
Data Locality Optimization for Synthesis of Efficient
Out-of-Core Algorithms

Sandhya Krishnan1, Sriram Krishnamoorthy1, Gerald Baumgartner1, Daniel
Cociorva1, Chi-Chung Lam1, P. Sadayappan1, J. Ramanujam2, David E. Bernholdt3,

and Venkatesh Choppella3

1 Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210, USA.

{krishnas,krishnsr,gb,cociorva,clam,saday }@cis.ohio-state.edu
2 Department of Electrical and Computer Engineering

Louisiana State University, Baton Rouge, LA 70803, USA.
jxr@ece.lsu.edu

3 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
{bernholdtde,choppellav }@ornl.gov

Abstract. This paper describes an approach to synthesis of efficient out-of-core
code for a class of imperfectly nested loops that represent tensor contraction com-
putations. Tensor contraction expressions arise in many accurate computational
models of electronic structure. The developed approach combines loop fusion
with loop tiling and uses a performance-model driven approach to loop tiling for
the generation of out-of-core code. Experimental measurements are provided that
show a good match with model-based predictions and demonstrate the effective-
ness of the proposed algorithm.

1 Introduction

Many scientific and engineering applications need to operate on data sets that are too
large to fit in the physical memory of the machine. Some applications process data
by streaming: each input data item is only brought into memory once, processed, and
then over-written by other data. Other applications, like Fast Fourier Transform calcu-
lations and those modeling electronic structure using Tensor Contractions, like coupled
cluster and configuration interaction methods in quantum chemistry, employ algorithms
that require more elaborate interactions between data elements; data cannot be simply
streamed into processor memory from disk. In such contexts, it is necessary to develop
so calledout-of-corealgorithms that explicitly orchestrate the movement of subsets of
the data between main memory and secondary disk storage. These algorithms ensure
that data is operated in chunks small enough to fit within the system’s physical memory
but large enough to minimize the cost of moving data between disk and main memory.

This paper presents an approach to automatically synthesize efficient out-of-core
algorithms in the context of the Tensor Contraction Engine (TCE) program synthesis
tool [1, 3, 2, 4]. The TCE targets a class of electronic structure calculations which in-
volve many computationally intensive components expressed as tensor contractions.
Although the current implementation addresses tensor contractions arising in quantum

chemistry, the approach developed here is more general. It can be used to automatically
generate efficient out-of-core code for a broad range of computations expressible as
imperfectly nested loop structures and operating on arrays potentially larger than the
physical memory size.

The paper is organized as follows. In the next section, we elaborate on the out-of-
core code synthesis problem in the computational context of interest. Sec. 3 presents
an empirically derived model of disk I/O costs, that drives the out-of-core optimization
algorithm presented in Sec. 4. Sec. 5 presents experimental performance data on the
application of the new algorithm, and conclusions are provided in Sec. 6.

2 The Computational Context

In this paper we address the data locality optimization problem in the context of disk-to-
memory traffic. Our proposed optimizations are part of the Tensor Contraction Engine,
which takes as input a high-level specification of a computation expressed as a set of
tensor contraction expressions, and transforms it into efficient parallel code. The TCE
incorporates several compile-time optimizations, including algebraic transformations to
minimize operation counts [9, 10], loop fusion to reduce memory requirements [6, 8, 7],
space-time trade-off optimization [2], communication minimization [3] and data local-
ity optimization [5, 4] of memory-to-cache traffic. Although there are many similarities
between the two varieties of data locality optimizations, our previous approach is not
effective for the disk-to-memory context due to the constraint that disk I/O must be in
large contiguous blocks in order to be efficient.

In the class of computations considered, the final result to be computed can be
expressed using a collection of multi-dimensional summations of the product of several
input arrays.

As an example, we consider a transformation often used in quantum chemistry
codes to transform a set of two-electron integrals from an atomic orbital (AO) basis
to a molecular orbital (MO) basis:

B(a,b,c,d) = ∑
p,q,r,s

C1(d,s)×C2(c, r)×C3(b,q)×C4(a, p)×A(p,q, r,s)

Here,A(p,q, r,s) is an input four-dimensional array (assumed to be initially stored
on disk), andB(a,b,c,d) is the output transformed array, which needs to be placed on
disk at the end of the calculation. The arraysC1 throughC4 are called transformation
matrices. In reality, these four arrays are identical; we identify them by different names
in our example in order to be able to distinguish them in the text.

The indicesp, q, r, ands have the same rangeN, denoting the total number of
orbitals, and equal toO+V, whereO is the number of occupied orbitals in the chemistry
problem,V is the number of unoccupied (virtual) orbitals. Likewise, the index ranges
for a, b, c, andd are the same, and equal toV. Typical values forO range from 10 to
300; the number of virtual orbitalsV is usually between 50 and 1000.

The calculation ofB is done in four steps to reduce the number of floating point
operations from the order ofV4N4 in the initial formula (8 nested loops, forp, q, r, s,
a, b, c, andd) to the order ofVN4:

B(a,b,c,d) = ∑
s

C1(d,s)×
(

∑
r

C2(c, r)×
(

∑
q

C3(b,q)×
(

∑
p

C4(a, p)×A(p,q, r,s)

)))

This operation-minimal approach results in the creation of three temporary inter-
mediate arraysT1, T2, andT3: T1(a,q, r,s) = ∑pC4(a, p)A(p,q, r,s), T2(a,b, r,s) =
∑qC3(b,q)T1(a,q, r,s), andT3(a,b,c,s) = ∑r C2(c, r)T2(a,b, r,s). Assuming that the
available memory limit on the machine running this calculation is less thanV4 (which is
3TB forV = 800), any of the logical arraysA, T1, T2, T3, andB is too large to entirely
fit in memory. Therefore, if the computation is implemented as a succession of four in-
dependent steps, the intermediatesT1, T2, andT3 have to be written to disk once they
are produced, and read from disk before they are used in the next step. Furthermore, the
amount of disk access volume could be much larger than the total volume of the data
on disk containingA, T1, T2, T3, andB. Since none of these array can be fully stored
in memory, it may not be possible to perform all multiplication operations by reading
each element of the input arrays from disk only once.

We use loop fusion and loop tiling to reduce memory requirements. To illustrate
the benefit of loop fusion, consider the first two steps in the AO-to-MO transformation:
T1(a,q, r,s) = ∑pC4(a, p)A(p,q, r,s); T2(a,b, r,s) = ∑qC3(b,q)T1(a,q, r,s). Fig. 1(a)
shows the loop structure for the direct computation as a two-step sequence: first pro-
duce the intermediateT1(1 : Na,1 : Nq,1 : Nr,1 : Ns) and then useT1 to produce
T2(1 : Na,1 : Nb,1 : Nr,1 : Ns). We refer to this as anabstractform of a specification
of the computation, because it cannot be executed in this form if the sizes of arrays are
larger than limits due to the physical memory size. We later address the transformation
of abstract forms into concrete forms that can be executed — the concrete forms have
explicit disk I/O statements between disk-resident arrays and their in-memory counter-
parts.

Since all loops in either of the loop nests are fully permutable, and since there are
no fusion-preventing dependences, the common loopsa, q, r, ands can be fused. Once
fused, the storage requirements forT1 can be reduced by contracting it to a scalar as
shown in Fig. 1(b). Although the total number of arithmetic operations remains un-
changed, the dramatic reduction in size of the intermediate arrayT1 implies that it can
be completely stored in memory, without the need for any disk I/O for it. In contrast,
if Na×Nq×Nr×Ns is larger than available memory, the unfused version will require
thatT1 be written out to disk after it is produced in the first loop, and then read in from
disk for the second loop.

The code synthesis process in the Tensor Contraction Engine [1] involves multiple
steps, including algebraic transformation, loop fusion and loop tiling. The loop fusion
and loop tiling steps are coupled together. The fusion step provides the tiling step with
a set of candidate fused loop structures with desirable properties; the tiling step seeks
to find the best tile sizes for each of the fused loop structures supplied, and chooses the
one that permits the lowest data movement cost overall. Our previous work had focused
on tiling to minimize memory-to-cache traffic. In this paper, we describe an approach
to minimize disk I/O time for situations where out-of-core algorithms are needed.

double T1(Na,Nq,Nr,Ns)
double T2(Na,Nb,Nr,Ns)
T1(*,*,*,*) = 0
T2(*,*,*,*) = 0
FOR a = 1, Na

FOR q = 1, Nq
FOR r = 1, Nr

FOR s = 1, Ns
FOR p = 1, Np

T1(a,q,r,s)
+= C4(a,p) * A(p,q,r,s)

END FOR p,s,r,q,a
FOR a = 1, Na

FOR b = 1, Nb
FOR r = 1, Nr

FOR s = 1, Ns
FOR q = 1, Nq

T2(a,b,r,s)
+= C3(b,q) * T1(a,q,r,s)

END FOR q,s,r,b,a

(a) Unfused form

double T1(1,1,1,1)
double T2(Na,Nb,Nr,Ns)
T1(1,1,1,1) = 0
T2(*,*,*,*) = 0
FOR a = 1, Na

FOR q = 1, Nq
FOR r = 1, Nr

FOR s = 1, Ns
FOR p = 1, Np

T1(1,1,1,1)
+= C4(a,p) * A(p,q,r,s)

END FOR p
FOR b = 1, Nb

T2(a,b,r,s)
+= C3(b,q) * T1(1,1,1,1)

END FOR b
END FOR s,r,q,a

(b) Fused code

Fig. 1. Example of the use of loop fusion to reduce memory

We have previously addressed the issue of the data locality optimization problem
arising in this synthesis context, focusing primarily on minimizing memory-to-cache
data movement [5, 4]. In [5], we developed an integrated approach to fusion and tiling
transformations for the class of loops arising in the context of our program synthesis
system. However, that algorithm was only applicable when the sum-of-products ex-
pression satisfied certain constraints on the relationship between the array indices in the
expression. The algorithm developed in [4] removed the restrictions assumed in [5]. Its
cost model was based on an idealized fully associative cache with a line size of one.
A tile size search procedure estimated the total capacity miss cost for a large number
of combinations of tile sizes for the various loops of an imperfectly nested loop set.
After the best combination of tile sizes was found, tile sizes were adjusted to address
spatial locality considerations. This was done by adjusting the tile sizes for any loop
indexing the fastest varying dimension of any array to have a minimum value of the
cache linesize. The approach cannot be effectively used for the out-of-core context be-
cause the “linesize” that must be used in the adjustment procedure would be huge —
corresponding to a minimum disk read chunk-size to ensure good I/O bandwidth.

3 Modeling Performance of Disk I/O

The tile sizes for each array on disk are chosen so as to minimize the cost of I/O for that
array within the memory constraint. The I/O cost is modeled based on empirically de-
rived I/O characteristics of the underlying system. In this section, the I/O characteristics
of the system are discussed and the I/O cost model is derived.

We evaluated the I/O characteristics of a Pentium II system that was available for
exclusive use, without any disk interference from other users. The details of the system
are shown in Table 1. Reads and writes were done for different block sizes at different

Processor OS Compiler Memory Hard disk
Pentium II 300 MHzLinux 2.4.18-3gcc version 2.96128MB Maxtor 6L080J4

Table 1.Configuration of the system whose I/O characteristics were studied.

strides and the per-byte transfer time was measured. The block size was varied from
16KB to 2MB. The strides was set to be multiples of the block size used. The read and
write characteristics are shown in Fig. 2(a) and Fig. 2(b).

The graphs show that reads and writes exhibit different characteristics. This is due
to the difference in their semantics. The cost of reads, which are synchronous, includes
the disk access time (seek time + latency). On the other hand, writes return after copying
the data to a system buffer. The I/O subsystem subsequently initiates writes of the data
from the system buffer to disk. The I/O subsystem reorders the writes, reducing the
average disk access time. The reordering of write requests make the cost of writing data
less dependent on the actual layout of data on disk. For reads, the data transfer for a
requested block can happen before the actual request arrives, due to read ahead, also
called prefetching. Most file systems read ahead to exploit access locality. Read-ahead
leads to lower read costs than write costs.

The read characteristics show a clear difference between sequential access and
strided access even at large block sizes. This effect can be attributed to the presence
of disk access time in the critical path of reads. Also, since the block sizes requested
are large, the disk access time approaches the average disk access time. This additional
cost, incurred for every read request, approximately doubles with halving the block size.

Below a certain block size, the reads do not completely take advantage of read
ahead. For example, with a stride of two, small block sizes lead to only alternate blocks
being used, though contiguous blocks are read into memory by the I/O subsystem. This
has the effect of increasing the total data read. Hence, for smaller block sizes, the cost
per byte increases proportionally with stride.

We model the per-byte cost of I/O as a linear function of block size and disk access
time. Based on the observed trends in disk read time as a function of blocksize and
stride, we develop a model below, for the time to access an arbitrary multi-dimensional
“brick” of data from a multi-dimensional array with a linearized column-major layout
on disk. Access of a brick of data will require a number of disk reads, where each read
can only access a contiguous set of elements on disk.

Let T1, . . . ,T4 be the tile sizes for the four dimensionsN1, . . . ,N4, respectively. The
block sizeBSand strideSof access are determined as follows:

BS=





T1 if T1 < N1

T1∗T2 if T1 = N1 andT2 < N2

T1∗T2∗T3 if T1 = N1 andT2 = N2 andT3 < N3

T1∗T2∗T3∗T4 if T1 = N1 andT2 = N2 andT3 = N3

S=





N1/BS if T1 < N1

(N1∗N2)/BS if T1 = N1 andT2 < N2

(N1∗N2∗N3)/BS if T1 = N1 andT2 = N2 andT3 < N3

(N1∗N2∗N3∗N4)/BS if T1 = N1 andT2 = N2 andT3 = N3

The per-byte cost of reads is formulated as

(a) Strided read times

(b) Strided write times

Fig. 2. Strided read/write times on the Pentium II system.

Cost=

{
(seq+ avg. access time

BS) if BS≥ prefetch size

(seq∗S+ access time
64KB) if BS< prefetch size

where prefetch size is the extent of read ahead done by the I/O subsystem. The average
access time is the sum of average seek time and average latency, as provided in the
specification of the disk andseqis the time per-byte for sequential reads. For the plat-
form under consideration, the read ahead size was determined to be 64KB. The average
access time was found to be 13 milliseconds and the per-byte sequential access time
was determined as 65 nanoseconds.

Writes at different strides have the same cost as sequential writes for large block
sizes. This is due to the fact that writes are not synchronous and no additional cost in
the form of seek time has to be incurred. Below a certain block size, the lack of sufficient

‘locality’ increases the cost from the minimum possible. In contrast to reads, for small
block sizes, the per-byte cost of write steadily increases with stride. This is due to the
reordering of writes by the I/O subsystem, which diminishes the influence of actual of
data layout on disk.

The graph shows a logarithmic relationship between the per-byte write time and the
block size for small block sizes. The per-byte cost for small block sizes is formulated
as a set of linear equations, one for each stride. Each of the equations is a function of
the logarithm of the block size. The per-byte sequential write time on the system under
consideration was determined to be 95 nanoseconds.

4 Out-of-Core Data Locality Optimization Algorithm

4.1 Disk File Layout

Given an imperfectly nested loop structure that specifies a set of tensor contractions,
the arrays involved in the contractions fall into one of three categories:a) input arrays,
which initially reside on disk,b) intermediate temporary arrays, which are produced
and consumed within the specified computation and are not required at the end, andc)
output arrays, which must be finally written out to disk.

If an intermediate array is too large to fit into main memory, it must be written out
to disk and read back from disk later. Since it is a temporary entity, there is complete
freedom in the choice of its disk layout. It is not necessary for it to be represented in any
canonical linearized order such as row major order. A blocked representation on disk is
often advantageous in conjunction with tiling of the loop computations. For example,
consider the multiplication of two largeN×N disk-resident arrays on a system with a
memory size ofM words, whereM<N2. Representing the arrays on disk as a sequence
of k×k blocks, withk2<M/3, allows efficient read/write of blocks of the arrays to and
from disk. We therefore allow the out-of-core synthesis algorithm to choose the disk
representation of all intermediate arrays in a manner that minimizes disk I/O time. For
the input and output arrays, the algorithm can be used in either of these modes:

– The layouts of the input and output arrays areunconstrained, and can be chosen by
the algorithm to optimize I/O time, or

– The input and output arrays areconstrainedto be stored on disk in some pre-
specified canonical representation, such as row-major order.

Even for the arrays that are not externally constrained to be in some canonical disk
layout, some constraints are imposed on their blocked layout on disk and the tile sizes
of loop indices that index them:

– All loop indices that index the same array dimension in multiple reference occur-
rences of an array must be tiled the same. This ensures that multiple reference
instances of an array can all be accessed efficiently using the same blocked units on
disk. Although the blocks of an array may be accessed in a different order for the
different instances due to a different nesting of the loop indices, it is ensured that
the basic unit of access from disk is always the same.

double A(1:Ni,1:Nk)
double B(1:Ni,1:Nj)
double C(1:Nj,1:Nk)

FOR i
FOR j

FOR k
A(i,k) += B(i,j) * C(j,k)

END FOR k, j, i

(a) Abstract code for matrix multiplication.
Ni=Nk=6000, Nj=2000.
Memory limit=128MB.

double MA(1:Ti, 1:Tk)
double MB(1:Ti, 1:Tj)
double MC(1:Tj, 1:Tk)

FOR iT = 1, Ni, Ti
FOR jT = 1, Nj, Tj

FOR kT = 1, Nk, Tk
MA(1:Ti,1:Tk) = Read disk array A(i,k)
MB(1:Ti,1:Tj) = Read disk array B(i,j)
MC(1:Tj,1:Tk) = Read disk array C(j,k)
FOR iI = 1, Ti

FOR jI = 1, Tj
FOR kI = 1, Tk

MA(1:Ti,1:Tk)
+= MB(1:Ti,1:Tj) * MC(1:Tj,1:Tk)

END FOR kI, jI, iI
Write MA(1:Ti,1:Tk) to disk A(i,k)

END FOR kT, jT, iT

(b) Tiled code with all reads and writes immedi-
ately surrounding the intra tile loops.

Fig. 3. Abstract and concrete code for matrix multiplication.

– Array dimensions of different arrays that are indexed by the same loop index vari-
able must have the same blocking. This ensures that the unit of transfer from disk
to memory for all the arrays match the tiling of the loop computations.

Before searching for the optimal tile sizes for the loops, we first need to identify
constraints among loop indices that result from the above two conditions. For com-
puting these constraints, we use a Union-Find data structure for grouping indices into
equivalence classes.

First, we rename all loop indices to ensure that no two loop indices have the same
name. Initially, each loop index is in its own equivalence class. In the symbol table
entry for an array name, we keep track of the index equivalence classes of all array
dimensions. Then, in a top-down traversals of the abstract syntax tree, for every loop
index i and every array referenceA[. . . , i, . . .], we merge the equivalence class ofi with
the equivalence class of the array dimension indexed byi.

The index equivalence classes found by this procedure will be used to constrain the
tile size search, such that all the indices in an equivalence class will be constrained to
have the same tile size.

4.2 Tile Size Search Algorithm

We now describe our approach to addressing the out-of-core data locality optimization
problem:

– Input: An abstractform of the computation for a collection of tensor contractions,
as a set of imperfectly nested loops, operating directly on arrays that may be too
large to fit in physical memory, e.g., as in Fig. 3(a).

– Input: Available physical memory on target system.
– Output: A concreteform for the computation, as a collection of tiled loops, with

appropriate placements of disk I/O statements to move data between disk-resident
arrays to corresponding memory-resident arrays, e.g., as in Fig. 3(b).

Index:{
Stringname
int range
int tilesize
int tilecount

}
CostModel:{

doublememCost(Index[] tiledIndices)
doublediskCost(Index[] tiledIndices)

}

boolMemoryExceeded(Index[] tiledIndices, CostModelC)
return (C.memCost(tiledIndices)> memoryLimit)

TileSizeSearch(Index[] tiledIndices, CostModelC):
foreach IndexI ∈ tiledIndicesI .tilecount= 1
while (MemoryExceeded(tiledIndices,C)) do

foreach IndexI ∈ tiledIndicesI .tilecount+ = 1
if (foreach IndexI ∈ tiledIndices, I .tilecount= 1) then

return

foreach IndexI ∈ tiledIndices
while (notMemoryExceeded(tiledIndices,C))

I .tilecount−−
I .tilecount++

Repeat
foreach IndexI ∈ tiledIndices

I .tilecount−−
Diff[I] = ∆diskCost÷ ∆memCost
I .tilecount++

Index BestI = I ∈ tiledIndices withmaxDiff[I]
Best I .tilecount−−
if (MemoryExceeded(tiledIndices,C))

foreach IndexJ ∈ tiledIndices(J 6= I)
while (MemoryExceeded(tiledIndices,C))

J.tilecount++
EffDecrease[J] = ∆diskCost
Tiles[J] = J.tilecount
ResetJ.tilecountto original value

Index BestJ = J ∈ tiledIndices
with maxEffDecrease[J]

BestJ.tilecount= Tiles[BestJ]
Until (EffDecrease[BestJ] ≤ 0)

Fig. 4. ProcedureTileSizeSearchto determine optimal tile sizes that minimize disk access cost.

Given a concrete imperfectly nested loop, with proper placements of disk I/O state-
ments, the goal of the tile size search algorithm is to minimize total disk access time
under the constraint that memory limit is not be exceeded. The input to the algorithm
is the cost model and the set of index equivalence classes, determined by the procedure
explained in Sec. 4.1.

The disk access cost model depends on the mode of the algorithm, as explained in
Sec. 4.1. For the unconstrained case, the disk cost for an array is proportional to the
volume of data accessed, as each block access is sequential. On the other hand, for the
constrained case, we use the I/O performance model described in Sec. 3.

Fig. 4 presents the pseudo code for the tile size search algorithm. It starts by initial-
izing the number of tiles for each tiled index to1. This is equivalent to all arrays being
completely memory resident, and would be the optimal solution if the memory limit
is not exceeded. Otherwise, the algorithm tries to find a feasible solution that satisfies
the memory constraint, by iteratively incrementing the tile count for all indices. To il-
lustrate the algorithm, consider the concrete code for matrix multiplication in Fig. 5(a).
The memory cost equation for this code is:

Ti ∗Nk +Ti ∗Tj +Tj ∗Nk

As shown in Fig. 5(b), with a tile count of4 for all indicesi, j andk, the memory cost is
97MB, which is within the memory limit of128MB. The algorithm then tries to reduce
the number of tiles for any of the indices as much as possible, so that the solution just
fits in memory. This is chosen as the starting point in the search space. For this example,
the tile counts of3, 4, and1 are determined as a starting point for indicesi, j andk,
respectively.

From this starting point, the algorithm attempts to reduce the tilecount for each
index by1. It selects the index that provides the maximum improvement in disk cost
and suffers the minimum penalty for memory cost. However, reducing the tile count for
this index could cause the memory limit to be exceeded. The algorithm tries to repair

double MA(1:Ti,1:Nk)
double MB(1:Ti,1:Tj)
double MC(1:Tj,1:Nk)

FOR iT = 1, Ni, Ti
MA(1:Ti,1:Nk) = Read disk array A(i,k)
FOR jT = 1, Nj, Tj

MB(1:Ti,1:Tj) = Read disk array B(i,j)
MC(1:Tj,1:Nk) = Read disk array C(j,k)
FOR kT = 1, Nk, Tk

FOR iI = 1, Ti
FOR jI = 1, Tj

FOR kI = 1, Tk
MA(1:Ti,1:Nk)

+= MB(1:Ti,1:Tj) * MC(1:Tj:1:Nk)
END FOR kI, jI, iI, kT

END FOR jT
Write MA(1:Ti,1:Nk) to disk A(i,k)

END FOR iT

(a) Concrete code with I/O stmts moved out-
side.

Number of tiles Block size Memory Cost
i j k Ti T j Tk
1 1 1 6000 2000 6000 457MB

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

4 4 4 1500 500 1500 97MB
3 4 4 2000 500 1500 122MB
3 4 3 2000 500 2000 122MB

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

3 4 1 2000 500 6000 122MB

(b) Tile size search illustration.

Fig. 5. Concrete code and tile size search illustration for matrix multiplication

this situation by increasing the number of tiles for one of the other indices. It selects the
index that provides the maximum effective improvement in disk access cost. If it cannot
find such an index, the algorithm terminates.

5 Experimental Results

The algorithm from Sec. 4 was used to generate code for the AO-to-MO index trans-
formation calculation described in Sec. 2. Measurements were made on a Pentium II
system with the configuration shown in Table 1. The codes were all compiled with the
Intel Fortran Compiler for Linux. Although this machine is now very old and much
slower than PCs available today, it was convenient to use for our experiments in an
uninterrupted mode, with no interference to the I/O subsystem from any other users.
Experiments were also carried out on more recent systems; while the overall trends are
similar, we found significant variability in measured performance over multiple identi-
cal runs, due to disk activity from other users.

The out-of-core code generated by the proposed algorithm was compared with an
unfused but tiled baseline version. With this version, it is necessary to write large inter-
mediate arrays to disk when they are produced, and read them back again when they are
consumed. The baseline version is representative of the current state of practice in im-
plementing large out-of-core tensor contractions in state-of-the-art quantum chemistry
packages.

Table 2 shows the measured I/O time for the unfused baseline version and the mea-
sured as well as predicted I/O time for the fused version for the case of unconstrained
disk layout. For the baseline version, all arrays were assumed to be blocked on disk so
that I/O was performed in large chunks in all steps. The size of the tensors(double pre-
cision) for the experiment were:Np = Nq = Nr = Ns = 80andNa = Nb = Nc = Nd = 70.

Unfused T3 on disk
Measured time (seconds)Measured time(seconds)Predicted time(seconds)

Array A 42.4 43.648 42.6
Array t1 195.67 - -
Array t2 66.74 - -
Array t3 48.26 74.09 74.32
Array B 29.078 22.346 38.6
Total time 382.15 140.08 155.52

Table 2.Predicted and Measured I/O Time: Unconstrained Layout

Unfused T1 on disk
Measured time (seconds)Measured time(seconds)Predicted time(seconds)

Array A 148.26 149.31 180.3
Array t1 140.65 94.37 63.72
Array t2 52.99 - -
Array t3 44.89 - -
Array B 29.55 22.62 38.61
Total time 416.34 266.3 282.63

Table 3.Predicted and Measured I/O Time: Column-Major Layout of Input/Output Arrays

For these tensor sizes and an available memory of 128MB, it is possible to choose
fusion configurations so that the sizes of any two out of the three intermediate arrays can
be reduced to fit completely in memory, but it is impossible to find a fusion configura-
tion that fits all three intermediates within memory. Thus, it is necessary to keep at least
one of them on disk, and incur disk I/O cost for that array. Table 2 reports performance
data for the fusion configuration that requiresT3 to be disk-resident.

The I/O time for each array was separately accumulated. It can be seen that the out-
of-core code version produced by the new algorithm has significantly lower disk I/O
time than the baseline version. The predicted values match quite well with the measured
time. The match is better for the overall I/O time than for some individual arrays. This
is because disk writes are asynchronous and may be overlapped with succeeding disk
reads — hence the measurements of I/O time attributable to individual arrays is subject
to error due to such overlap, but the total time should not be affected by the interleaving
of writes with succeeding reads.

Table 3 shows performance data for the layout-constrained case. A column-major
representation was used for the input array. For the fused/tiled version, we used the
fusion configuration that results inT1 being disk-resident. Again, the version produced
by the new algorithm is better than the baseline version. As can be expected, the disk
I/O overheads for both versions are higher than the corresponding cases where the input
array layout was unconstrained. The predicted and measured I/O times match to within
10%.

6 Conclusion

We have described an approach to the synthesis of out-of-core algorithms for a class
of imperfectly nested loops. The approach was developed for the implementation in a

component of a program synthesis system targeted at the quantum chemistry domain.
However, the approach has broader applicability and can be used in the automatic syn-
thesis of out-of-core algorithms from abstract specifications in the form of loop com-
putations with abstract arrays. Experimental results were provided that showed a good
match between predicted and measured performance. The performance achieved by the
synthesized code was considerably better than that representative of codes incorporated
into quantum chemistry packages today.

AcknowledgmentsWe thank the National Science Foundation for its support of this
research through the Information Technology Research program (CHE-0121676 and
CHE-0121706), NSF grants CCR-0073800 and EIA-9986052, and the U.S. Department
of Energy through award DE-AC05-00OR22725. We would also like to thank the Ohio
Supercomputer Center (OSC) for the use of their computing facilities.

References

1. G. Baumgartner, D.E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata, C. Lam, M. Nooijen,
R. Pitzer, J. Ramanujam, P. Sadayappan. A High-Level Approach to Synthesis of High-
Performance Codes for Quantum Chemistry. InProc Supercomputing 2002, Nov. 2002.

2. D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, J. Ramanujam, M. Nooijen, D. Bern-
holdt, and R. Harrison. Space-Time Trade-Off Optimization for a Class of Electronic Struc-
ture Calculations.Proc. of ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation (PLDI), June 2002, pp. 177–186.

3. D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C. Lam, P. Sadayappan, J. Ramanu-
jam. Global Communication Optimization for Tensor Contraction Expressions under Mem-
ory Constraints.Proc. of 17th International Parallel & Distributed Processing Symposium
(IPDPS), Apr. 2003.

4. D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Ramanujam, M. Nooijen,
D.E. Bernholdt, and R. Harrison. Towards Automatic Synthesis of High-Performance Codes
for Electronic Structure Calculations: Data Locality Optimization.Proc. of the Intl. Conf. on
High Performance Computing, Dec. 2001, Lecture Notes in Computer Science, Vol. 2228,
pp. 237–248, Springer-Verlag, 2001.

5. D. Cociorva, J. Wilkins, C.-C. Lam, G. Baumgartner, P. Sadayappan, and J. Ramanujam.
Loop optimization for a class of memory-constrained computations. InProc. 15th ACM In-
ternational Conference on Supercomputing,pp. 500–509, Sorrento, Italy, June 2001.

6. C. Lam.Performance Optimization of a Class of Loops Implementing Multi-Dimensional
Integrals, Ph.D. Dissertation, The Ohio State University, Columbus, OH, August 1999.

7. C. Lam, D. Cociorva, G. Baumgartner and P. Sadayappan. Optimization of Memory Usage
and Communication Requirements for a Class of Loops Implementing Multi-Dimensional
Integrals.Proc. 12th LCPC WorkshopSan Diego, CA, Aug. 1999.

8. C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. Memory-optimal evaluation of
expression trees involving large objects. InProc. Intl. Conf. on High Perf. Comp., Dec. 1999.

9. C. Lam, P. Sadayappan and R. Wenger. On Optimizing a Class of Multi-Dimensional Loops
with Reductions for Parallel Execution.Par. Proc. Lett., (7) 2, pp. 157–168, 1997.

10. C. Lam, P. Sadayappan and R. Wenger. Optimization of a Class of Multi-Dimensional Inte-
grals on Parallel Machines.Proc. of Eighth SIAM Conf. on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.

