
Memory-Constrained Communication Minimization
for a Class of Array Computations

Daniel Cociorva1, Gerald Baumgartner1, Chi-Chung Lam1, P. Sadayappan1, and J.
Ramanujam2

1 Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210, USA.

fcociorva,gb,clam,saday g@cis.ohio-state.edu
2 Department of Electrical and Computer Engineering

Louisiana State University, Baton Rouge, LA 70803, USA.
jxr@ece.lsu.edu

Abstract. The accurate modeling of the electronic structure of atoms and mole-
cules involves computationally intensive tensor contractions involving large mul-
tidimensional arrays. The efficient computation of complex tensor contractions
usually requires the generation of temporary intermediate arrays. These inter-
mediates could be extremely large, but they can often be generated and used in
batches through appropriate loop fusion transformations. To optimize the perfor-
mance of such computations on parallel computers, the total amount of inter-
processor communication must be minimized, subject to the available memory
on each processor. In this paper, we address the memory-constrained communi-
cation minimization problem in the context of this class of computations. Based
on a framework that models the relationship between loop fusion and memory
usage, we develop an approach to identify the best combination of loop fusion
and data partitioning that minimizes inter-processor communication cost with-
out exceeding the per-processor memory limit. The effectiveness of the devel-
oped optimization approach is demonstrated on a computation representative of
a component used in quantum chemistry suites.

1 Introduction

The development of high-performance parallel programs for scientific applications is
usually very time consuming. The time to develop an efficient parallel program for a
computational model can be a primary limiting factor in the rate of progress of the sci-
ence. Our overall goal is to develop a program synthesis system to facilitate the rapid
development of high-performance parallel programs for a class of scientific computa-
tions encountered in quantum chemistry. The domain of our focus is electronic structure
calculations, as exemplified by coupled cluster methods [4], in which many computa-
tionally intensive components are expressible as a set of tensor contractions. We are
developing a synthesis system that will transform an input specification expressed in a
high-level notation into efficient parallel code tailored to the characteristics of the target
architecture.

A number of compile-time optimizations are being incorporated into the program
synthesis system. These include algebraic transformations to minimize the number

of arithmetic operations [8, 13], loop fusion and array contraction for memory space
minimization [13, 12], tiling and data locality optimization [1, 2], space-time trade-off
optimization [3], and data partitioning for communication minimization [9, 10]. Since
the problem of determining the set of algebraic transformations to minimize operation
count was found to be NP-complete, we developed a pruning search procedure [8] that is
very efficient in practice. The operation-minimization procedure results in the creation
of intermediate temporary arrays. Often, these intermediate arrays that help in reducing
the computational cost create a problem with the memory required. Loop fusion was
found to be effective in significantly reducing the total memory requirement. However,
since some fusions could prevent other fusions, the choice of the optimal set of fusion
transformations is important. So we addressed the problem of finding the choice of fu-
sions for a given operator tree that minimizes the space required for all intermediate
arrays after fusion [12, 11].

We have also previously addressed the problem of communication optimization in
the context of the operator trees [9, 10]. An efficient polynomial-time dynamic pro-
gramming algorithm was developed for the determination of optimal distributions of
the various arrays through the evaluation of the operator tree so as to minimize inter-
processor communication overhead. However, that model did not consider the effects
of loop fusion for memory minimization. As we elaborate later with examples, it is not
feasible to simply apply the previously developed loop fusion algorithm and the previ-
ous communication minimization algorithm (in either order) to optimize for the parallel
context when memory size constraints are severe. For many computations of interest to
quantum chemists, the unoptimized form of the computation could require in excess of
hundreds of terabytes of memory. Therefore, the following optimization problem is of
great interest: given a set of computations expressed as a sequence of tensor contrac-
tions (explained later on), an empirically derived measure of the communication cost
for a given target computer, and a specified limit on the amount of available memory on
each processor, re-structure the computation so as to minimize the total execution time
while staying within the available memory. In this paper, we present a framework that
we have developed to address this problem. The memory-constrained communication
minimization algorithm we develop here will be incorporated into the synthesis system
being developed.

The computational structures that we target arise in scientific application domains
that are extremely compute-intensive and consume significant computer resources at
national supercomputer centers. They are present in various computational chemistry
codes such as ACES II, GAMESS, Gaussian, NWChem, PSI, and MOLPRO. In par-
ticular, they comprise the bulk of the computation with the coupled cluster approach
to the accurate description of the electronic structure of atoms and molecules [14, 15].
Computational approaches to modeling the structure and interactions of molecules, the
electronic and optical properties of molecules, the heats and rates of chemical reac-
tions, etc., are very important to the understanding of chemical processes in real-world
systems.

There has been some recent work on using loop fusion for memory reduction for
sequential execution. Fraboulet et al. [5] use loop alignment to reduce memory require-
ment between adjacent loops by formulating the one-dimensional version of the prob-

lem as a network flow problem; they did look at the effect of their solution on cache
behavior or communication. Song et al. [17, 18] present a different network flow for-
mulation of the memory reduction problem and they include a simple model of cache
misses as well. They do not consider trading off memory for recomputation or the im-
pact of data distribution on communication costs while meeting per-processor memory
constraints in a distributed memory machine. There has been much less work investi-
gating the use of loop fusion as a means of reducing memory requirements [6, 16]. To
the best of our knowledge, loop fusion transformation for memory reduction, in com-
bination with data partitioning for communication minimization in the parallel context,
has not been previously considered.

The paper is organized as follows. In the next section, we elaborate on the compu-
tational context of interest and the pertinent optimization issues. Section 3 presents our
multi-dimensional processor model, discusses the interaction between distribution of
arrays and loop fusion, and describes our algorithm for the memory-constrained com-
munication minimization problem. Section 4 presents results from the application of the
new algorithm to an example abstracted from NWChem [7]. Conclusions are provided
in Section 5.

2 Elaboration of Problem

In the class of computations considered, the final result to be computed can be expressed
as multi-dimensional summations of the product of several input arrays. Due to com-
mutativity, associativity, and distributivity, there are many different ways to obtain the
same final result and they could differ widely in the number of floating point operations
required. Consider the following example:

S(t) = ∑
i; j ;k

A(i; j; t)�B(j;k; t):

If implemented directly as expressed above, the computation would require 2NiNjNkNt

arithmetic operations to compute. However, assuming associative reordering of the op-
erations and use of distributive law of multiplication over addition is acceptable for the
floating-point computations, the above computation can be rewritten in various ways.
One equivalent form that only requiresNiNjNt +NjNkNt +2NjNt operations is as shown
in Fig. 1(a).

Generalizing from the above example, we can express multi-dimensional integrals
of products of several input arrays as a sequence of formulae. Each formula produces
some intermediate array and the last formula gives the final result. A formula is either:

– a multiplication formula of the form:Tr(: : :) = X(: : :)�Y(: : :), or
– a summation formula of the form:Tr(: : :) = ∑i X(: : :),

where the terms on the right hand side represent input arrays or intermediate arrays
produced by a previously defined formula. LetIX , IY andITr be the sets of indices in
X(: : :), Y(: : :) andTr(: : :); respectively. For a formula to be well-formed, every index
in X(: : :) andY(: : :), except the summation index in the second form, must appear in
Tr(: : :). ThusIX [IY � ITr for any multiplication formula, andIX�fig� ITr for any

T1(j ;t) = ∑
i

A(i; j ;t)

T2(j ;t) = ∑
k

B(j ;k;t)

T3(j ;t) = T1(j ;t)�T2(j ;t)

S(t) = ∑
j

T3(j ;t)

(a) Formula sequence A(i; j ;t) B(j ;k;t)

∑i ∑kT1 T2

�
��

@
@@

�T3

∑ jS

(b) Binary tree representation

Fig. 1. A formula sequence and its binary tree representation.

summation formula. Such a sequence of formulae fully specifies the multiplications and
additions to be performed in computing the final result.

A sequence of formulae can be represented graphically as a binary tree to show
the hierarchical structure of the computation more clearly. In the binary tree, the leaves
are the input arrays and each internal node corresponds to a formula, with the last for-
mula at the root. An internal node may either be a multiplication node or a summation
node. A multiplication node corresponds to a multiplication formula and has two chil-
dren which are the terms being multiplied together. A summation node corresponds to
a summation formula and has only one child, representing the term on which summa-
tion is performed. As an example, the binary tree in Fig. 1(b) represents the formula
sequence shown in Fig. 1(a).

The operation-minimization procedure discussed above usually results in the cre-
ation of intermediate temporary arrays. Sometimes these intermediate arrays that help
in reducing the computational cost create a problem with the memory capacity required.
For example, consider the following expression:

Sabi j = ∑
cde fkl

Aacik�Bbe f l�Cd f jk�Dcdel

If this expression is directly translated to code (with ten nested loops, for indices
a� l), the total number of arithmetic operations required will be 4N10 if the range of
each indexa� l is N. Instead, the same expression can be rewritten by use of associative
and distributive laws as the following:

Sabi j = ∑
ck

∑
d f

∑
el

Bbe f l�Dcdel

!
�Cd f jk

!
�Aacik

This corresponds to the formula sequence shown in Fig. 2(a) and can be directly
translated into code as shown in Fig. 2(b). This form only requires 6N6 operations.
However, additional space is required to store temporary arraysT1 andT2. Often, the

T1bcd f = ∑
el

Bbe f l�Dcdel

T2bc jk = ∑
d f

T1bcd f �Cd f jk

Sabi j = ∑
ck

T2bc jk�Aacik

(a) Formula sequence

T1=0; T2=0; S=0
for b, c, d, e, f, l�

T1bcdf += Bbefl Dcdel
for b, c, d, f, j, k�

T2bcjk += T1bcdf Cdfjk
for a, b, c, i, j, k�

Sabij += T2bcjk Aacik

(b) Direct implementation
(unfused code)

S = 0
for b, c2
6666666664

T1f = 0; T2f = 0
for d, f2
664

for e, l�
T1f += B befl Dcdel

for j, k�
T2f jk += T1f C dfjk

for a, i, j, k�
Sabij += T2f jk Aacik

(c) Memory-reduced
implementation (fused)

Fig. 2.Example illustrating use of loop fusion for memory reduction.

space requirements for the temporary arrays poses a serious problem. For this example,
abstracted from a quantum chemistry model, the array extents along indicesa�d are
the largest, while the extents along indicesi� l are the smallest. Therefore, the size of
temporary arrayT1 would dominate the total memory requirement.

We have previously shown that the problem of determining the operator tree with
minimal operation count is NP-complete, and have developed a pruning search proce-
dure [8, 9] that is very efficient in practice. For the above example, although the latter
form is far more economical in terms of the number of arithmetic operations, its im-
plementation will require the use of temporary intermediate arrays to hold the partial
results of the parenthesized array subexpressions. Sometimes, the sizes of intermediate
arrays needed for the “operation-minimal” form are too large to even fit on disk.

A systematic way to explore ways of reducing the memory requirement for the
computation is to view it in terms of potential loop fusions. Loop fusion merges loop
nests with common outer loops into larger imperfectly nested loops. When one loop
nest produces an intermediate array which is consumed by another loop nest, fusing the
two loop nests allows the dimension corresponding to the fused loop to be eliminated
in the array. This results in a smaller intermediate array and thus reduces the memory
requirements. For the example considered, the application of fusion is illustrated in
Fig. 2(c). By use of loop fusion, for this example it can be seen thatT1 can actually be
reduced to a scalar andT2 to a 2-dimensional array, without changing the number of
arithmetic operations.

For a computation comprised of a number of nested loops, there will generally be a
number of fusion choices, that are not all mutually compatible. This is because different
fusion choices could require different loops to be made the outermost. In prior work,
we have addressed the problem of finding the choice of fusions for a given operator tree
that minimizes the total space required for all arrays after fusion [13, 12, 11].

A data-parallel implementation of the unfused code for computingSabi j would in-
volve a sequence of three steps, each corresponding to one of the loops in Fig. 2(b).
The communication cost incurred will clearly depend on the way the arraysA, B, C, D,
T1,T2, andSare distributed. We have previously considered the problem of minimiza-
tion of communication with such computations [13, 9]. However, the issue of memory
space requirements was not addressed. In practice, many of the computations of in-
terest in quantum chemistry require impractically large intermediate arrays in the un-

fused operation-minimal form. Although the collective memory of parallel machines is
very large, it is nevertheless insufficient to hold the full intermediate arrays for many
computations of interest. Thus, array contraction through loop fusion is essential in
the parallel context too. However, it is not satisfactory to first find a communication-
minimizing data/computation distribution for the unfused form, and then apply fusion
transformations to minimize memory for that parallel form. This is because 1) fusion
changes the communication cost, and 2) it may be impossible to find a fused form that
fits within available memory, due to constraints imposed by the chosen data distribution
on possible fusions. In this paper we address this problem of finding suitable fusion
transformations and data/computation partitioning that minimize communication costs,
subject to limits on available per-processor memory.

3 Memory-Constrained Communication Minimization

Given a sequence of formulae, we now address the problem of finding the optimal
partitioning of arrays and operations among the processors and the loop fusions on
each processor in order to minimize inter-processor communication and computational
costs while staying within the available memory in implementing the computation on
a message-passing parallel computer. Section 3.1 introduces a multi-dimensional pro-
cessor model used to represent the computational space. Section 3.2 discusses the com-
bined effects of loop fusions and array/operation partitioning on communication cost,
computational cost, and memory usage. An integrated algorithm for solving this prob-
lem is presented in Section 3.3.

3.1 Preliminaries: A Multi-Dimensional Processor Model

A logical view of the processors as a multi-dimensional grid is used, where each ar-
ray can be distributed or replicated along one or more of the processor dimensions. As
will be clear later on, the logical view of the processor grid does not impose any re-
striction on the actual physical interconnection topology of the processor system since
empirical characterization of the cost of redistribution between different distributions is
performed on the target system.

Let pd be the number of processors on thed-th dimension of ann-dimensional
processor array, so that the number of processors isp1� p2� : : :� pn. We use ann-
tuple to denote the partitioning ordistribution of the elements of a data array on an
n-dimensional processor array. Thed-th position in ann-tupleα, denotedα[d], corre-
sponds to thed-th processor dimension. Each position may be one of the following: an
index variable distributed along that processor dimension, a ‘*’ denoting replication of
data along that processor dimension, or a ‘1’ denoting that only the first processor along
that processor dimension is assigned any data. If an index variable appears as an array
subscript but not in then-tuple, then the corresponding dimension of the array is not
distributed. Conversely, if an index variable appears in then-tuple but not in the array,
then the data are replicated along the corresponding processor dimension, which is the
same as replacing that index variable with a ‘*’.

As an example, suppose 128 processors form a 4-dimensional 2�2�4�8 array.
For the arrayB(b;e; f ; l) in Fig. 2(a), the 4-tuplehb;e;�;1i specifies that the first and the
second dimensions ofB are distributed along the first and second processor dimensions
respectively (the third and fourth dimensions ofB are not distributed), and that data
are replicated along the third processor dimension and are assigned only to processors
whose fourth processor dimension equals 1. Thus, a processor whose id isPz1;z2;z3;z4 will
be assigned a portion ofB specified byB(myrange(z1;Nb; p1);myrange(z2;Ne; p2);1 :
Nf ;1 : Nl) if z4 = 1 and no part ofB otherwise, wheremyrange(z;N; p) is the range
(z�1)�N=p+1 toz�N=p.

We assume the data-parallel programming model and do not consider distributing
the computation of different formulae on different subsets of processors. A child array
(or a part of it) is redistributed before the evaluation of its parent if their distributions
do not match. For instance, suppose the arraysB(b;e; f ; l) andD(c;d;e; l) have distri-
butionshb;e;�;1i and hc;d;�;1i respectively. If we wantT1 to have the distribution
hc;d; f ;1i when evaluatingT1(b;c;d; f) = ∑e;l B(b;e; f ; l)�D(c;d;e; l), B would have
to be redistributed fromhb;e;�;1i to h�;�; f ;1i because the two distributions do not
match. But since forD(c;d;e; l), the distributionhc;d;�;1i is the same ashc;d; f ;1i, D
is not redistributed.

3.2 Interaction Between Array Partitioning and Loop Fusion

The partitioning of data arrays among the processors and the fusions of loops on each
processor are inter-related. Although in our context there are no constraints to loop fu-
sion due to data dependences (there are never any fusion preventing dependences), there
are constraints and interactions with array distribution:(i) both affect memory usage,
by fully collapsing array dimensions (fusion) or by reducing them (distribution),(ii)
loop fusion does not change the communication volume, but increases the number of
messages, and therefore the start-up communication cost, and(iii) fusion and commu-
nications patterns may conflict, resulting in mutual constraints. We discuss these issues
next.

(i) Memory usage and array distribution. The memory requirements of the com-
putation depend on both loop fusion and array distribution. Fusing a loop with indext
between a nodev and its parent eliminates thet-dimension of arrayv. If the t-loop is not
fused but thet-dimension of arrayv is distributed along thed-th processor dimension,
then the range of thet-dimension of arrayv on each processor is reduced toNt=pd. Let
DistSize(v;α; f) be the size on each processor of arrayv, which has fusionf with its
parent and distributionα. We have

DistSize(v;α; f) = ∏i 2 v:dimensDistRange(i;v;α;Set(f))

wherev:dimens= v:indices�fv:sumindexg is the array dimension indices ofv before
loop fusions,v:indicesis the set of loop indices forv including the summation index
v:sumindexif v is a summation node,Set(f) is the set of fused indices for fusionf , and

DistRange(i;v;α;x) =

8><
>:

1 if i 2 x

Ni=pd if i 62 x andi = α[d]
Ni if i 62 x andi 62 α

C(i;k) = ∑ j A(i; j)�B(j;k)
E(i; l) = ∑kC(i;k)�D(k; l)

(a) Formula sequence

for i = 1, Ni2
4 for k = (z-1) * Nk/4 + 1, z * Nk/4�

for j = 1, Nj�
C(i,k) += A(i,j) * B(j,k)

Redistribute C(i,k) from <k> to <l>=<*>
for i = 1, Ni2
4 for l = (z-1) * Nl/4 + 1, z * Nl/4�

for k = 1, Nk�
E(i,l) += C(i,k) * D(k,l)

for i = 1, Ni2
6666666664

Initialize C(k) to zero
for k = (z-1) * Nk/4 + 1 , z * Nk/4�

for j = 1, Nj�
C(k) += A(i,j) * B(j,k)

Redistribute C(k) from <k> to <l>=<*>
for l = (z-1) * Nl/4 + 1, z * Nl/4�

for k = 1, Nk�
E(i,l) += C(k) * D(k,l)

(b) Before loop fusion (c) After loop fusion

Fig. 3. An example of the increase in communication cost due to loop fusion.

In our example, assume thatNa = Nb = Nc = Nd = 1000,Ne = Nf = 70, andNj =
Nk = Nl = 30. These are index ranges typical of the quantum chemistry calculations
of interest, and are used elsewhere in the paper in relation to this example. If the array
B(b;e; f ; l) has distributionhb;e;�;1i and fusionhb fi with T2, then the size ofB on
each processor whose fourth dimension equals one would beNe=2�Nl = 1050 words,
since thee and l dimensions are the only unfused dimensions, and thee dimension is
distributed onto 2 processors. Note that if arrayv undergoes redistribution fromα to β,
the array size on each processor after redistribution isDistSize(v;β; f), which could be
different fromDistSize(v;α; f), the size before redistribution.

(ii) Loop fusion increases communication cost.The initial and final distributions
of an arrayv determines the communication pattern and whetherv needs redistribution,
while loop fusions change the number of times arrayv is redistributed and the size of
each message. Letv be an array that needs to be redistributed. If nodev is not fused
with its parent, arrayv is redistributed only once. Fusing a loop with indext between
nodev and its parent puts the collective communication code for redistribution inside
the loop. Thus, the number of redistributions is increased by a factor ofNt=pd if the
t-dimension ofv is distributed along thed-th processor dimension and by a factor of
Nt if the t-dimension ofv is not distributed. In other words, loop fusions cannot reduce
communication cost. Instead, the number of messages increases with loop fusion, while
the total volume of communication stays the same. Therefore, the communication cost
increases, due to higher start-up costs. Consider the computation sequence presented in
Fig. 3(a), where the arrayC(i;k) is first “produced” fromA(i; j) andB(j;k), and then
“consumed” to produceE(i; l). For this simple example, we assume that the computa-
tion is executed in parallel on 4 processors, with a one-dimensional logical processor
view. Figure 3(b) shows the pseudo-code in the absence of fusion: the arrayC(i;k) is
re-distributed fromhki to hli only once. In the presence of fusion, where thei-loop is
the outermost loop, the dimensionality of the arrayC is reduced toC(k), but the re-
distribution is performedNi times. The pseudo-code in Fig. 3(c) illustrates this effect.

(iii) Potential conflict between array distribution and loop fusion. Solution of
the conflict by virtual partitioning. For the fusion of a loop between nodesu andv to

for i = 1, Ni2
4 for k = (z-1) * Nk/4 + 1, z * Nk/4�

for j = 1, Nj�
C(i,k) += A(i,j) * B(j,k)

Redistribute C(i,k) from <k> to <i>
for i = (z-1) * Ni/4 + 1, z * Ni/42
4 for l = 1, Nl�

for k = 1, Nk�
E(i,l) += C(i,k) * D(k,l)

for i = (z-1) * Ni/4 + 1, z * Ni/42
6666666664

for ii = 1, 42
4 for k = (z-1) * Nk/4 + 1, z * Nk/4�

for j = 1, Nj�
C(ii,k) += A(i + (ii-1) * Ni/4,j) * B(j,k)

Redistribute C(ii,k) from <k> to <i>=<ii>
for l = 1, Nl�

for k = 1, Nk�
E(i,l) += C(1,k) * D(k,l)

(a) Before virtualization (b) After virtualization

Fig. 4.An example of the increase in loop fusion due to a virtual process view.

k k

p0 p1 p2 p3

p0

p1

p2

p3

redistribute
i

partitions
virtual

produce C(i,k) consume C(i,k)

Fig. 5. Virtual partitioning of an array.

be possible, the loop must either be undistributed at bothu andv, or be distributed onto
the same number of processors atu and atv. Otherwise, the range of the loop at nodeu
would be different from that at nodev, preventing fusion of the loops. Let us consider
again the computation given in Figure 3(a), with a different distribution of the array
C(i;k) at the two nodes: assume that we have ahki distribution at the first node, and ahii
distribution at the second node. The pseudo-code for this computation on 4 processors
is presented in Fig. 4(a). Fusion of thei-loop is no longer possible, due to the different
loop ranges at the two nodes. However, we can overcome this problem by taking a
virtualized view of the computation on a larger set of virtual processors, mapped onto
the actual physical processors. Consider a virtual partitioning of the computation and
split the i-loop into two loops,i and ii . (see the pseudo-code in Fig. 4(b)). With this
modification, the outermosti-loop can be fused, and the size of the arrayC is reduced
from Ni �Nk to 4Nk.

This transformation of thei-loop is presented graphically in Fig. 5. At the first node
(where it is produced), the arrayC is distributed among the 4 processors along thek
dimension (hki distribution, or vertical partitioning in the Figure). In addition, each
physical processor can be further viewed as 4 “virtual processors”, as showed by the
horizontal virtual partitioning lines in Fig. 5. The purpose of the virtual partitioning
along thei dimension at the first (produce) node is to match the actuali partitioning
at the second (consume) node and allow for fusion of thei-loop. Fusion of thei-loop
no longer produces a one-dimensionalC(k) array in this case. Each processor stores

the equivalent of 4 such arrays, corresponding to the 4 virtual processors. In Fig. 5,
the elements stored on processorP0, before and after re-distribution, are represented by
shaded areas.

In general, the virtual partitioning of the computation depends on the distribution
at the nodes involved. Letu and v be two nodes in the operator treeT that have a
common loop indext. Thet-loop is distributed ontopu processors at nodeu and onto
pv processors at nodev. Let pvirtual be lowest common multiple ofpu andpv. With these
notations, thet-loop can be virtually partitioned by a factor ofpvirtual=pu at theu node,
and by a factor ofpvirtual=pv at thev node. The resulting virtual partitions along thet
dimension at theu andv nodes become identical, allowing for loop fusion.

Virtual partitioning is essential for the success of our combined loop fusion — data
distribution approach. Since both fusion and distribution impose constraints on the array
dimensions, the potential for conflict is enormous. In practice, unless we allow virtual
partitioning, we often find that optimal array distribution for minimizing inter-processor
communication precludes effective memory reduction by fusion. The number of com-
patible loop fusion and array distribution configurations is very limited. Virtual parti-
tioning relaxes the mutual constraints imposed by the loop fusion and data distribution,
allowing for the optimal solution(s) to be found.

3.3 Memory-Constrained Communication Minimization Algorithm

In this section, we present an algorithm addressing the communication minimization
problem with memory constraint. Previously, we have solved the communication mini-
mization problem but without considering loop fusion or memory usage [9]. In practice,
the arrays involved are often too large to fit into the available memory even after par-
titioning among the processors. We assume the input arrays can be distributed initially
among the processors in any way at zero cost, as long as they are not replicated. We do
not require the final results to be distributed in any particular way. Our approach works
regardless of whether any initial or final data distribution is given.

The main idea of this method is to search among all combinations of loop fusions
and array distributions to find one that has minimal total communication and compu-
tational cost and uses no more than the available memory. A dynamic programming
algorithm for this purpose is given in this section.

Let Mcost(localsize;α;β) be the communication cost in moving the elements of
an array, withlocalsizeelements distributed on each processor, from an initial dis-
tribution α to a final distributionβ. We empirically measureMcost for each possible
non-matching pair ofα andβ and for several differentlocalsizeson the target parallel
computer. LetMoveCost(v;α;β; f) denote the communication cost in redistributing the
elements of arrayv, which has fusionf with its parent, from an initial distributionα to
a final distributionβ. It can be expressed as:

MoveCost(v;α;β; f) = MsgFactor(v;α;Set(f))�Mcost(DistSize(v;α;Set(f));α;β) where

MsgFactor(v;α;x) = ∏i 2 v:dimensLoopRange(i;v;α;x) and

LoopRange(i;v;α;x) =

8><
>:

1 if i 62 x

Ni=pd if i 2 x andi = α[d]
Ni if i 2 x andi 62 α

Let CalcCost(v;γ) be the computational cost in calculating an arrayv with γ as
the distribution ofv. Note that the computational cost is unaffected by loop fusions.
For multiplication and for summation where the summation index is not distributed, the
computational cost forvcan be quantified as the total number of operations forvdivided
by the number of processors working on distinct parts ofv. In our example in Fig. 2(a),
if the arrayT1(b;c;d; f) has distributionhc;d; f ;1i, its computational cost would be
Nb�Nc�Nd �Ne�Nf �Nl=p1=p2=p3 = 9:1875� 1012 multiply-add operations on
each participating processor. Formally,

CalcCost(v;γ) = ∏i 2 v:indicesNi

∏γ[d] 2 v:dimenspd

For the case of summation where the summation indexi = v:sumindexis distributed,
partial sums ofv are first formed on each processor and then either consolidated on
one processor along thei-dimension or replicated on all processors along the same
processor dimension. We denote byCalcCost1andMoveCost1the computational and
communication costs for forming the sum without replication, and byCalcCost2and
MoveCost2those with replication.

Finally, we defineCost(v;α) to be the total cost for the subtree rooted atv with dis-
tribution α. After transforming the given sequence of formulae into an expression tree
T (see Section 2), we initializeCost(v;α) for each leaf nodev in T and each distribution
α as follows (whereNoRep(α) is a predicate meaningα involves no replication.):

Cost(v;α) =
�

0 if NoRep(α)
minNoRep(β)fMoveCost(v;β;α; /0)g otherwise

For each internal nodeu and each distributionα, we can calculateCost(u;α) according
to the following procedure:
Case (a):u is a multiplication node with two childrenv andv0. We need bothv andv0

to have the same distribution, sayγ, beforeu can be formed. After the multiplication,
the product could be redistributed if necessary. Thus,

Cost(u;α) = min
γ
fCost(v;γ)+Cost(v0;γ)+CalcCost(u;γ)+MoveCost(u;γ;α; /0)g

Case (b):u is a summation node over indexi and with a childv, which may have any
distributionγ. If i 2 γ, each processor first forms partial sums ofu and then we either
combine the partial sums on one processor along thei dimension or replicate them on all
processors along that processor dimension. Afterwards, the sum could be redistributed
if necessary. LetCalc MoveCost1(u;γ;α; /0) beCalcCost1(u;γ)+MoveCost1(u;γ;α; /0),
andCalc MoveCost2(u;γ;α; /0) beCalcCost2(u;γ)+MoveCost2(u;γ;α; /0). Thus,

Cost(u;α) = min
γ
fCost(v;γ)+ min(Calc Move Cost1(u;γ;α; /0);Calc Move Cost2(u;γ;α; /0))g

With these definitions, the bottom-up dynamic programming algorithm proceeds as
follows: At each nodev in the expression treeT, we consider all combinations of array
distributions forv and loop fusions betweenv and its parent. If loop fusion of the same
indext betweenv and its parent is not possible because of different distribution ranges,
then a virtual processor view is considered in order to allow the fusion. The array size,
communication cost, and computational cost are determined according to the equations

in Sections 3.1 and 3.3. If the size of an array before and after redistribution is different,
the higher of the two should be used in determining memory usage. At each nodev,
a set of solutions is formed. Each solution contains the final distribution ofv, the loop
nesting atv, the loop fusion betweenv and its parent, the total communication and
computational cost, and the memory usage for the subtree rooted atv. A solutions is
said to be inferior to another solutions0 if they have the same final distribution,s has
less potential fusions withv’s parent thans0, s:totalcost� s0:totalcost, and the memory
usage ofs is higher than that ofs0. An inferior solution and any solution that uses more
memory than available can be pruned. At the root node ofT, the only two remaining
criteria are the total cost and the memory usage of the solutions. The set of solutions is
ordered in increasing memory usage and decreasing cost. The solution with the lowest
total cost and whose memory usage is below the available memory limit is the optimal
solution for the entire tree.

4 An Application Example

In this section, we present an application example of the memory-constrained com-
munication minimization algorithm. Consider again the sequence of computations in
Fig. (2(a)), representative of the multi-dimensional tensor contractions often present in
quantum chemistry codes. The sizes of the array dimensions are chosen to be com-
patible with the dimensions found in typical chemistry problems, where they represent
occupied or virtual orbital spaces:Ni =Nj = Nk =Nl = 40,Na =Nb =Nc =Nd = 1000,
andNe = Nf = 70.

As an example, we investigate the parallel execution of this calculation on 32 pro-
cessors of a Cray T3E, assuming 512MB of memory available at each node, and on
16 processors of an Intel Itanium cluster, assuming 2GB of memory available at each
node. The best partitioning of the algorithm depends on the number of processors and
the amount of memory available. It also depends on the empirical characterization data
that we use to describe the communication costs of a given machine. We generated this
data by measuring the communication times for each possible non-matching pair of ar-
ray distributions and different array sizes for both the Cray T3E and the Itanium cluster.
Although generating the characterization is somewhat laborious, once a characteriza-
tion file is completed, it can be used to predict, by interpolation or extrapolation, the
communication times for arbitrary array distributions and sizes.

Tables 1 and 2 present the solutions of the memory-constrained communication
minimization algorithm on the Cray T3E and Itanium cluster, respectively. For the
system of 32 processors of the Cray T3E, the optimal logical view of the processor
space is found to be a two-dimensional 4�8 distribution. Table 1 shows the full four-
dimensional arrays involved in the computation, their reduced (fused) representations,
their initial and final distributions, their memory requirements, and the communication
costs involved in their re-distribution. The final distribution is defined in the same way
for both input and intermediate arrays: it is the distribution at the multiplication node at
which the array is used or consumed. The initial distribution is defined differently for
input and intermediate arrays: it is the distribution at the leaf node for an input array,
and the distribution at the multiplication node where the array is generated, or produced,

Table 1. Loop fusions, memory requirements and communication costs on 32 processors of a
Cray T3E for the arrays presented in Fig. 2(a).

Full array Reduced arrayInitial dist. Final dist.Memory/processorComm. cost

D(c;d;e; l) D(c;e; l) hc;ei h�;�i 22.4MB 552.8 sec.
B(b;e; f ; l) B(b;e; f ; l) hb; f i hb; f i 49.0MB 0
C(d; f ; j ;k) C(f ; j ;k) h j ; f i h�;�i 0.9MB 362.3 sec.
A(a;c; i;k) A(c; i;k) hi;ci h�;�i 12.8MB 460.9 sec.

T1(b;c;d; f) T1(b;c; f) hb; f i hb;ci 17.5MB 791.8 sec.
T2(b;c; j ;k) T2(b;c; j ;k) hb;ci hb; ji 400.0MB 20.5 sec.
S(a;b; i; j) S(b; i; j) hb; ji hb; ji 0.4MB 0

for an intermediate array. The total memory requirement of an array is defined as the
largest memory usage of the two distributions (initial and final).

The optimal solution has thea andd loops fused, each across its own range: the
fusion of thed-loop reducesC, D, andT1 to three-dimensional arrays, while the fu-
sion of thea-loop reducesA andS to 3-dimensional arrays as well. Notice thatB and
T2 are the only four-dimensional arrays left, and, consequently, they have the largest
storage requirements of all arrays: 49MB per processor and 400MB per processor, re-
spectively. The total memory requirements for the solution of the example are 503MB
per processor, within the imposed limit of 512MB. Notice that further memory reduc-
tion is possible, for example, by partially fusing thec-loop and collapsingD andT1 to
two-dimensional arrays. However, this is unnecessary, as the communication cost of the
computation would increase, and nothing can be gained by further memory reduction.

Based on the empirical characterization data of the Cray T3E, the total commu-
nication cost for this example is 2188 seconds, or 0.61 hours. Most of this load can
be attributed to the re-distribution of the arraysA, C, D, andT1. Since they are col-
lapsed onto three dimensions for better memory management, they have to be partially
re-distributed at each iteration of the fused loop, resulting in large message-passing
start-up costs.

Table 2 presents the solution of the algorithm for a system of 16 processors on the
Itanium cluster. The optimal logical view of the processor space is found to be a two-
dimensional 4�4 distribution. The total memory requirement of the optimal solution is
1.77GB per processor, which is within the 2GB memory limit. The total communication
cost is 3076 seconds, or 0.85 hours. The optimal distributions of the arrays are different
for the two cases presented here (see Tables 1 and 2).

It is important to note that a decoupled approach of first performing loop fusion
followed by array distribution fails to provide a feasible solution in this example. In
particular, minimizing the communication cost without taking memory usage into ac-
count produces a final distributionha;bi = h�;�i for the arrayT2(b;c; j;k). The array
T2 would be replicated on all processors, resulting in a memory usage of 12.8GB per
processor. Reduction from this amount is possible by fusion, but the constraints im-
posed by the communication-optimal solution do not permit effective memory reduc-
tion. In this example, starting from the unfused communication-optimal solution, no

Table 2. Loop fusions, memory requirements and communication costs on 16 processors of an
Intel Itanium cluster for the arrays presented in Fig. 2(a).

Full array Reduced arrayInitial dist. Final dist.Memory /processorComm. cost

D(c;d;e; l) D(c;e; l) he; li h�;�i 22.4MB 704.8 sec.
B(b;e; f ; l) B(b;e; f ; l) h f ;bi h f ;bi 98.0MB 0
C(d; f ; j ;k) C(f ; j ;k) h j ; f i h�;�i 0.9MB 389.7 sec.
A(a;c; i;k) A(c; i;k) hc;ki h�;�i 12.8MB 546.0 sec.

T1(b;c;d; f) T1(b;c; f) h f ;bi hc;bi 35.0MB 1391.7 sec.
T2(b;c; j ;k) T2(b;c; j ;k) hc;bi h j ;bi 800.0MB 43.9 sec.
S(a;b; i; j) S(a;b; i; j) h j ;bi h j ;bi 800.0MB 0

loop fusion structure exists that can bring the memory usage under the limit. Only an
integrated approach to memory reduction and communication minimization is able to
provide a solution.

5 Conclusion

In this paper we have addressed a compile-time optimization problem arising in the con-
text of a program synthesis system. The goal of the synthesis system is the facilitation of
rapid development of high-performance parallel programs for a class of computations
encountered in computational chemistry. These computations are expressible as a set of
tensor contractions and arise in electronic structure calculations.

We have described the interactions between distributing arrays on a parallel ma-
chine and minimizing memory through loop fusion. We have presented an optimization
approach that can serve as the basis for a key component of the system, for minimiz-
ing the communication cost on a parallel computer under memory constraints. The ef-
fectiveness of the algorithm was demonstrated by applying it to a computation that is
representative of those used in quantum chemistry codes such as NWChem.

AcknowledgmentsWe thanks the support of the National Science Foundation through
the Information Technology Research program (CHE-0121676 and CHE-0121706),
and NSF grants CCR-0073800 and EIA-9986052.

References

1. D. Cociorva, J. Wilkins, C. Lam, G. Baumgartner, P. Sadayappan, J. Ramanujam. Loop
Optimizations for a Class of Memory-Constrained Computations. InProc. 15th ACM Intl.
Conf. on Supercomputing, pp. 103–113, Sorrento, Italy, June 2001.

2. D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Ramanujam, M. Nooijen,
D. Bernholdt, and R. Harrison. Towards Automatic Synthesis of High-Performance Codes
for Electronic Structure Calculations: Data Locality Optimization.Proc. of the Intl. Conf. on
High Performance Computing, Lecture Notes in Computer Science, Vol. 2228, pp. 237–248,
Springer-Verlag, 2001.

3. D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, J. Ramanujam, M. Nooijen, D. Bern-
holdt, and R. Harrison. Space-Time Trade-Off Optimization for a Class of Electronic Struc-
ture Calculations.Proceedings of ACM SIGPLAN 2002 Conference on Programming Lan-
guage Design and Implementation (PLDI), June 2002.

4. T. D. Crawford and H. F. Schaefer III. An Introduction to Coupled Cluster Theory for
Computational Chemists. InReviews in Computational Chemistry, vol. 14, pp. 33–136,
Wiley-VCH, 2000.

5. A. Fraboulet, G. Huard and A. Mignotte. Loop alignment for memory access optimization. In
Proc. 12th International Symposium on System Synthesis,pages 71–77, San Jose, California,
November 1999.

6. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array contraction.
In Languages and Compilers for Parallel Processing,New Haven, CT, August 1992.

7. High Performance Computational Chemistry Group. NWChem, A computational chemistry
package for parallel computers, Version 3.3, 1999. Pacific Northwest National Laboratory,
Richland, WA 99352.

8. C. Lam, P. Sadayappan, and R. Wenger. On optimizing a class of multi-dimensional loops
with reductions for parallel execution.Parallel Processing Letters,Vol. 7 No. 2, pp. 157–168,
1997.

9. C. Lam, P. Sadayappan, and R. Wenger. Optimization of a class of multi-dimensional in-
tegrals on parallel machines. InProc. Eighth SIAM Conference on Parallel Processing for
Scientific Computing,Minneapolis, MN, March 1997.

10. C. Lam, P. Sadayappan, D. Cociorva, M. Alouani, and J. Wilkins. Performance optimiza-
tion of a class of loops involving sums of products of sparse arrays. InProc. Ninth SIAM
Conference on Parallel Processing for Scientific Computing,San Antonio, TX, March 1999.

11. C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. Memory-optimal evaluation of
expression trees involving large objects. InProc. International Conference on High Perfor-
mance Computing, Calcutta, India, December 1999.

12. C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. Optimization of memory usage
requirement for a class of loops implementing multi-dimensional integrals. InLanguages
and Compilers for Parallel Computing, San Diego, August 1999.

13. C. Lam.Performance optimization of a class of loops implementing multi-dimensional inte-
grals.Ph.D. Dissertation, Ohio State University, Columbus, August 1999. Also available as
Technical Report No. OSU-CISRC-8/99-TR22, Dept. of Computer and Information Science,
The Ohio State University.

14. T. Lee and G. Scuseria. Achieving chemical accuracy with coupled cluster theory. In S.
R. Langhoff (Ed.),Quantum Mechanical Electronic Structure Calculations with Chemical
Accuracy,pages 47–109, Kluwer Academic, 1997.

15. J. Martin. In Encyclopedia of Computational Chemistry.P. Schleyer, P. Schreiner, N.
Allinger, T. Clark, J. Gasteiger, P. Kollman, H. Schaefer III (Eds.), Wiley & Sons, Berne
(Switzerland). Vol. 1, pp. 115–128, 1998.

16. V. Sarkar and G. Gao. Optimization of array accesses by collective loop transformations.
In Proc. ACM International Conference on Supercomputing,pages 194–205, Cologne, Ger-
many, June 1991.

17. Y. Song, R. Xu, C. Wang and Z. Li. Data locality enhancement by memory reduction. In
Proc. of ACM 15th International Conference on Supercomputing,pages 50–64, June 2001.

18. Y. Song, C. Wang and Z. Li. Locality enhancement by array contraction. InProc. 14th Inter-
national Workshop on Languages and Compilers for Parallel Computing,August 2001.

