning zero and
the fourth column gives the number of zero edges turning non-zero. The fifth and the
sixth columns give the increase in the weight of the non zero edge and the decrease in
the weight of the non zero edge, respectively. Also shown are the increase and decrease
in the weight of the self edge. The second last column (P.B.) show the primary benefit,
i.e., difference between column three and four. The last column shows the secondary
benefit which is the sum of column five and seven. The function Assign-Benefit
formulates Table 1 and assigns the Primary and Secondary Benefit value. The Assign-



372 S. Atri, J. Ramanujam, and M. Kandemir

(b)

a b c d e f a d a d a c a d f b

c = a + b;
f = d + e;

c = d + a;
a = a + d;

(a)

d = a;
b = f;

c d

b

a f

e

1

2

1

1

1

1

1
5

1

(c)

Fig. 4. Example code and the associated access graph.

c = b + a;
f = e + d;

d = a;

a = d + a;
c = d + a;

(a)

b = f;

(b)

b a c e d f d a a d a c a d f b c d

b

a g

e

1

3

1

1

3
4

(c)

1

1

Fig. 5. Optimized code, the associated access graph, and the offset sequence.

Compatibility function call checks for the compatibility of each weight 1 edge with
other weight 1 edge. As all the edges listed, except the last two ones, have a positive
primary benefit, they are stored in E1

sort in the order same as in the table. Only the last
two entries will not be in E1

sort. Here the primary benefit is all 1, and the secondary
benefit for edge(a, f) is higher than the rest. The Extract Edges function call will return
all the edges in the table as they are all compatible with each other. The following three
transformation will be performed in line 18: (1) fada → fdaa; (2) abcd → bacd;
and (3) cdef → cedf . This transformation will result in the access sequence shown
in Figure 5(b). This access sequence ASo will be returned in line 21. The Liao cost of
the offset assignment obtained now has fallen from 5 to 2 as shown in Figure 4(c) and
Figure 5(c).

Let us concentrate now on the example shown in Figure 6(b). We follow the same
procedure as explained above. The primary and secondary benefit values that will be
generated are shown in Table 2. The transformations that would be performed are: (1)
aefd→afed, and(2) fbaa→ faba. The input access sequence is shown in Figure 6(b).
and the output access sequence is shown in Figure 6(c). The Liao’s cost for this example
has fallen from 4 to 2. In the case of edge(e, d) the primary benefit is -1, so it would



Improving Offset Assignment on Embedded Processors Using Transformations 373

1

3

2

2

1

1

c d

b

a f

e

1

a b c d e f b a a e f d c b a f

(b)

2

1

1

b = c;

d = e + f;

a = b + a;

f = d + e;

c = a + b;

(a)

f = a;

4

2

3

2

2

c d

b

a f

e

a b c d e f a b f e d c b a f

(c)

2

Fig. 6. Optimal solution of the SOA.

Table 1. Primary and secondary benefit measures for the example in Figure 4(b).

Edge Trans. NZ→ 0 0→ NZ NZ ↑ NZ ↓ self ↑ self ↓ P.B. S.B.
(a, f) fada→ fdaa 1 0 1 0 1 0 1 2

(a, f) (f, d) (a, a)
(a, b) abcd→ bacd 1 0 1 0 0 0 1 1

(b, c) (a, c)
(b, c) abcd→ bacd 1 0 1 0 0 0 1 1

(b, c) (a, c)
(c, d) cdef → cedf 2 1 0 0 0 0 1 0

(c, d) (c, e)
(e, f)

(e, f) cdef → cedf 2 1 0 0 0 0 1 0
(c, d) (c, e)
(e, f)

(d, e) cdef → cedf 2 1 0 0 0 0 1 0
(c, d) (c, e)
(e, f)

(b, f) fixed
(d, f) fixed

not be included in E1
sort because of the if statement in line 9. Experimental results and

additional details have been omitted for lack of space; see [2] for this.

3 Conclusions

Optimal code generation is important for embedded systems in view of the limited area
available for ROM and RAM. Small reductions in code size could lead to significant
changes in chip area and hence reduction in cost. The offset assignment problem is use-
ful in reducing code size on embedded processors. In this paper, we explored the use
of commutative transformations in order to reduce the number of edges in the access
graph so that the probability of finding a low cost cover is increased.We have considered
commutative transformations, but it is also possible to look at the others transformations,
like associative and distributive transformations and even statement reordering. Rao and
Pande’s solution [7] computes all the possible transformations, which is exponential.
The heuristic presented in this paper identifies specific edges and selects the correspond-
ing transformation to perform. As the number of transformation which we perform is



374 S. Atri, J. Ramanujam, and M. Kandemir

Table 2. Primary and secondary benefit measures for the example in Figure 6(b).

Edge Trans. NZ→ 0 0→ NZ NZ ↑ NZ ↓ self ↑ self ↓ P.B. S.B.
(a, e) aefd→ afed 2 0 2 0 0 0 2 0

(a, e) (a, f)
(f, d) (e, d)

(f, d) aefd→ afed 2 0 2 0 0 0 2 0
(a, e) (a, f)
(f, d) (e, d)

(b, f) fbaa→ faba 1 0 1 0 0 1 1 1
(b, f) (a, b)

(e, d) cdef → cedf 0 1 2 1 0 0 -1 2
(c, e) (e, d)

(d, f)
(f, d) fixed

bounded by the number of edges, this algorithm is much faster. We are currently ex-
ploring several issues. First, we are looking at the effect of statement reordering on code
density. Second, we are evaluating the effect of variable life times and static single as-
signment on code density. In addition, reducing code density for programs with array
accesses is an important problem.

Acknowledgments

The work of J. Ramanujam is supported in part by NSFYoung InvestigatorAward CCR–
9457768 and NSF grant CCR–0073800.

References

1. S. Atri. Improved Code Optimization Techniques for Embedded Processors. M.S. Thesis,
Dept. Electrical and Computer Engineering, Louisiana State University, Dec. 1999.

2. S. Atri, J. Ramanujam, and M. Kandemir. The effect of transformations on offset assignment
for embedded processors. Technial Report, Louisiana State University, May 1999.

3. R. Leupers and P. Marwedel. Algorithms for address assignment in DSP code generation. In
Proc. International Conference on Computer Aided Design, pages 109–112, Nov. 1996.

4. S.Y. Liao,CodeGeneration andOptimization for EmbeddedDigital Signal Processors, Ph.D.
Thesis. MIT, June 1996.

5. S. Y. Liao, S. Devadas, K. Keutzer and S. Tjiang, and A. Wang. Storage Assignment to
Decrease code SizeOptimization. InProc. 1995ACMSIGPLANConference onProgramming
Language Design and Implementation. pages 186-195, June 1995.

6. P. Marwedel and G. Goossens, editors. Code Generation for Embedded Processors, Kluwer
Acad. Pub., 1995.

7. Amit Rao and Santosh Pande. Storage assignment optimizations to generate compact and
efficient code on embedded DSPs. Proc. 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation. pages 128–138, June 1999.


	Introduction 
	Commutative Transformations 
	Detailed Explanation of the Commutative Transformation Heuristic
	Commutative Transformation Heuristic Example

	Conclusions 
	References

