
A Heuristic for Clock Selection in High-Level Synthesis

J. Ramanujam� Sandeep Deshpande� Jinpyo Hong� Mahmut Kandemiry

Abstract

Clock selection has a significant impact on the performance and
quality of designs in high-level synthesis. In most synthesis sys-
tems, a convenient value of the clock is chosen or exact (and ex-
pensive) methods have been used for clock selection. This paper
presents a novel heuristic approach for near-optimal clock selection
for synthesis systems. This technique is based on critical paths in
the dataflow graph. In addition, we introduce and exploit a new
figure of merit called the activity factor to choose the best possible
clock. Extensive experimental results show that the proposed tech-
nique is very fast and produces optimal solutions in a large number
of cases; in those cases, where it is not optimal, we are off by just a
few percent from optimal.

1 Introduction

High-level synthesis (HLS) is the process of translating a behav-
ioral description to a register transfer level (RTL) structural de-
scription [2, 5, 9]. This involves problems such as module selec-
tion, scheduling (both resource-constrained scheduling or RCS, and
time-constrained scheduling or TCS), allocation and binding, and
clock selection [7, 9]. Scheduling for a fixed clock helps one ex-
plore the design space in two dimensions, namely area and latency
[1]. As stated in [1], this method would be useful for exploring only
a small portion of a complete design space. For a more useful and
exhaustive search, the clock value is also considered to be a con-
straint for the scheduling problem and this adds the third dimension
to the search space.

Many design systems require that the clock be specified by the
designer a priori. Even though the clock length is required prior to
scheduling, the best value of the clock can be found only after evalu-
ating different schedules. This interdependence makes it difficult to
select a good value of clock prior to scheduling. A variety of sched-
ules can be found, each for a different clock value and this provides
the designer with greater flexibility in the choice of the final design.
Since the clock value has to be known before the scheduling process
itself, a good estimation of the clock value is essential. An optimal
value can be found by finding all possible schedules with different
candidate clock lengths exhaustively and then the best (or optimal)
value can be chosen, but this would take a long time and hence it
is highly undesirable. It is therefore necessary to derive algorithms
that are fast and generate a near optimal value of the clock length if
not the optimal value.

The choice of clock length affects the scheduling of a sequenc-
ing graph. In order to illustrate this, we consider the sequenc-
ing graph (which is the dataflow graph from which all edges other
than dependencies are removed [5]) for the second order differential
equation benchmark [13]; this sequencing graph is shown in Fig-
ure 1. Note that for the rest of this paper, we use the terms dataflow
graphs and sequencing graphs interchangeably. We assume that all
operations other than multiplication are performed on the ALU and
the multiplication operations on the multiplier. Then, for this se-
quencing graph, we can have two different schedule lengths de-

�Department of Electrical and Computer Engineering, Louisiana State University,
Baton Rouge, LA 70803, USA. fjxr,sandeepd,jphong1g@ece.lsu.edu

yDepartment of Computer Science and Engineering, The Pennsylvania State Uni-
versity, University Park, PA 16802, USA. kandemir@cse.psu.edu

(b) Clock length = 25ns Schedule length = 150 ns

50ns

25ns

(a) Clock length = 50 ns Schedule length = 200 ns

* * * *

* *

+

+

+

+

+

* * * * +

*

−

−

* + <

Figure 1: Effect of clock length on scheduling.

pending on the value of the clock used and the delay of the different
functional units. If the delay of the ALU is 25ns and the delay of
the multiplier is 50ns and a clock of 50ns is used to schedule the
graph (assuming no resource constraints), then we can complete the
schedule in 200ns. This is illustrated in Figure 1(a). In this partic-
ular case, the ALU is idle for 25ns per clock. On the other hand,
if we use a clock of 25ns, then the schedule time is 150ns, and in
this case, none of the resources are idle as shown in Figure 1(b). It
is thus important to choose a proper value of the clock to reduce the
schedule length and the idle time on the various resources.

Note that we have made the idealized assumption that every unit
of time within a clock cycle is usable by the functional unit, just
like the other works in this area [1, 4, 3, 10]. We realize that in
most cases in practice a certain amount of time, say Æ ns is not
available in each cycle for any functional unit. This can be easily
accommodated in our approach by extending the lengths of clocks
by Æ ns as needed.

In this paper, we present a new heuristic for clock selection.
Our approach finds the clock length independent of scheduling and
hence it is not computationally expensive; in this respect, it is simi-
lar to [1]. Also, as is evident from experiments, the technique gen-
erates almost as good results as compared to an exhaustive, com-
putationally more expensive method in [4]. Note that our goal here
is to reduce the amount of computation required in the rest of the

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

phases of design space exploration. Our appraoch considers only
the operations on critical paths and does not consider the effect of
the number of resources [11] (also referred to as resource alloca-
tion). Based on the experiments with benchmark examples, we have
found that the clock value determined by our technique is close to
the optimal clock value.

The rest of this paper is organized as follows. First, we discuss
briefly some of the previous work on the clock selection problem as
discussed in [1] and [4]. We then describe our method of finding the
clock length as improvement over [1] and illustrate the differences
with respect to that method.

2 Background and related work

We assume that module selection has already been done and hence
delays for the functional units have already been provided from a
particular library. We denote a functional unit by FUi and the delay
by delayi. Since a clock length has to be chosen before scheduling,
some of the trivial choices a designer may make are (i) the delay
of one of the functional units, (ii) the delay of the slowest/fastest
functional unit, and (iii) the GCD of the delays of all functional
units. All of these plausible options have one common character-
istic, i.e, they try to zero out the idle time on at least one of the
functional units; it is important to note that this approach does not
necessarily guarantee a good value for clock. The selection of the
clock length not only affects the schedule, but it also affects the area
and the complexity of the control circuit [5, 1]. Amongst the three
methods cited above, the last one might generate a clock length that
is so small that it may not be practically feasible to implement the
control circuit [5]. We define the slack of an operation mapped to
a functional unit FUi as the time during which the functional unit is
idle. To illustrate this point assume that the clock length is clk, then
the slack for a functional unit FUi is defined as follows:

slacki = clk �
l
delayi

clk

m
� delayi: (1)

The slack is the time for which the FUi is not going to do any useful
work. The utilization of the functional units can be made more effi-
cient by decreasing the value of the slack and also possibly reducing
the schedule length. We need to evaluate a set of candidate clock
lengths and then choose the one for which the slack is minimum.
Ideally, we would like to have zero slack for all functional units
but since this is not practically possible, we try to look at possible
clock values for which the slack would be minimum. The slack on a
functional unit FUi would be zero if the value of the clock perfectly
divides its delay. This particular value of the clock need not neces-
sarily reduce the slack on some other functional unit FUk. It is thus
important to find a value of the clock that would reduce the slack on
all the functional units. Although such a value might be difficult to
find, a measure that we would like to consider is an average value
of slack over all functional units as illustrated by Chang et al. [3]
and then obtain a value for the clock length based on the minimum
average slack. The average slack function is defined by Chang et
al. [3] as

slackavg(clk) =
1

N

X
j

fnumj) � slackj(clk)g ; (2)

where numj is the number of operations of type j; slackj(clk)
is the slack on that operation for a clock clk; and N is the total
number of operations in the DFG. The objective is to minimize the
above slack function with respect to the value of the clock. All the
points of local minima for the above average slack function are the
possible values of the clock cycle in the search space. The average
slack is evaluated for all these points and the clock length value

corresponding to the minimum average slack can then be chosen as
the clock value. This approach does not consider any constraints
either on the availability of resources or latency. It also does not
take the structure of the graph into account.

Another approach to finding the optimal value of the clock is
described by Walker’s research in [1] and [4]. The optimal clock
selection technique as described in [1] considers all possible inte-
gral clock lengths which are ceilings of the integer divisors of the
delays of the different functional units used in the design. This can
be expressed as

C =
n
clk j clk = 8i; k

l
delayi

k

mo
(3)

subject to the condition clkmin � clk � max(8i(delayi));where
clkmin is a technological limitation, a clock cycle lesser than this
value is not practically feasible. The set C for the candidate clock
lengths can be pruned further, i.e., the size of the set C can be re-
duced further by considering the slacks on the various functional
units for a particular value of the clock. A slack vector ~slack(clk)
that defines the slack for m functional units types for a particular
value of clock clk can be written as

~slack(clk) = fslack1; slack2; :::::::; slackmg : (4)

If ~slack(clk) � ~slack(clk0)1, then the clk0 can be replaced by clk.
Hence, the reduction in the size of the initial set C to C0(say). For
each clk 2 C

0, the resultant set of clock values, the exact solutions
for the RCS (or TCS) problem are found for various resource vec-
tors and then the clk corresponding to the minimum schedule length
(minimum resource requirement) is chosen as the optimal value of
the clock.

Our approach to the problem is to take the structure of the se-
quencing graph into account in deriving a value for clock and to
make design space exploration more efficient. Consider the ARFIL-
TER benchmark [8] shown in Figure 2. This graph has 16 multipli-
cation operations and 12 add operations. Chang et al.’s [3] solution
for this graph is to zero out the slack of the multiplier since there
are more multiplication operations compared to add operations in
the graph. On the other hand, on any critical path (i.e., the length
of the longest path in the graph [5]; one such path is highlighted in
the figure), there are 3 multiplication and 5 add operations. Thus,
zeroing out the slack of the adder reduces the total idle time on the
critical path. Our results using this approach are very effective; ex-
perimental results shown in Section 4 demonstrate the efficacy of
our solution.

3 Our Clock Selection Technique

3.1 Critical paths

The slack minimization algorithm presented by Chang et al. [3] con-
siders a weighted average of the slack of all operations in the graph;
but it does not take into account the structure of the graph. The crit-
ical path in the sequencing graph carries the essential dependency
information. We would like to reduce the slack of the operation that
has a higher frequency of occurrence in the critical path since re-
ducing the delay in the critical path would improve the completion
time of the schedule. The frequency of occurrences of operations
belonging to different resource classes is considered and the slack of
that particular functional unit is weighted with the frequency of oc-
currence of that particular resource class. All possible paths formed

1Given two vectors ~a = (a1; � � � ; an) and~b = (b1; � � � ; bn), we say ~a � ~b if
for all i; 1 � i � n; ai � bi:

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

* * * * * * * *

* * * *

* * * *

+ + +

+ +

+ +

+ +

+ +

1/8 1/8 1/8 1/8 1/1 1/1 1/1 1/1

3/3 3/3

4/4 4/4

5/5 5/5 5/5 5/5

7/7 7/7

8/8 8/8 8/8 8/8

10/10 10/10

11/11 11/11

3/10 3/10
+

Figure 2: The sequencing graph for the ARFILTER benchmark and
a critical path

by the critical nodes in the data flow graph are evaluated. The slack
function is written as

Slackweighted(clk) =
X
j

�
freq

critical
j � slackj

	
(5)

where the term freqcriticalj is the average of the fraction of the oc-
currence of operations belonging a particular resource class j over
all critical paths in the data flow graph.

freq
critical
j =

1

Pc

PcX
p=1

�P
j
(numj)

Nc;p

�
(6)

where Pc is the total number of critical paths in the data flow graph
and Nc;p is the total number of nodes on the pth critical path.

3.2 Generating candidate clock lengths

If the expression for slack is substituted in the above equation, then
we have the following expression

Slackweighted(clk)

=
X
j

n
(freqcriticalj) � ((clk �

l
delayj

clk

m
)� delayj)

o
:

In the rest of this paper, we would refer to the above critical path
weighted average slack as CPWslack. Our aim is to minimize the
weighted slack function above and find the corresponding value of
clock clk for which the function is minimum. If we consider a
single term of the equation above as a function of the clock clk,
then

fj(clk) = K �
n
(clk �

l
delayj

clk

m
)� delayj

o
: (7)

The above function is discontinuous at certain points which are gov-

erned by the term
l
delayj

clk

m
. The discontinuous points are

delayj

k
,

where k is an integer. These are the points for which the slack func-
tion would reach a minimum value for a particular clock. All these
points belong to the set of candidate clock lengths C. The function

will be continuous between the points clk = (
delayj

k
;
delayj

k � 1
).

Consider some arbitrary value for clk =
delayj

kr
, where kr 2 Z

where Z is the set of reals and k � 1 < kr < k. Then slack func-

tion is a straight line between the points
delayj

k
and

delayj

k � 1
and

the slope of the line is
dkre

kr
.

3.3 The Activity Factor

For all possible clk 2 C, the value of the critical path weighted
slack function is evaluated. This value of slack reflects the perfor-
mance of the clock in absolute terms only. The absolute value of the
slack does not convey the fraction of the useful clock. The major
objective of using slack for clock selection is not only to select a
clock which causes the least slack but also the slack which is rel-
atively very less in comparison to the value of the clock. For this
purpose, we define a new figure of merit called the activity factor to
chose the best possible clock. Such a value of clock would reflect
the maximum amount of useful work that can be done. We define
the activity factor � for a given clock clk in general as the following

�(clk) =
n
1�

slack

clk

o
: (8)

In our definition of the slack, we will be using critical path weighted
average slack, denoted by CPWslack(clk). The various candidate
clocks can be pruned and the best clock selected using the activity
factor, �. As an illustration, consider two clock values clk1 and
clk2, such that clk1 > clk2. Let the critical path weighted av-
erage slacks for the two values of clocks be CPWslack(clk1) and
CPWslack(clk1), such that CPWslack(clk1) = CPWslack(clk2). It
is evident that the fraction, �(clk1) > �(clk2), and hence clk1 is
a better value of clock than clk2 because it reflects a better utiliza-
tion of the available clock. Another important aspect is that for all
values of the clock which result in an equal value of CPWslack, the
highest value of the clock is always preferred. A higher value of the
clock reduces hardware complexity and associated power dissipa-
tion in the circuit. The clock length causing the highest value of �
is selected as the optimal clock.

The above is a scalar comparison of the activity factor values
for different clocks. This is in contrast to the vector comparison
over slacks for different types of resources for various clocks as
discussed in [1].

3.4 Complexity of the algorithm

The complexity for the ASAP and ALAP schedules is known to be
O(V + E) [5]. Assuming that n is the number of candidate clock
lengths, complexity of evaluating the activity factor is O(n): The
number of points (clock values) searched is

n =
X
i

nj
delayi

minclock

ko
+ 1; (9)

where minclock is the minimum value of the clock length feasible.
The critical paths in the unconstrained scheduled graph or the

sequencing graph are the longest paths from the source to the sink.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Table 1: Delays for functional units

FUi delay (ns)

multiplier 163
adder 48

subtractor 56

Table 2: Slack for different clocks

clk (ns) mult (ns) add (ns) sub (ns)

163 0 115 107
82 1 34 26
81.5 0 33 25.5
56 5 8 0
55 2 7 54
54.33 0 6.33 52.66
48 29 0 40
41 1 7 26
40.75 0 33.5 25.5
33 2 18 10
32.59 0 17.19 9.19
28 5 8 0
27.16 0 6.33 25.5
24 5 0 16
23.28 0 21.85 13.85
21 5 15 7
20.37 0 13.12 5.12

The problem of finding all the critical paths thus reduces to a prob-
lem of finding single source all possible longest paths in the orig-
inal graph. However, in our approach, we consider only the edge
disjoint paths formed by the critical nodes in the graph.

4 Experiments and discussion

In this section, we present experimental results of our technique
used on five benchmarks: the AR-lattice filter ARFILTER [8],
the Elliptic Wave Filter EWF [15], the Discrete Cosine Trans-
form DCT [12], the FDCT [1] and the F2 [6] benchmarks. With
each benchmark, the heuristic computes the weighted average slack
function (abbreviated as CPWslack) and the activity factor, (�CPW)
for each value of the candidate clock lengths. First, we present re-
sults where chaining of operations is not considered. We used the
VDP100 mudule library [10]; the delays of the operations from the
VDP100 library that we used in our experiments are shown in Ta-
ble 1. Table 2 shows the slacks of the different operations under var-
ious clock values. Tables 3, 4, 5, 6 and 7 show the performance of
the heuristic. The values in boldface in each table show the best re-
sults. Note that these tables assume integral values for clock length.
Our technique also works with non-integral clocks. However, the
results for this have been omitted for lack of space.

For a comparison with the approach in [3], the values of the
average slack over all operations abbreviated as CGslack and the
corresponding activity factor �CG have also been tabulated. In this
paper, the slack on the operations is weighted by the frequency of
operations in the critical path. Since the schedule length of a se-
quencing graph is dependent on the length of the critical path, the

Table 3: Slack results for ARFILTER for integral clocks

clk (ns) CGslack (ns) �CG CPWslack (ns) �CPW

163 49.45 0.70 71.87 0.56
82 15.19 0.81 21.62 0.74
55 4.15 0.92 5.12 0.91
48 16.53 0.65 10.87 0.77
41 15.19 0.63 21.62 0.47
33 8.88 0.73 12 0.64
28 6.29 0.77 6.87 0.75
24 2.85 0.88 1.87 0.92
21 9.3 0.56 11.25 0.46

Table 4: Slack results for DCT for integral clocks

clk (ns) CGslack (ns) �CG CPWslack (ns) �CPW

163 55.15 0.66 94.57 0.42
82 15.97 0.80 27.18 0.67
56 5.27 0.91 6.17 0.89
55 11.50 0.79 14.02 0.74
48 20.79 0.57 11.52 0.76
41 15.97 0.61 27.18 0.34
33 8.64 0.74 14 0.57
28 5.27 0.81 6.17 0.78
24 4.95 0.79 3.5 0.85
21 8.70 0.59 12 0.43

algorithm tries to minimize the slack on the operations in the crit-
ical path by zeroing out the slack on the most frequent operation.
It assumes the availability of unlimited number of resources. This
is in contrast to the approach in [1] where clock selection is based
on exact scheduling under constraints. Our approach tries to extract
some essential information from the structure of the DFG by em-
phasizing on the operations on the critical paths. A sample critical
path in ARFILTER is shown in Figure 2.

In addition to the heuristic for clock selection, we compared the
effect of our clock selection with the approach in [1], which com-
putes exact values of clocks using very expensive procedure. The
optimal solutions have been evaluated for some typical resource
vectors for two benchmarks ARFILTER and EWF as shown in
Table 8 and Table 9. The clock selected by our technique is shown
in boldface. It can be noted that an optimal value of the clock for
the least schedule length depends on the resource constraint and
if sufficient resources are available, then the optimal value of the
clock would approach the value computed in our approach as the
best value of the clock computed by the heuristic assumes unlim-
ited resources.

To illustrate this point, we compared our solutions to a full 3-
D design space exploration used by Chaudhuri et al. [4]. Consider
the exact RCS solutions in Table 8 and the heuristic solutions for
integral clocks for the critical path weighted case in Table 3. The
best value for clk found by the heuristic is 24ns (for maximum
value of �CPW). It can be seen from exact RCS solutions, in most
cases, the same value of 24ns is the optimal result. The next best
(or comparable) value of the clock in terms of the total schedule
length (in ns) according to the heuristic is 55ns which is also the
next best value as evaluated by exact RCS solutions. In contrast
to this, if we consider the values for �CG (based on the approach

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Table 5: Slack results for F2 for integral clocks

clk CGslack �CG CPWslack �CPW

163 83.95 0.48 76.65 0.53
82 25.09 0.69 23.00 0.72
56 7.19 0.87 7.00 0.87
55 5.65 0.90 5.33 0.90
48 7.83 0.84 9.66 0.80
41 25.09 0.39 23.00 0.44
33 13.68 0.58 12.66 0.62
28 7.19 0.74 7.00 0.75
24 1.35 0.94 1.66 0.93
21 12.30 0.41 11.66 0.44

Table 6: Slack results for FDCT for integral clocks

clk (ns) CGslack (ns) �CG CPWslack (ns) �CPW

163 68.82 0.58 77.19 0.53
82 18.98 0.77 20.64 0.75
56 4.38 0.92 3.7 0.93
55 19.67 0.64 26.42 0.52
48 23.42 0.51 27.23 0.43
41 18.98 0.54 20.64 0.50
33 9.44 0.71 9.74 0.70
28 4.38 0.84 3.7 0.87
24 6.86 0.71 8.73 0.64
21 8.72 0.58 8.61 0.59

in [3]) in Table 3, the value of 55ns is a better clock than 24ns
since �CG(55) > �CG(24). This is in contrast with the exact RCS
solutions in Table 9 since the clock length of 24ns results in the
fastest schedule.

Thus, the definition of average slack along critical path as well
as relating the slack to the fraction of useful clock is a better mea-
sure for the selection of near-optimal clock length. Such an ap-
proach showed that the results obtained are no worse than the ap-
proach in [3].

4.1 Additional Issues

There are some additional engineering issues that affect the choice
of clock length. Firstly, if the number of clock steps is large al-
though the actual time to schedule is lesser, a larger and more com-
plex controller might be required. Secondly, although we have
based our approach of selection of a near-optimal clock on the ac-
tivity factor, �, and the experimental results obtained compare very
well with the exact RCS solutions as illustrated earlier, such an ap-
proach may not always yield the best practical value of the clock
length.

Consider two clock lengths clk1; clk2 where clk1 > clk2; let
the activity factors corresponding to these clock values be such
that �(clk2) > �(clk1) and the latency �(clk1) > �(clk2). Al-
though our method would choose clk2 to be the optimal value of

the clock, if the fraction,
�(clk1)� �(clk2)

�(clk2)
! � (� being a very

small value), and the number of control steps for scheduling using
the clock value clk2 is greater than the clock clk1, then designing a

Table 7: Slack results for EWF for integral clocks

clk (ns) CGslack (ns) �CG CPWslack (ns) �CPW

163 87.16 0.46 90.27 0.45
82 25.83 0.68 26.9 0.67
56 6.99 0.87 7.35 0.87
55 7.19 0.87 5.92 0.89
48 7.87 0.84 6.23 0.87
41 25.83 0.37 26.9 0.34
33 13.90 0.58 14.56 0.56
28 6.99 0.87 7.35 0.74
24 1.63 0.93 1.07 0.95
21 12.31 0.41 12.85 0.39

Table 8: RCS results without chaining for EWF

1*,2+ 2*,2+ 3*,3+
clk ns (steps) ns (steps) ns (steps)
163 2608 (16) 2608 (16) 2282 (14)
82 1804 (22) 1476 (18) 1476 (18)
55 1650 (30) 1210 (22) 1210 (22)
48 1824 (38) 1248 (26) 1248 (26)
41 1804 (44) 1476 (36) 1476 (36)
33 1716 (52) 1320 (40) 1320 (40)
28 1680 (60) 1232 (44) 1232 (44)
24 1632 (68) 1152 (48) 1152 (48)
21 1722 (82) 1302 (62) 1302 (62)

controller for clk1 will be better because of practical design issues
like size and complexity of the controller.

We have looked at finding a near-optimal value of the clock
length based on minimizing the critical path weighted average slack
in a given time step and then relating this particular value of slack
to the activity factor. Another important issue that affects clock se-
lection related to power dissipation in a VLSI circuit is discussed
in [14]. As the number of clock cycles increases, the clock distri-
bution network in the circuit is repeatedly charged and discharged
which leads to increased power consumption. Larger clock cycles
may result in fewer state transitions leading to a smaller controller,
and hence a reduction in controller power. On the other hand, larger
clock allows for chaining of functional units and since their outputs
can cause glitches, it results in increased glitching power consump-
tion.

4.2 Summary of results

The trend of the results obtained from this method of clock selection
compared quite well with the exact solution technique discussed in
[1]. The clock selection methodology discussed in this paper also
allows for non-integral clock lengths as opposed to the approach in
[1] which formulates the problem for integral clock lengths only.
For evaluating the performance of our approach, the delays of the
various functional units used are shown in Table 1. The slack on dif-
ferent functional unit types for various candidate clock lengths are
shown in Table 2. The highlight of our technique is the weighting of
the slack function by the frequency of the occurrence of operations
in the critical path in a data flow graph thus taking into account the
structure of the graph in some form. We also define a term called
activity factor, �, which can be thought of as the useful work done

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Table 9: RCS results without chaining for ARFILTER

1*,2+ 2*,4+ 4*,2+ 6*,3+ 6*,4+
clk ns (steps) ns (steps) ns (steps) ns (steps) ns (steps)
163 2119 (13) 1630 (10) 1304 (8) 1304 (8) 1304 (8)
82 1640 (20) 1558 (19) 902 (11) 902 (11) 902 (11)
55 1595 (29) 1485 (27) 825 (15) 770 (14) 770 (14)
48 1776 (37) 1680 (35) 912 (19) 816 (17) 816 (17)
41 1640 (40) 1558 (38) 902 (22) 902 (22) 902 (22)
33 1650 (50) 1518 (46) 828 (26) 825 (25) 825 (25)
28 1624 (58) 1512 (54) 840 (30) 784 (28) 784 (28)
24 1584 (66) 1488 (62) 816 (34) 744 (31) 744 (31)
21 1659 (79) 1533 (73) 861 (41) 819 (39) 819 (39)

in a clock cycle. The method has also been extended to include two
basic types of chaining. Using � as the figure of merit for optimal
clock selection, we see from Table 8 and Table 9 that the clock value
for which the total schedule time is the least is the same as the clock
value for which the � is maximum. An important point can be high-
lighted by analyzing the results forARFILTER from table 3. The
activity factor for clock value 24 ns (�=0.92) is marginally greater
than that for 55 ns (�=0.91). From Table 9, it can be noted that for a
resource constraint of h1�; 2+i, the completion time (in ns) for the
clock value of 24 ns is the least but the scheduling time (in ns) for
a clock of 55 ns is only 11 ns greater, more importantly, the number
of clock steps corresponding to a clock value of 55 ns is only 29
steps as compared to 66 steps for clock value of 24 ns. This makes
55 ns as a better value of clock from controller design point of view.
In this respect, we can say that for two clock values clk1 and clk2,
if clk1 > clk2, �(clk1) ' �(clk2) and �(clk1) � �(clk2) ! �
(where � is a small value as compared to the schedule lengths given
by �(clk1) and �(clk2)), then a higher value of clock length, clk1,
would lead to a lesser number of time steps. This is better in terms
of minimizing the number of states for the finite state machine con-
troller.

5 Conclusion

This paper presented a critical-path based heuristic for clock se-
lection in high-level synthesis. Extensive experimental results on
several benchmarks shows that our approach is very fast in prac-
tice and produces the optimal solutions in most cases. This would
enable fast design space exploration that simultaneously considers
area, latency, and clock length. Note that our goal here is to re-
duce the amount of computation required in the rest of the phases
of design space exploration. Our appraoch considers only the op-
erations on critical paths and does not consider the effect of the
number of resources (also referred to as resource allocation). Based
on the experiments with benchmark examples, we have found that
the clock value determined by our technique is close to the opti-
mal clock value. We are currently working on exploring the incor-
poration of the effects of non-critical operations and inlcuding the
effect of resource allocation [11] (in particular through the use of
bounds). Work is also in progress on extending our technique to
include module selection, and to include the effects of the control
circuit parameters.

Acknowledgments J. Ramanujam has been supported in part
by NSF Young Investigator Award 9457768 and NSF grants 0073800
and 0121706. Mahmut Kandemir is supported in part by NSF CA-
REER award 0093082.

References

[1] Stephan A. Blythe and Robert A. Walker. Toward a practical method-
ology for completely characterizing the optimal design space. In
Proceedings of the 9th International Symposium on System Synthesis,
pages 8–13, La Jolla, CA, Nov 1996. ACM-IEEE.

[2] R. Camposano and W. Wolf. High-Level VLSI Synthesis. Kluwer Aca-
demic, 1991.

[3] En-Shou Chang, Daniel D. Gajski, and Sanjiv Narayan. An optimal
clock period selection method based on clock slack minimization crite-
ria. ACM Trans. Design Automation of Electronic Systems, 1(4):352–
370, July 1996.

[4] Samit Chaudhuri, Stephan A. Blythe, and Robert A. Walker. A solu-
tion methodology for exact design space exploration in a three dimen-
sional design space. IEEE Transactions on Very Large Scale Integra-
tion, 5(1):0–0, Mar 1997.

[5] G. De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[6] Design Automation Group WWW Server. Online Neat Sources:
http://www.es.ele.tue.nl/neat. Eindhoven University of Technology,
pre-release edition, 1994.

[7] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Synthesis: Intro-
duction to Chip and System Design. Kluwer Academic, 1992.

[8] R. Jain, A. Parker, and N. Park. Predicting area-time tradeoffs for
pipelined design. In Proceedings of the 24th ACM/IEEE Design Au-
tomation Conference, pages 35–41, Miami Beach, June 1987. ACM
and IEEE Computer Society.

[9] Youn-Long Lin. Recent developments in high-level synthesis. ACM
Trans. Design Automation of Electronic Systems, 2(1):2–21, Jan. 1997.

[10] S. Narayan and D.D. Gajski. System clock estimation based on clock
slack minimization. In Proceedings of the European Design Automa-
tion Conference, pages 66–71, Hamburg, September 1992. IEEE Com-
puter Society Press.

[11] A. Naseer, M. Balakrishnan, and Anshul Kumar. Optimal clock period
for synthesized data paths. In Proc. 10th International Conference on
VLSI Design: VLSI in Multimedia Applications, pp. 134–139, IEEE
Computer Society Press, 1997.

[12] J.A. Nestor and G. Krishnamoorthy. Salsa: A new approach to
scheduling with timing constraints. In Digest of Technical Papers of
the IEEE International Conference on Computer-Aided Design, pages
262–265, Santa Clara, November 1990. IEEE Computer Society Press.

[13] P.G. Paulin, J.P. Knight, and E.F. Girczyc. Hal: A multi-paradigm ap-
proach to automatic data path synthesis. In Proceedings of the 23th
ACM/IEEE Design Automation Conference, pages 263–270, Las Ve-
gas, June 1986. ACM and IEEE Computer Society.

[14] Anand Raghunathan, Niraj K. Jha, and Sujit Dey. High-level Power
Analysis and Optimization. Kluwer Academic Publishers, 1998.

[15] D.E. Thomas, E.D. Lagnese, R.A. Walker, J.A. Nestor, J.V. Rajan, and
R.L. Blackburn. Algorithmic and Register-Transfer Level Synthesis:
The System Architect’s Workbench. Kluwer Academic, 1990.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

