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Abstract

An important class of problems used widely in both the embedded
systems and scientific domains perform memory intensive compu-
tations on large data sets. These data sets get to be typically stored
in main memory, which means that the compiler needs to gener-
ate the address of a memory location in order to store these data
elements and generate the same address again when they are sub-
sequently retrieved. This memory address computation is quite
expensive, and if it is not performed efficiently, the performance
degrades significantly. In this paper, we have developed a new
compiler approach for optimizing the memory performance of sub-
scripted or array variables and their address generation in stencil
problems that are common in embedded image processing and other
applications. Our approach makes use of the observation that in all
these stencils, most of the elements accessed are stored close to one
other in memory. We try to optimize the stencil codes with a view of
reducing both the arithmetic and the address computation overhead.
The regularity of the access pattern and the reuse of data elements
between successive iterations of the loop body means that there is
a common sub-expression between any two successive iterations;
these common sub-expressions are difficult to detect using state-of-
the-art compiler technology. If we were to store the value of the
common sub-expression in a scalar, then for the next iteration, the
value in this scalar could be used instead of performing the compu-
tation all over again. This greatly reduces the arithmetic overhead.
Since we store only one scalar in a register, there is almost no reg-
ister pressure. Also all array accesses are now replaced by pointer
dereferences, where the pointers are incremented after each itera-
tion. This reduces the address computation overhead. Our solution
is the only one so far to exploit both scalar conversion and common
sub-expressions. Extensive experimental results on several codes
show that our approach performs better than the other approaches.

1 Introduction

Optimizing compilers have become an essential component of em-
bedded and high-performance computer systems. In addition to
translating the input program into machine language, they analyze
it and apply various transformations to reduce its running time or
its size. As optimizing compilers become more efficient, program-
mers can become less concerned about the details of the underlying
machine architecture and can apply higher-level, more succinct and
more intuitive programming constructs and program organizations.
Simultaneously, hardware designers are able to employ designs that
yield greatly improved performance because they need to only con-
cern themselves with the suitability of the design as a compiler tar-
get and not with its suitability as a direct programmer interface.
The emergence of embedded systems or the system-on-chip has
also placed a high burden on the effectiveness of the code optimiza-
tion performed by compilers. Embedded systems generally have
tailor-made architectures for specific applications including special
instruction sets with a goal of reducing the time/power of execu-
tion. These systems generally offer long compilation time where the
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Figure 1: Commonly Observed Stencils.

original program can be analyzed deeply and then be transformed
to one that performs better. The recent boom of their usage in cel-
lular phones and DSP applications is proof of the validity of this
approach.

An important class of problems used widely in both the em-
bedded systems and scientific domains perform memory intensive
computations on large data sets. These data sets get to be typically
stored in main memory. The storage of these data sets in memory
means that the compiler needs to generate the address of a mem-
ory location in order to store these data elements and generate the
same address again when they are subsequently retrieved. As we
shall see, this operation of memory address computation is quite re-
source intensive and degrades the overall performance significantly
if not performed efficiently.

An important feature of the class of problems considered in this
paper is the regularity exhibited by their access patterns. A regular
problem can be characterized by its corresponding stencil. Figure 1
illustrates some of the commonly found stencils.

In this paper, we present an approach of optimizing the address
generation of these stencil problems. Our approach makes use of
the observation that in all these stencils, a significant fraction of the
elements accessed are stored close to one other in memory. The
main contributions of this paper is optimization technique that re-
sults in the following:

e climinating redundant arithmetic computation by recogniz-
ing and exploiting the presence of common sub-expressions
across different iterations in stencil codes; and

e conversion of as many array references to scalar accesses as
possible, which leads to reduced execution time, decrease in
address arithmetic overhead, access to data in registers as op-
posed to caches, etc.

The rest of this paper is organized as follows. In Section 2, we
present the relevant background and the motivation for this paper.
In Section 3, we discuss our approach to optimize the address gen-
eration for stencil codes. We also present some results that illustrate
the validity of our approach. Section 4 summarizes and concludes
the paper.
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2 Background And Motivation

Loop nests form an integral part of embedded codes. These basi-
cally consist of the same series of operations being performed on
different sets of data elements. The data elements are usually de-
clared as array data types. The main advantage of this is that they
allow the programmer to concentrate on the functionality of the pro-
gram instead of worrying about the storage pattern of these data in
hardware and their subsequent retrieval. It is up to the compiler to
provide the necessary support by retrieving the data elements from
the memory locations where they may be stored. As we shall see
this retrieval of data is not a trivial function. In most cases it is this
part of the program that has the most bearing on its performance,
especially on those programs that work with large data sets. The
compiler has to perform some optimizations on the code if the per-
formance of the program has to improve. In the following pages,
we look at one such optimization that will improve the performance
of memory intensive programs.

2.1 Array Mappings

An array data type is typically stored in memory as a contiguous
block of memory locations. For example a single dimensional array
a[N] (‘array ’a’ contains N elements) is stored as a single contigu-
ous block of N memory locations.If the address of the first element
is denoted by BaseAddress( A) the address of the last element is
BaseAddress( A) + N -1. For simplification of the discussion, we
have assumed that each array element occupies one memory word,
although this assumption is not necessary for our subsequent anal-
ysis.

A two-dimensional array blROW][COL] occupies ROW * COL
memory locations. Two popular approaches to mapping two dimen-
sional arrays to hardware are Row-Major order and Column-Major
Order. In the Row-Major method of storage, elements of the first
row are placed in consecutive memory locations in order of increas-
ing column index. This is followed by elements of the second row
in the same order and so on. For the Column-Major method of stor-
age, elements of the first column are stored in consecutive memory
locations in order of increasing row index. Most high level lan-
guages impose a particular type of storage order on arrays. For
example languages like C impose a Row-Major order of storage on
all arrays while languages like FORTRAN impose a Column-Major
order of storage. Figure 2 shows the different ways in which arrays
are stored in memory.

2.2 Relevant Terminology

Access to an array is denoted by its name and a subscript. For ex-
ample a single dimensional array ’a’ can be accessed as a[0], a[1]
etc.. where ’0’, ’1’, etc are the subscripts of the array. These sub-
scripts are actually the positions of data inside the array, measured
from the beginning of the array. Thus the access a[i] is the access to
a data at a distance of ’i’ elements from the start of the array. The
memory address where a[i] is stored can be calculated as:

BaseAddress(a) + i. (1)

A two-dimensional array has both a length and a breadth and its
access is denoted by bli][j], where i’ is the row subscript and ’j’
is the column subscript. Again the memory address where b[i][j] is
stored can be calculated as:

BaseAddress(b) + (number ofolumns inb  x1i) +j. (2)

This method of address calculation assumes a row major order of
memory storage. This assumption is followed throughout this paper
unless mentioned otherwise.

X X+N-1

HEEEE |

Single dimensional storage

—>

Row Major Order Column Major Order

Figure 2: Storage pattern of Arrays in Memory.

2.3 Performance Issues: Overview

Most memory intensive applications are characterized by some com-
mon features such as loop nests and the usage of large data blocks
that are usually stored in memory as arrays. The presence of these
traits mean that the performance is dependent on the speed of re-
trieval and subsequent storage of data elements in memory. Most
modern processors feature one or more levels of cache memory.
These cache memories speed up data retrieval by storing frequently
accessed data closer to the processor where they may be accessed
at high speeds. Another important performance bottleneck is the
problem of memory address computation. As we have already seen,
mapping a logical array to hardware means that the data values are
stored at some pre-determined memory location. When ever this
data has to be retrieved, the same address has to be generated. This
is not a trivial problem and is quite computation intensive. For each
access to the elements of the array the compiler has to generate an
address according to Equation 2. It then has to generate a load in-
struction with this address. As the memory subsystem is slow when
compared to the processor, it takes a significant amount of time be-
fore this load instruction may be serviced.

Modern compilers perform optimizations on the original code to
improve their performance. Tiling is a well-known example. Tiling
reduces the iteration space over which reuse of data occurs and help
in utilizing the cache memory to the best possible extent. Loop un-
rolling is another optimization that improves the performance by
reducing the loop overhead, increasing the instruction level paral-
lelism and improving the register and data cache locality.

In the following subsection we examine an example memory
intensive code segment and discuss the implications of this segment
with respect to memory address computation.

2.4 Motivating Example

Consider the loop nest given below and its memory access pattern.
Here N is the size of the array along its length.
for(i=3;i <N -3;i++) {

bli] = ( a[i-3] + a[i-2] + a[i-1] + a[i] + a[i+1] + a[i+2] + a[i+3]) /7 ;
}

Such loop nests are called stencil codes because they compute
values using neighboring array elements in a fixed stencil pattern.

This stencil pattern of data accesses is then repeated for each el-
ement of the array. For instance, the above loop nest consists of
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Figure 3: Access pattern for the motivating example

a simple 7 point stencil in one dimensions as shown in figure 3.
On each loop iteration, seven neighboring elements of the array are
accessed and their sum calculated. As the computation progresses,
the stencil pattern is repeatedly applied to array elements in the row,
sweeping through the array. Such kind of loop nests are very popu-
lar in image processing applications.

At first glance, it is immediately obvious that we are trying to
access 7 elements of the single dimensional array ’a’ , all at differ-
ent locations, in successive iterations. Thus we need to perform 7
address computations to retrieve the data from the memory. Most
traditional compilers tend to store the base address of array ’a’ in a
register. Access to different elements of this array means the com-
putation of the memory addresses using Equation 1. The compu-
tation of the sum of these 7 elements is also not a trivial opera-
tion. Since these operations need to be performed for each iteration
of the loop, the number of total computations to be performed for
even small values of N is quite exhaustive and could degrade per-
formance if not performed efficiently.

In the next subsection, we take a close look at some popular
approaches to make the above example more efficient. In Section
3, we present our approach of using pointers to access the data el-
ements. Lastly we present a summary of the results for our new
technique that demonstrates the effectiveness of it.

2.5 Related Work

Specialized hardware has been used for reducing address arithmetic
overheads [8], but this leads to increased design complexity and
cost. In addition, several authors have addressed the problem of
laying out scalar variables to make effective use of address genera-
tion units in embedded processors [10]. The IMEC group has used
several transformations and advocated the use of special hardware
for reducing the effect of address arithmetic overhead [4, 6, 13, 14].
Gupta etl al. [7] have used induction variable analysis and optimiza-
tion to improve the performance of address arithmetic.

Rivera and Tseng present algorithms for loop tiling for 3D sten-
cil codes. They argue that since the working set is small for 2D
stencil codes, tiling in not necessary as the data fits within the data
cache. However for 3D stencil codes, the larger working set justify
loop tiling. They then look at algorithms to find the tile sizes that
would utilize the data cache to the optimal extent. They also look
at inter array padding to reduce the cross interference and self inter-
ference misses that might occur. This approach helps in improving
the performance by speeding up data retrieval. This is because most
machines take a long time to service a secondary memory load op-
eration. So tiling loops to reuse data in the cache reduces the time
spent on this operation because in most machines the data cache op-
erates at processor speed. However this approach does not address

Iteartion 1

Tteration 2

Iteration 3

Figure 4: Access pattern for the motivating example.

the actual arithmetic computation, which we have seen has a large
impact on performance.

Callahan et al. [3] (and Liu’s group [11, 12]) present a tech-
nique for register allocation of subscripted variables. They argue
that most compilers do not allocate array elements to registers be-
cause standard data-flow analysis make it difficult to analyze the
definitions and uses of individual array elements. They then discuss
an approach of replacing subscripted variables by scalars to effect
reuse. The subsequent code is then modified to use the data ele-
ments stored in these scalars. The advantage of this approach is that
all array variables are replaced by scalars that are then mapped to
registers. In successive iterations, those variables which are reused
can be accessed from registers directly. This improves performance
because it eliminates the address calculation overhead. Replacing
array variables by scalars means that the cache configuration does
not degrade performance significantly. This is because all variables
that are reused are present in registers and reused data is no longer
accessed via the cache mechanism. This approach does improve
the performance to a large extent. However the arithmetic overhead
involving the actual data elements still remains. Another problem
is that of register pressure. By mapping the scalars to registers, we
use up a lot of registers. If the amount of reuse is large, the register
pressure builds up and can significantly degrade the performance.

In contrast to these works, we present a technique that (i) elimi-
nates redundant arithmetic computation by recognizing and exploit-
ing the presence of common sub-expressions across different iter-
ations in stencil codes; and (ii) converts as many array references
to scalar accesses as possible, which leads to a significant improve-
ment.

3 A Pointer Approach to Array Accesses

As seen in Section 2, the overheads involved in stencil codes in-
volve both the pure arithmetic overhead and the address overhead.
The pure arithmetic overhead involves the actual computation us-
ing the data elements. The address overhead involves computing
the memory location where each data element is stored. In this sec-
tion, we take a look at our approach to improve the performance of
stencil codes. We take a look at how our approach decreases the
overheads and finally we present some results to justify the validity
of our approach.

3.1 Memory Access Patterns

Let us again consider the loop nest and the memory access pattern
described in the previous section. Figure 4 shows the access pat-
tern. From the figure it is clear that there are a number of data
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elements that are reused. Callahan et al. [3] make use of this fea-
ture to replace these array accesses by scalars. This means that in
successive iterations, we can directly use the values stored in these
scalars instead of accessing the array again. However for new data
elements that are needed, we still use array accesses. The effec-
tive goal of the code segment described in the previous section is
to calculate the sum of seven data elements, the elements moving
along the array across successive iterations. From Figure 4, an-
other thing that can be seen is that as many as five data elements are
reused across any two iterations. This means that the sum of these
five elements is a common sub-expression in the arithmetic com-
putation across any two successive iterations. If we were to store
the value of the common sub-expression in a register, then across
iterations the amount of arithmetic computation needed would be
greatly decreased. Storing the common sub-expression in a register
also decreases the number of scalars that we operate with. This cor-
respondingly means that there is almost no register pressure unlike
the other approaches that we described. In each iteration, we also
access the new data elements that we need using pointers instead of
array accesses. This helps a lot in improving the performance be-
cause the memory address computation overhead that we described
has now been eliminated.

3.2 Algorithm
The algorithm consists of the following steps:

1. From the access pattern of the loop, find the common sub-
expression (CSE) across any two successive iterations.

2. Initialize the CSE at the beginning of the loop body.
3. Modify the loop body to use the value of this CSE.
4. In each iteration, update the value of the CSE.

5. Replace all array accesses by pointer dereferences.

Given a loop nest, the algorithm first looks at the access pattern
of the array elements involved. From this access pattern, we pick
out the common sub-expression that exists between any two succes-
sive iterations. This common sub-expression is effectively a scalar
variable that has been mapped to a register. This scalar is initial-
ized at the beginning of the code segment. The rest of the code
is then modified to use the value of the common sub-expression.
Using this value means that the amount of arithmetic computation
involved is decreased significantly. The common sub-expression is
also updated in each iteration. New data elements that are needed
in each iteration are accessed by pointer dereferences. Using point-
ers to access data elements improves the performance by reducing
the memory address computation overhead. This approach to sten-
cil codes makes full utilization of the spatial locality exhibited by
these stencil codes.

3.3 Experimental Results

We made the modifications as determined by our algorithm on some
popular loop nests. These included some scientific problems ex-
hibiting regular computational patterns. Most of these patterns are
given in section 1. We also modified the loop nests by using Calla-
han et al.’s approach [3].

The original and modified codes were then timed over 100 runs
and averaged. We increased the array dimensions over a wide range
of values and measured performance over this range. We plotted
graphs for the original code and the modified codes using both
Callahan et al.’s approach and ours. This helps us to compare the
performance improvements on the original code as a result of the
optimizations using both the approaches. On the X-axis we plotted
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Figure 5: Results for the 9 point cross stencil.

the array dimension and on the Y-axis we plotted the time taken in
seconds to fully execute the code segment for that value of array di-
mension. In the following pages, we show the performance graphs
that we plotted. On the top of each page, we also show the sten-
cil pattern over which the performance was evaluated. This shows
the performance improvements attained by using Callahan et al.’s
approach [3] and our approach over the original code segment.

Figure 5 shows the performance of both the original and the
modified 9 point 2D stencil codes over a wide range of array di-
mensions. The performance improvements for both Callahan et
al.’s optimizations [3] and ours are about 100 percent for most array
dimensions. When the code is compiled using the default com-
piler options, the compiler performs almost no optimizations on its
own. The arithmetic and the address computation overheads are
quite huge and have a large impact on the performance. The op-
timized codes on the other hand, perform much better because the
overheads have been reduced to a large extent. We can see that our
approach at optimizing the code results in an improvement of about
10% to 20% for most array dimensions. This is because, we have
reduced the pure arithmetic overhead to a larger extent than that was
done by the other approach.

In the rest of the pages, we show the results of our approach
on most of the regular stencil patterns shown in Section 1. Again
for all these stencil patterns too, we analyze the performance using
both the default and the best compiler options available. The graphs
show clearly that our approach at optimization is better than than the
one proposed by Callahan et al. [3].

3.4 Summary of the Experimental Results

The graphs plotted in the previous pages show the performance
of the naive code using the default and the best compiler options.
These options are selected by the compiler so that the resulting ap-
plication performs at its best. The graph of the naive code provides
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Figure 6: Results for the 13 point star stencil.

us with a benchmark to compare results. We then used Callahan
et al.’s approach [3] to optimize the naive code further. This again
was compiled using the default and the best compiler options. The
resulting code performed much better than the naive code. This was
because it succeeded in reducing some of the overheads that we had
described. We then used our approach to optimize the naive code
, again with a view of reducing the overheads. We also plotted the
graphs for our approach. Plotting the graphs for all the approaches
on the same page gives us an effective way of comparing the per-
formance improvements. As expected the optimized code performs
much better than the naive code. Also we can see that out approach
at optimizing the code performs much better than the approach pro-
posed by Callahan et al. The performance improvement between
these two approaches is as much as 10-20 percent for most array
dimensions.

4 Conclusion and Future Work

In this paper, we focused on optimizing codes that exhibit regular
access patterns. These codes are called stencil codes. These code
segments have two major overheads: (i) the pure arithmetic compu-
tation overhead and (ii) the memory address computation overhead.
It it these overheads that determine the performance of these code
segments. Callahan et al. [3] propose an approach to optimize these
stencil codes and thereby improve their performance. They replace
all subscripted array variables by scalars, thereby effecting reuse of
these scalar variables. These scalar variables are then mapped to
registers. Subsequent reuse of these data elements means that they
can be directly accessed from registers instead of through the cache
mechanism. This means that loads of all reused data elements can
be serviced at processor speed instead of having to deal with cache
conflicts and subsequent loads from secondary memory. This ap-
proach results in a good improvement in performance because the

OCee®e®OO
ol N N N N N
L N NeN N N J
Ceee®eeO
OCe®e®OO0

Hexagonal Stencil

Time in seconds

0 I I I I I
1000 1500 2000 2500 3000 3500 4000
Array Dimension

Original Code.
Callahan Approach.

,,,,,,,,,,,,,,,,,,, Our Approach.

Figure 7: Results for the hexagonal stencil.

memory address computation overhead has been reduced. How-
ever the major disadvantage with this approach is that because of
the large number of data elements that might be reused, the number
of scalars that will be needed is also large. This creates a lot of reg-
ister pressure which then starts to degrade performance. Also this
approach does not seek to reduce the pure arithmetic computation
overhead.

We have presented an approach to optimize stencil codes with
a view of reducing both the arithmetic and the address computation
overhead. The regularity of the access pattern and the reuse of data
elements between successive iterations of the loop body means that
there is a common sub-expression between any two successive iter-
ations. If we were to store the value of the common sub-expression
in a scalar, then for the successive iteration, the value in this scalar
could be used instead of performing the computation all over again.
This greatly reduces the arithmetic overhead. Since we store only
one scalar in a register, there is almost no register pressure. Also
all array accesses are now replaced by pointer dereferences. This
reduces the address computation overhead. These optimizations
helped to improve the performance of the stencil codes to a large
extent. We also compared the performance with some other popu-
lar approaches. The results in Section 3 prove conclusively that our
approach was better than the one proposed by Callahan et al. [3].

Work is in progress in integrating the effects of induction vari-
able analysis and optimization, as well as in reducing storage over-
head in non-stencil codes, and in combining these with data layout
optimization techniques.
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