Structure of TCE

So Hirata

Pacific Northwest National Laboratory

Pacific Northwest National Laboratory

This presentation will address

- How TCE works
- How TCE-generated programs work
- How TCE can be used
- How TCE can be enhanced
- Other sources of information

How TCE works — overview

- TCE derives working equations for a second quantized many-electron theory
 - TCE is written in Python® programming language
- TCE implements the working equations into parallel programs
 - For the NWChem[©] QC software suite
 - Using ParSoft[©] Library

How TCE works — supported models

$$\langle Q | [(L_0 + L_1 + ...)(H_1 + H_2) \exp(T_1 + T_2 + ...)(R_0 + R_1 + ...)]_{C/L} | P \rangle$$

$$\langle D|(H_1+H_2)(R_1+R_2)|O\rangle = E\langle D|(R_1+R_2)|O\rangle$$

$$\langle D|(H_1)(R_1+R_2)|O\rangle+\langle D|(H_2)|O\rangle=0$$

$$\langle T | [(H_1 + H_2) \exp(T_1 + T_2 + T_3)]_C | O \rangle = 0$$

$$\langle D | [(H_1 + H_2) \exp(T_1 + T_2)(R_1 + R_1)]_C | O \rangle = 0$$

CCSD lambda equation

$$\langle O | [(1 + L_1 + L_2) [(H_1 + H_2) \exp(T_1 + T_2)]_C]_L | D \rangle = 0$$

CCSD dipole moments

$$\langle O|(1+L_1+L_2)[(H_1)\exp(T_1+T_2)]_C|O\rangle = \langle H_1\rangle$$

How TCE works — formula derivation

Input a WFT model ansatz

Fully Contracted?

YES

NO

Contraction of a creation and an annihilation operator

Identify equivalent terms and merge them together

Erase terms that will lead to vanishing contributions

Extract permutation operators

Delete disconnected/unlinked terms

Working equations

Pacific Northwest National Laboratory

How TCE works — program synthesis

Input WFT working equations

Strength reduction: $X=ABCD \rightarrow X=((BC)A)D$

Factorization: $X=AB+AC \rightarrow X=A(B+C)$

Intermediate reuse: X=AB+C(AB) → Y=AB, X=Y+CY

Operation Tree

Determine permutation symmetry of intermediates

Analyze the use of permutation symmetry in contraction

Generate Fortran77/Fortran90 programs

Pacific Northwest National Laboratory

How TCE-generated programs work —— challenges

- Use of spin & spatial symmetry in tensor storage & contraction
- Use of permutation symmetry in tensor storage & contraction
- Permutation symmetry of intermediates
- Abstraction of theories
- Memory management
- Scalablility to massively parallel regime

How TCE-generated programs work —— permutation symmetry

Reduced storage size

$$t_{ij}^{ab} \Longrightarrow t_{i < j}^{a < b}$$

Reduced operation cost

$$\sum_{cd} t_{ij}^{cd} v_{cd}^{ab} \Longrightarrow 2 \sum_{c < d} t_{i < j}^{c < d} v_{c < d}^{a < b}$$

How TCE-generated programs work — intermediates

◆With no de-excitation (∠) operator

$$i_{g'_{1} < g'_{2} < g'_{3} < \cdots < g'_{m}, \ell'_{1} < \ell'_{2} < \ell'_{3} < \cdots < \ell'_{p}}$$

 $i_{g'_{1} < g'_{2} < g'_{3} < \cdots < g'_{m}, \ell'_{1} < \ell'_{2} < \ell'_{3} < \cdots < \ell'_{q}}$

◆With a de-excitation (∠) operator

$$\boldsymbol{i}_{g_1' < g_2' < g_3' < \dots < g_m, h_1 < h_2 < h_3 < \dots < h_p, p_1 < p_2 < p_3 < \dots < p_p \\ \boldsymbol{i}_{g_1' < g_2' < g_3' < \dots < g_m', h_1' < h_2' < h_3' < \dots < h_q', p_1' < p_2' < p_3' < \dots < p_q'}$$

How TCE-generated programs work —— spin & spatial symmetries

Spin symmetry

Covariant indices
$$\sum_{p} s_{p} = \sum_{q} s_{q}$$

Spatial symmetry

$$\prod_{p}^{\text{lindices}} \Gamma_p = \Gamma_0$$

How TCE-generated programs work —— tiling algorithm

DO i
DO j
IF (i>j)
IF X(ij) IS NONZERO
ARITHMETIC

IF	IF	ļF	IF	IF	İF	IF	IF
IF	IF	lF	IF	IF	IF	IF	IF
IF	İF	IF	IF	IF	IF	IF	IF
IF	İF	İF	IF	IF	IF	IF	IF
IF	IF	IF	IF	IF	IF	IF	IF
IF	İF	IF	IF	IF	IF	IF	IF
IF	İF	IF	İF	IF	IF	IF	IF
İF	İF	lF	IF	IF	İF	IF	IF

DO I (i1~i2)
DO J (j1~j2)
IF (I>J)
IF X(IJ) IS NONZERO
DO i
DO j
ARITHMETIC

IF	1F	l -	IF			
IF	IF	I -	ΙF			
IF	IF	IF	1F			
IF	IF	IF	IF			

Pacific Northwest National Laboratory

How TCE-generated programs work —— tiling algorithm

- Spin, spatial, and permutation symmetries
- Near-operation-minimum
- Runtime adjustment of peak memory size
- Granularity of dynamic load balancing parallelism

How TCE can be used —— preliminary

- Use a Windows or LINUX machine
- Download the latest Python® from www.python.org (free)
 - TCE codes (aee.py, ccc.py, oce.py, tce.py) will run
- Obtain the latest NWChem development version for interfacing and running the TCEgenerated codes
 - Minor modification of TCE's code generator & development of interface will permit other QC software suites than NWChem

How TCE can be used —— GUI based

	7 % t	k										_IOX
	File	Help)									
	Tensor Contraction Engine, Version 1.0											
	Copyright (c) 2003, Battelle & Pacific Northwest National Laboratory											
	0	<0	✓	L0 = 1					V	R0 = 1	•	10>
	0	<si< th=""><th></th><th>L1 Operator</th><th>✓ (</th><th>(plflq>{p+q}</th><th>✓</th><th>T1 Operator</th><th></th><th>R1 Operator</th><th>0</th><th>IS></th></si<>		L1 Operator	✓ ((plflq>{p+q}	✓	T1 Operator		R1 Operator	0	IS>
	•	<d < th=""><th></th><th>L2 Operator</th><th>V 1</th><th>/4<pq rs>{p+q+sr}</pq rs></th><th>✓</th><th>T2 Operator</th><th></th><th>R2 Operator</th><th>0</th><th>ID></th></d <>		L2 Operator	V 1	/4 <pq rs>{p+q+sr}</pq rs>	✓	T2 Operator		R2 Operator	0	ID>
	0	<t < th=""><th></th><th colspan="3">L3 Operator</th><th></th><th>T3 Operator</th><th></th><th>R3 Operator</th><th>0</th><th>IT></th></t <>		L3 Operator				T3 Operator		R3 Operator	0	IT>
	0	<q < th=""><th></th><th>L4 Operator</th><th></th><th></th><th></th><th>T4 Operator</th><th>Г</th><th>R4 Operator</th><th>0</th><th>IQ></th></q <>		L4 Operator				T4 Operator	Г	R4 Operator	0	IQ>
			✓	L Is Connected	V	H Is Connected	✓	T Is Connected	V	R Is Connected	✓.	All Are Linked
Perform Operator Contractions												
		Skip							Clear All			
1.0/1.0 Sum(g5 g6) f(g5 g6) { h1+ h2+ p4 p3 } { g5+ g6 }												
	1.0/4.0 Sum(g5 g6 g7 g8) v(g5 g6 g7 g8) { h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 }											
	1.0/1.0 Sum(g5 g6 p7 h8) f(g5 g6) t(p7 h8) { h1+ h2+ p4 p3 } { g5+ g6 } { p7+ h8 }											
	1.0/4.0 Sum(g5 g6 g7 g8 p9 h10) v(g5 g6 g7 g8) t(p9 h10) { h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+ h10 } 1.0/4.0 Sum(g5 g6 p7 p8 h9 h10) f(g5 g6) t(p7 p8 h9 h10) { h1+ h2+ p4 p3 } { g5+ g6 } { p7+ p8+ h10 h9 }											
	1.0/16.0 Sum(g5 g6 g7 g8 p9 p10 h11 h12) v(g5 g6 g7 g8) t(p9 p10 h11 h12) {h1+ h2+ p4 p3} {g5+ g6+ g8 g7} {p9+ p											
	1.0/2.0 Sum(g5 g6 p7 h8 p9 h10) f(g5 g6) t(p7 h8) t(p9 h10) { h1+ h2+ p4 p3 } { g5+ g6 } { p7+ h8 } { p9+ h10 }											
	1.0/8.0 Sum(g5 g6 g7 g8 p9 h10 p11 h12) v(g5 g6 g7 g8) t(p9 h10) t(p11 h12) { h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+											
	1.0/4.0 Sum(g5 g6 p7 h8 p9 p10 h11 h12) f(g5 g6) t(p7 h8) t(p9 p10 h11 h12) { h1+ h2+ p4 p3 } { g5+ g6 } { p7+ h8 } { p											
	1.0/16.0 Sum(g5 g6 g7 g8 p9 h10 p11 p12 h13 h14) v(g5 g6 g7 g8) t(p9 h10) t(p11 p12 h13 h14) {h1+ h2+ p4 p3 } {g5 🔻											
	<2I (1) H exp(T1+T2) (1) I0>											

Pacific Northwest National Laboratory

How TCE can be used —— text based

cf) Auer's presentation

```
Shortcut to python.exe
Python 2.2.1 (#34, Apr 9 2002, 19:34:33) [MSC 32 bit (Intel)] on win32 Type "help", "copyright", "credits" or "license" for more information.

>>> import oce
>>> cd_t2 = oce.readfromfile("ccd_t2.in")
                                                                                                                                                                                                                                                                                                                                                    _
  >>> print ccd_t2
    + 0.25 ] * Sum ( g5 g6 g7 g8 ) * v ( g5 g6 g7 g8 ) * (0| ( h1+ h2+ p4 p3 ) ( g5+ g6+ g8 g7 ) !0>
+ 0.25 ] * Sum ( g5 g6 p7 p8 h9 h10 ) * f ( g5 g6 ) * t ( p7 p8 h9 h10 ) * (0| ( h1+ h2+ p4 p3 ) ( g5+ g6 )
p7+ p8+ h10 h9 ) !0>
+ 0.0625 ] * Sum ( g5 g6 g7 g8 p9 p10 h11 h12 ) * v ( g5 g6 g7 g8 ) * t ( p9 p10 h11 h12 ) * (0| ( h1+ h2+ p
p3 ) ( g5+ g6+ g8 g7 ) ( p9+ p10+ h12 h11 ) !0>
+ 0.0078125 ] * Sum ( g5 g6 g7 g8 p9 p10 h11 h12 p13 p14 h15 h16 ) * v ( g5 g6 g7 g8 ) * t ( p9 p10 h11 h12
* t ( p13 p14 h15 h16 ) * (0| ( h1+ h2+ p4 p3 ) ( g5+ g6+ g8 g7 ) ( p9+ p10+ h12 h11 ) ( p13+ p14+ h16 h15 )
!0>
... commencing full operator contraction
... iteration = 1, number of terms = 3
... iteration = 2, number of terms = 6
... iteration = 3, number of terms = 12
... iteration = 4, number of terms = 23
... iteration = 5, number of terms = 28
... iteration = 6, number of terms = 12
... iteration = 7, number of terms = 16
... iteration = 8, number of terms = 8
  ... iteration -
>>> print ccd_t2
                .0 ] * v ( p3 p4 h1 h2 )
.0 ] * Sum ( h5 ) * f ( h5 h1 ) * t ( p3 p4 h5 h2 )
.0 ] * Sum ( h5 ) * f ( h5 h2 ) * t ( p3 p4 h5 h1 )
```

Pacific Northwest National Laboratory

How TCE can be enhanced — limitations of TCE

- ◆ Tested for ...
 - CC up to CCSDTQ, CI up to CISDTQ, 'generalized' MBPT up to MBPT(4), CC \(\Lambda \) up to CCSDTQ, EOM-CC (right & left) up to EOM-CCSDTQ
- Anything else will probably need some work
 - But far less than a full manual implementation would!
 - cf) Sadayappan's presentation

How TCE can be enhanced —— collaborations

- Join our effort!
 - Partner with existing members (quantum chemists or computer scientists) to realize your new methods much more quickly
 - ex) Professor Rodney Bartlett & Mr. Igor
 Schweigert CC analytical derivatives
 - ex) Professor Piotr Piecuch, Dr. Karol
 Kowalski, Professor Mark S. Gordon
 Novel CC & EOM-CC methods
 - ex) Professor Kimihiko Hirao, Dr. Takeshi
 Yanai Relativistic correlation theories

Other sources of information

Papers

- G. Baumgartner *et al.* Proc. Supercomp. (2002) [Performance optimization aspects]
- D. Cociorva *et al.* Lect. Notes Comput. Sci. **2228**, 237 (2001). [Performance optimization aspects]
- S. Hirata, J.Phys.Chem.A 107, 9887 (2003) [TCE specs, and CISDTQ, CCSDTQ, MBPT(4) applications]
- S. Hirata *et al.*, J.Chem.Phys. **120**, 3297 (2004) [DK3 relativistic CCSDTQ applications]
- S. Hirata, submitted [EOM-CCSDTQ applications]
- Webpage
 - http://www.cis.ohio-state.edu/~gb/TCE/
- ◆ TCE Manual

Acknowledgements

- ◆ U.S. Department of Energy
- National Science Foundation
- Professor Rodney J. Bartlett
- Dr. Wibe A. de Jong
- Dr. Michel Dupuis
- Professor Kimihiko Hirao
- Dr. Takahito Nakajima
- Dr. Jarek Nieplocha
- Dr. Theresa L. Windus
- Dr. Takeshi Yanai

