
1

Estimating and Reducing the Memory Requirements
of Signal Processing Codes for Embedded Systems

J. Ramanujam,Member, IEEE,Jinpyo Hong, Mahmut Kandemir, and A. Narayan

Abstract— Most embedded systems have limited amount of
memory. In contrast, the memory requirements of the DSP and
video processing codes (in nested loops, in particular) running
on embedded systems is significant. This paper addresses the
problem of estimating and reducing the amount of memory
needed for transfers of data in embedded systems. First, the
problem of estimating the region associated with a statement or
the set of elements referenced by a statement during the execution
of nested loops is analyzed. For a fixed execution ordering, a
quantitative analysis of the number of elements referenced is
presented; exact expressions for uniformly generated references
and a close upper and lower bound for non-uniformly generated
references are derived. Second, in addition to presenting an
algorithm that computes the total memory required, this paper
also discusses the effect of transformations (that change the
execution ordering) on the lifetimes of array variables, i.e., the
time between the first and last accesses to a given array location.
The term maximum window size is introduced and quantitative
expressions are derived to compute the maximum window size. A
detailed analysis of the effect of unimodular transformations on
data locality including the calculation of the maximum window
size is presented.

Index Terms— Memory estimation, signal processing codes,
embedded processors, data reuse, execution ordering, compiler
transformations.

I. I NTRODUCTION

An important characteristic of embedded systems that exe-
cute signal and image processing codes is that the hardware
can be customized according to the needs of a single or a
small group of applications. An example of such customization
is parameterized memory/cache modules whose topological
parameters (e.g., total capacity, block size, associativity) can
be set depending on the data access pattern of the application
at hand. In many cases, it is most beneficial to use the smallest
amount of data memory that satisfies the target performance
level [18]. Employing a data memory space that is larger than
necessary has several negative consequences. First, the per
access energy consumption of a memory module increases
with its size [2]. Second, larger memory modules tend to
incur larger delays, thereby increasing the data access latency.
Third, large memories by definition occupy more chip space.
Consequently, significant savings in energy, area and delay
may be possible through a more careful selection of memory
size.

Manuscript received December 28, 2001; revised May 12, 2003.This work
was supported in part by NSF Young Investigator Award 9457768, and by NSF
grants 0073800, 0093082 and 0103693.

J. Ramanujam and A. Narayan are with Louisiana State University. Email:
{jxr,hpc}@ece.lsu.edu. Jinpyo Hong is with University of Memphis. Email:
jphong1@memphis.edu. Mahmut Kandemir is with Pennsylvania State Uni-
versity. Email: kandemir@cse.psu.edu.

Unfortunately, selecting the minimum memory size (without
impacting performance) is not always easy. This is because
data declarations (which specify the total size of each array,
for example) in many codes are decided based on high-
level representation of the algorithm being coded not based
on actual memory requirements. The important point here is
that not every data item (declared data location) is needed
throughout the execution of the program. That is, at any given
point during the execution, typically, only a portion of the
declared storage space (e.g., array size) is actually needed.
This is particularly true for embedded systems that process
data arrays in signal processing codes. Therefore, the total data
memory size can be reduced by determining themaximum
number of data items that arelive at any point during the
course of execution. Two complementary steps to achieve
this objective is (i) estimating the memory consumption of a
given code, and (ii) reducing the memory consumption through
access pattern transformations.

The problem of estimating the minimum amount of memory
for a fixed execution ordering of nested loops was recently
addressed by Zhao and Malik [18]. Their work characterizes
the memory estimation problem as one of counting the number
of live variables in each iteration of the innermost loop of
loop nest—which is prohibitively expensive for large multi-
dimensional arrays—and deriving the maximum of these. In
this paper, we present a technique that quickly and accurately
estimates the number of distinct array accesses and the mini-
mum amount of memory in nested loops, which does not in-
volve calculations at each iteration of a nested loop. Moreover,
we present a technique that reduces the amount of memory
required through the use of loop-level transformations. See
the section on related work for a comparison of our approach
to those in other works [4], [9], [11], [12], [18].

Nested loops are of particular importance as many em-
bedded codes from image and video processing domains
manipulate large arrays using several nested loops. In most
cases, the number of distinct accesses is much smaller than
the size of the array(s) in question and the size of the loop
iteration space. This is due to the repeated accesses to the
same memory location in the course of execution of the loop
nest. The proposed technique identifies this reuse of memory
locations, and takes advantage of it in estimating the memory
consumption as well as in reducing it.

The main abstraction that our technique manipulates is that
of data dependenceand data re-use[17]. Since many com-
pilers that target array-dominated codes maintain some sort
of data dependence information, implementing our estimation
and optimization strategy involves only a small additional

2

overhead. Our experimental results obtained using a set of
seven codes show that the proposed techniques are very
accurate, and are capable of reducing the memory consumption
significantly through high-level optimizations.

The rest of this paper is organized as follows. Section 2
presents a brief background. Section 3 presents our techniques
for estimating the number of distinct references to arrays ac-
cessed in nested loops (as a function of loop bounds and reuse
distances) in which the execution ordering is fixed to be the
sequential execution ordering. In Section 4, we present a loop
transformation technique that finds the best execution ordering
that minimizes the maximum amount of memory required. A
general method of deriving the transformation is presented.
Section 5 presents experimental results on seven benchmarks
from signal and image processing domains. Related work
is discussed in Section 6, and Section 7 concludes with a
summary.

II. BACKGROUND

DSP programs mainly consist of perfectly nested loops
(loop nests in which every statement is inside the innermost
loop) that access single and multi-dimensional arrays [17],
[18]. Therefore, we will limit our discussion to these cases.
In our framework, the execution of each iteration of ann-
level nested loop is represented using aniteration vector
~I = (I1, · · · , In), whereIj corresponds to thejth loop from
the outermost position. We assume that the array subscript
expressions and loop bounds areaffine functionsof enclosing
loop indices and loop-independent parameters or variables
[17]. Each reference to ad-dimensional arrayU is represented
by anaccess(or data reference) matrixAD and anoffset vector
~b such thatAD

~I + ~b is the element accessed by a specific
iteration Ī [17]. The access matrix is ad×n matrix. An array
element which is referenced (read or written) more than once
in a loop nest constitutes areuse.The degree of reuse (i.e.,
reuse count) depends on the number of references to the array
in the loop (r), the relative values of the loop nest levels and
the dimensionality (d) of the array, and also the loop limits.
If iterations~i and~j access the same location, we say that the
reuse vectoris ~j −~i. The level of a reuse vector is the index
of the first non-zero in it. Consider the following loop nest.

for i = 1 to N do
for j = 1 to N do

for k = 1 to N do
· · ·U [i, k − 3] · · ·

The iteration vector is(i, j, k)T (note that we write a column
vector as transpose of the corresponding row vector), the data

access matrix for arrayU is

(

1 0 0
0 0 1

)

and the offset

vector is

(

0
−3

)

.

For an array whose reference matrix is square (that is, if the
dimensiond of the array and the deepest loop nesting leveln
are the same), the number of times an element is referenced is
at mostr wherer is the number of references to the array in
a loop. Therefore thereusefor a data element is at mostr−1.
For an array whose dimension is one less than the deepest loop

nesting level, the reuse of an element is along the directionof
the null space of the access matrix and the amount of reuse
due to an element depends on the loop bounds. In the example
given above, the reuse is in the direction of the middle loop
index (j). Arrays whose number of dimensions is one less
than the depth of the nested loop enclosing them are common
in DSP applications [2]. Ford-dimensional arrays accessed in
n-nested loops whered < n in general, the extent of reuse
depends on the loop bounds as well the basis vectors of the
null space of the access matrix.

A. Data Dependences and Loop Transformations

Dependence and reuse analysis are critical to the success of
optimizing compilers [16], [17]. We deal with sets of perfectly
nested loops, whose upper and lower bounds are all linear,
enclosing a loop body with affine array references. That is,
each subscript of an array variable index expression must be
an affine expression over the scalar integer variables of the
program. We assume familiarity with definitions of the types
of dependences [17].

Dependences arise between two iterations~i and ~j when
they both access the same memory location and one of them
writes to the location [17]. Let~i execute before~j in sequential
execution; the vector~d = ~j −~i is referred to thedependence
vector[17]. This forces sequentiality in execution. The level of
a dependence vector is the index of the first non-zero element
in it [17]. Let ~i = (i1, . . . , in) and~j = (j1, . . . , jn) be two
iterations of a nested loop such that~i ≺ ~j (read~i precedes
or executes before~j in sequential execution) and there is a
dependence of constant distance~d between them. Applying a
linear transformationT to the iteration space (nest vector) also
changes the dependence matrix sinceT (~j)−T (~i) = T (~j−~i) =
T ~d. All dependence vectors arepositive vectors,i.e., the first
non-zero component should be positive. We do not include
loop-independentdependences which are zero vectors. A
transformation is legal if the resulting dependence vectors are
still positivevectors [17]. Thus, the linear algebraic view leads
to a simpler notion of the legality of a transformation. For an
n-nested sequential loop, then×n identity matrix (In) denotes
sequential execution order. Any unimodular transformation can
be realized through reversal, interchange and skewing [16],
[17].

B. Distinct References

The number of distinct references (Ad) can be found using
dependences in the loop as shown in Figure 1. Then-
dimensional cube (in the case of 2-nested loop, this is a
square) formed by the dependence vector(3,−2) as shown
in Figure 1 represents the reused area (the shaded area) in the
iteration space. The dependence (reuse also)vector implies that
the iterations(i, j) and(i+3, j−2) access the same memory
location A[i, j]. The array elementA[i, j] is live between
iterations (i, j) and (i + 3, j − 2) in sequential execution.
Let us suppose that the array elementA[i, j] is mapped to
some memory locationx, and that the second reference is a
write in Example 1(a) shown below. This means that after the
value inA[i, j] is used in iteration(i + 3, j − 2), the memory

3

Dependence (3, −2)

i

j

Fig. 1. Iteration space for a 2-nested loop.

location x can hold other array elements. In fact,x can
hold all the values of the array elements written in iterations
(i, j), (i+3, j−2), (i+6, j−4), · · · , (i+3t, j−2t), · · · wheret
is any integer. Every iteration in the non-shaded region of the
iteration space accesses a distinct array element; the memory
requirement is the area of the non-shaded region. Note that
every iteration in the shaded region of the iteration space
reuses an array element. Consider the following examples:

Example 1(a): for i = 1 to 10 do
for j = 1 to 10 do

· · ·A[i − 3, j + 2] · · ·
· · ·A[i, j] · · ·

Example 1(b): for i = 1 to 10 do
for j = 1 to 10 do

· · ·A[2 ∗ i + 3 ∗ j] · · ·

In both Example 1(a) and 1(b), the dependence vector is
(3,−2). Note that in the first example, the dimensionality of
the array is the same as that of the loop nest level, the number
of references (r) is 2 and the reuse count is at most 1. (The
number of times an element of the array is referenced is at
most 2).

In the second example, the dimensionality is less than the
loop nest level, the number of references (r) is 1, and the
maximum reuse count for an element is⌈10/3⌉ = 4. The total
reuse (i.e., the area of the shaded region) is the same in both
the examples which is(10 − 3) × (10 − 2) = 56. Let the
dependence vector be(d1, d2). In general, the signs ofd1 and
d2 do not affect the amount of reuse. In a nested loop of
sizeN1 ×N2, the amount of reuse is given by(N1 − |d1|)×
(N2 − |d2|). The total number of distinct locations accessed
(the minimum memory size), therefore, isN1 × N2 − (N1 −
|d1|)×(N2−|d2|) = N1×|d2|+N2×|d1|−|d1|×|d2|. Note that
in contrast to other works [4], [9], [11], [12], [18] that require
the loop bounds to be known constants, we derive closed-form
expressions for the minimum memory size as a function of the
loop bounds and dependence vectors. We consider the cases
where the dimension of the array accessed within the loop is
the same as the nest level and where the dimensionality is less
than the loop nesting level. It should be emphasized that these
cases are commonly found in DSP codes [2].

C. Uniformly Generated References and Maximum Window
Size

We assume that all the references to an array areuniformly
generated[5], [7]. Uniformly generated references are those,
for which the access matrices are the same but the offset
vectors are different, i.e., the subscript functions of thedif-
ferent references differ only in the constants. To illustrate this
concept, consider the following loop.

for i1 = l1 to u1 do
· · ·

for in = ln to un do
R1[A1(i1, . . . , in) + ~b1]
· · ·

Rk[Ak(i1, . . . , in) + ~bk]

where R1, . . . ,Rk are references to arrays not necessarily
distinct. TheAi are matrices of sizen × di wheredi is the
dimension of the array referenced inRi; ~bi is a vector of
sizedi. We assume that all array reference to an arrayX are
uniformly generated, i.e.,Ai for all references toX are equal.
An example of a loop with a uniformly generated references
is shown below:

for i = 1 to N1 do
for j = 1 to N2 do

X[2i + 3j +2] = Y [i + j]

Y [i + j +1] = X[2i + 3j +3]

Here, the two references toX are of the form
2i + 3j + constant and both references to arrayY are

of the form i + j + constant. We use the notion of a
reference window of an array in loop nest (which is different
form the notion of the reference window of a dependence
as used by [5], [7]) that allows us to deal with each distinct
array as a whole and not on a per-reference-pair-to-the-array
basis.

The amount of memory required is a function of the number
of live variables,i.e., variables that will be accessed again in
the future. We now introduce a notion that is useful in this
context. Thereference windowWX(~i) (where~i = (i1, . . . , in)
is an iteration of then-nested loop) is the set of all elements
of array X that are referenced by any of the statements in
all iterations~j1 �~i (read ~j1 precedes in sequential execution
or is the same as~i) that are also referenced in some (later)
iteration ~j2 such that~j2 ≻~i (read~j2 follows~i). This allows us
to precisely the define those iterations which need a specific
value in local memory. The size of the windowWX(~i) is the
number of elements in that window. Themaximum window
size(MWS) is given by

max
~i

∣

∣

∣
WX(~i)

∣

∣

∣

and is defined over the entire iteration space. In the case of
multiple arraysX1, . . . ,XK , the maximum reference window
size is:

max
~i

K
∑

k=1

∣

∣

∣
WXk

(

~i
)∣

∣

∣
.

Note that the reference window is adynamicentity, whose
shape and size change with execution. For nested loops with

4

uniformly generated references, the maximum window size
(MWS) is a function of the loop limits. The smaller the value
of MWS, the higher the amount of data locality in the loop
nest for the array. For simplicity of exposition, we assume that
there are multiple uniformly generated references to a single
array in a loop nest. The results derived here easily generalize
to multiple arrays and higher levels of nesting.

III. ESTIMATING THE NUMBER OF DISTINCT ACCESSES IN

NESTEDLOOPS FORFIXED (SEQUENTIAL) EXECUTION

ORDERING

The amount of memory needed is a function of the access
pattern. In this section, we develop estimates of the memory
requirement in terms of the total number of distinct accesses in
a nested loop, assuming no transformations are employed and
no dynamic memory management is used; dynamic memory
management would allow one to use the same memory loca-
tion for accesses to two variables whose lifetimes (the time
spanned from the first access to a location to the last access)
are disjoint. These are discussed in Section 4.

A. Loops with Array Dimension (d) = Nesting (n)

With just one reference to each array in such a nest,
the number of distinct accesses equals the total number of
iterations. Therefore, we focus only on the case where thereare
multiple references to the same array. Stencil codes including
some relaxation codes such as SOR exhibit such an access
pattern.

In general for r references in a loop where the array
dimension is the same as the loop nesting level there are a total
of r(r−1)

2 dependences. Note that there is at least one node
in the dependence graph which is a sink to the dependence
vectors from each of the remainingr − 1 nodes. In other
words, there exists a statement withr − 1 direction vectors
directed from each of the remaining statements. Ther − 1
dependences due to all the other references to this reference
gives the amount of reuse. Consider a two-level nested loop
in which there arer uniformly generated references. Let the
dependences on one reference due to all other references be

(

d11 d21 · · · dr−1,1

d12 d22 · · · dr−1,2

)

.

The amount of reuse for that array is:

reuse=
r−1
∑

i=1

(N1 − |di1|)(N2 − |di2|)

and the number of distinct elements is given by

Ad = N1 × N2 × r − reuse.

Consider the following loop (in Example 2) where there are
two uniformly generated references to the array A and the
access matrix is non-singular.
Example 2: for i = 1 to N1

for j = 1 to N2

S1: · · ·A[i, j] · · ·
S2: · · ·A[i − 1, j + 2] · · ·

Here there is a dependence(1,−2) from statementS1 to
statementS2. This dependence is used to calculate the amount
of reuse for each element. The amount of reuse is(N1 −
1)(N2 − 2), and the number of distinct accesses to the array
A in the above loop isAd = N1 × N2 × 2 − reuse.

Example 3 (shown below) illustrates the case of several
uniformly generated references.
Example 3: for i = 1 to 10

for j = 1 to 10
S1: · · ·A[i, j] · · ·
S2: · · ·A[i − 1, j] · · ·
S3: · · ·A[i, j − 1] · · ·
S4: · · ·A[i − 1, j − 1] · · ·

The dependence vectors from statementS1 to the other
statements are(1, 0), (0, 1), (1, 1). The amount of reuse is
calculated as reuse= (10 − 1)(10 − 0) + (10 − 0)(10 − 1) +
(10 − 1)(10 − 1) = 90 + 90 + 81 = 261, and the the number
of distinct accesses is:Ad = 10× 10× 4− 261 = 139. Thus,
we see that, for cases where the loop nesting level is the same
as the dimension of the array accesses in the loop, there is
only one dependence vector between a pair of statements and
the maximum reuse for a particular element is at mostr − 1.
In other words, there are a maximum ofr references to any
given array element.

B. Loops with Array Dimensiond = n − 1

a) Single Reference:Consider the case of a single ref-
erence where the dimension of the array is at least one less
than the loop nest. Ifd = n− 1, then there is reuse along the
direction of the null space vector of the access matrix.
Example 4: for i = 1 to 20 do

for j = 1 to 10 do
· · ·A[2i + 5j + 1] · · ·

Here the reuse vector is(5,−2) which is the same as
the dependence vector for the loop. We now look at then
dimensional cube formed by the dependence vector (in this
case, a square) on the iteration space which represents the
reused elements of the array. Note that all elements within the
square formed by the vector is a sink to a direction vector
which is a reused element by definition. Therefore, for the
above example where there is a single statement, we can obtain
the figure for the number of data elements reused in the array
as:

reuse= (N1 −d11)(N2 −|d21|) = (20−5)(10−2) = 120,

and the number of distinct accesses to the array is

Ad = N1 × N2 − reuse= 20 × 10 − 120 = 80.

Now consider the case of a 2-dimensional array accessed in a
three-level nested loop.
Example 5:
for i = 1 to 10 do

for j = 1 to 20 do
for k = 1 to 30 do

· · ·A[3i + k, j + k] · · ·

5

Here the reuse vector is(1, 3,−3); the reuse is calculated as:

reuse= (10 − 1)(20 − 3)(30 − 3) = 4131,

and the number of distinct accesses is

Ad = 10 × 20 × 30 − 4131 = 1869.

Extensions to handle the case of multiple uniformly gener-
ated references and general classes of references are beyond
the scope of this paper.

IV. M INIMIZING THE MAXIMUM WINDOW SIZE USING

TRANSFORMATIONS

The last section presented estimates of the memory require-
ment in terms of the total number of distinct accesses in a
nested loop, assuming no transformations are employed (fixed
execution ordering) and no dynamic memory management
is used. In this section, we show how to derive program
transformations that can be used to reduce the size of the max-
imum amount of memory required. Of course, this assumes a
dynamic memory management scheme that would allow us to
use the same memory location for accesses to two variables
whose lifetimes are disjoint.

Consider the following example which is a minor variant of
the example from [5]:
Example 6:
for i = 1 to 20 do

for j = 1 to 30 do
· · ·X[2i − 3j] · · ·

Eisenbeis et al. [5] mention that the cost of the window
(the same as MWS) for this loop is89. They use only two
transformations: loop interchange and reversal. On applying
interchange, the MWS reduces to41. On reversal applied to
the original loop, the cost becomes86 while reversing the
interchanged loop reduces the cost to36. Using the technique
presented here, the cost or MWS for this loop can be reduced
to 1, i.e., all iterations accessing any element of the arrayX
can be made consecutive iterations of an inner loop. The only
dependence in this example is the vector(3, 2). We use the

following legal transformation,T =

(

2 −3
1 −1

)

. Note that

the first row of the transformation matrix(2 −3) is the same as
the coefficients of the access function2i−3j. Li and Pingali’s
technique [14] constructs the transformation matrix usingthe
rows of the access matrix. Even though the technique in [14]
can be used to derive this transformation, there are situations
where the techniques presented hereimproveslocality while
that in [14] does not improve locality. Consider the loop shown
in the next example.
Example 7: for i = 1 to 25 do

for j = 1 to 10 do
X[2i + 5j + 1] = X[2i + 5j + 5]

The distance vectors for this loop are:
(3,−2), (2, 0), (5,−2); (3,−2) is the flow dependence,
(2, 0) is an anti-dependence and(5,−2) is the output
dependence vector. These are the only direct dependences. Li
and Pingali use transformation matrices whose first row is

either (2, 5) or (−2,−5). Any transformation that uses(2, 5)
as its first row is illegal because of the distance vector(3,−2);
the first component of(3,−2) after the transformation is
((2, 5) · (3,−2)T = −4 is < 0). Similarly any transformation
that uses(−2,−5) as its first row is illegal due to the distance
vector (2, 0) since ((−2,−5) · (2, 0)T = −4 is < 0). The
maximum window size is50. Li and Pingali’s technique will
not find any partial transformation that can be completed
to a legal transformation. Where as, by applying techniques
presented in the following sections, we can apply the legal

transformation,T =

(

2 3
1 1

)

. Applying T reduces the

maximum window size to21. A combination of reversal and
interchange does not change the maximum window size from
50.

A. Effect of Transformations on Locality

Consider a nested loop withr uniformly generated refer-
ences to an arrayX of the form:λ1i+λ2j+ck (k = 1, . . . , r)
as shown below:
Example 8:
for i = 1 to N1 do

for j = 1 to N2 do
· · ·X[λ1i + λ2j + c1] · · ·
· · ·
· · ·X[λ1i + λ2j + cr] · · ·

We need to compute the effect of a legal unimodular trans-

formation,T =

(

a b
c d

)

on the maximum window size. In

addition to legality, we require that the loop nest betile-able
[10], [16]; this permits us to use block transfers, which are
very useful to minimize the number of off-chip accesses. The
optimum transformation thus satisfies two conditions:

1) legality condition for tiling
2) minimizes the maximum window size

The detailed derivation is beyond the scope of this paper. The
maximum window size (MWS) is a function of the maximum
inner loop span ormaxspan, which is the maximum trip count
of the inner loop (difference between the upper and lower
limits of the inner loop) over all outer loop iterations [5].

MWS = maxspan× ∆ × (λ2a − λ1b) (1)

where∆ is the determinant of the transformation matrix. Let
θ = λ2a − λ1b. The simplified expression derived for the
maximum window size is:

MWS =

{ (∣

∣

N1−1
b

∣

∣ + 1
)

|θ| if a − b ≥ aN1 − bN2
(∣

∣

N2−1
a

∣

∣ + 1
)

|θ| if a − b ≤ aN1 − bN2
(2)

Thus to minimize the maximum window size, the value of
MWS from equation (2) should be minimized among all
unimodular transformationsT that are valid for tiling. In many
cases, MWS is minimized when|λ2a − λ1b| is minimized.

B. Legal Transformation

Let ~di = (di,1, di,2) (i = 1, . . . ,m) be a set of dependence
distance vectors. With uniformly generated references, all the
dependences in a nested loop are distance vectors. Given any

6

two uniformly generated referencesλ1i + λ2j + c1 andλ1i +
λ2j + c2, to test for a dependence from iteration(i1, i2) to
iteration (j1, j2), we check for integer solutions within the
loop range to the equation:

λ1i1 + λ2i2 + c1 = λ1j1 + λ2j2 + c2

i.e., λ1(j1 − i1) + λ2(j2 − i2) = c1 − c2.

We can writex1 = j1 − i1 andx2 = j2 − i2 where(x1, x2)
is a distance vector. Sinceλ1, λ2, c1, c2 are constants, every
solution gives a distance vector. The smallest lexicographically
positive solution is the dependence vector of interest. In order
for the transformationT to render the loop nest tile-able, the
following conditions must hold:

adi,1 + bdi,2 ≥ 0 i = 1, · · · ,m

cdi,1 + ddi,2 ≥ 0 i = 1, · · · ,m

We illustrate the use of technique through Example 2. Consider
the loop nest:
for i = 1 to 25 do

for j = 1 to 10 do
X[2i + 5j + 1] = X[2i + 5j + 5]

The distance vectors for this loop are:
(3,−2), (2, 0), (5,−2). The problem here is to find a

unimodular transformation:T =

(

a b
c d

)

such that the

loop is tile-able (which allows bringing chunks of data which
can fully operated upon before discarding),i.e., represented
by the following constraints:

• 3a− 2b ≥ 0, 2a ≥ 0, 5a− 2b ≥ 0, 3c− 2d ≥ 0, 2c ≥ 0,
5c − 2d ≥ 0.

and the maximum window size (MWS)

MWS =

{ (
∣

∣

24
b

∣

∣ + 1
)

|5a − 2b| if a − b ≥ 25a − 10b
(∣

∣

9
a

∣

∣ + 1
)

|5a − 2b| if a − b ≤ 25a − 10b

is minimized. Given the set of inequalities that should be
satisfied,

3a − 2b ≥ 0 =⇒ b ≤
3a

2
=⇒ 9b ≤

27a

2
.

Since,9b ≤ 27a
2 , the second condition applies,i.e., 9b ≤ 24a.

So,

MWS =

(

9

a
+ 1

)

(5a − 2b) = 45 + (5a − 2b) −
18b

a

needs to be minimized subject to inequalities (2.5–2.10).
We use either a branch and bound technique (or general
nonlinear programming techniques) to minimize this function;
the number of variables is linear in the number of nested loops
which is usually very small in practice(≤ 4) resulting in small
solution times. Alternately, if we minimize5a− 2b subject to
constraints (2.5–2.10), we get very good solutions in practice.
In the example loop nest,a = 2, b = 3 is an optimal solution,
giving an minimum MWS estimate of22 which is very close to
the actual minimum MWS which is21. In general, the system
of inequalities arising legal tiling requirement are combined
with eithera − b ≤ aN1 − bN2 or with a − b ≥ aN1 − bN2

to form two groups of inequalities; if both the groups have

valid solutions, we find the best of these. If only one group
has valid solutions, the problem is a lot easier. For the solution
a = 2, b = 3, the set of values forc and d which give rise
to unimodularT while satisfying tiling legality condition is
c = 1, d = 1.

The window size in 3-nested loops cannot be just derived
using the coefficients of the access functions and is a function
of the null space vector and the loop limits. It is estimated
using the largest lexicographic dependence vector.

V. EXPERIMENTAL RESULTS ONSIGNAL , IMAGE AND

V IDEO PROCESSINGCODES

In order to evaluate the proposed estimation and opti-
mization technique, we tested it using seven codes from
DSP and video processing domains:2 point and3 point
are two-point and three-point stencil codes, respectively;
sor is a successive-over-relaxation code;matmult is a
matrix-multiply kernel; two different motion estimation codes,
3step log andfull search; and finally,rasta flt is
a filtering routine from MediaBench [13]

Figure I presents our results in columns 2 through 5. The
column default gives the normal memory size which is
the total number of array elements declared.MWSunopt and
MWSopt, on the other hand, give the maximum window sizes
(MWS) before and after optimizing the code, respectively. In
columns 3 and 4, following each number, within parentheses,
we also give thepercentage reductionwith respect to the
corresponding value in the second column. Column 5 denotes
the ratio of MWSopt to MWSunopt as a percentage. We see
from these results that estimating the memory consumption
(requirements) of the original (unoptimized) codes indicates
a 81.9% saving, and that for the optimized codes brings
about an average saving of 92.3%. Note that these savings
directly correspond to reduction in the required data memory
sizes. We also need to mention that except forrasta flt,
our estimations were exact. In therasta flt code, our
estimation is around 13% higher than the actual memory
requirement for both the original and the optimized code. Itis
useful to note that except formatmult, we see a significant
reduction in memory through the use of transformations.

VI. RELATED WORK

The estimation of the number of references to an array in
order to predict cache effectiveness in hierarchical memory
machines have been discussed by Ferrante et al. [6] and
Gallivan et al. [7]. The image of the iteration space onto the
array space to optimize global transfers have been discussed
in [7]. A framework for estimating bounds for the number of
elements accessed only was given. Ferrante et al. gave exact
values for uniformly generated references but did not consider
multiple references. Also, for non-uniformly generated refer-
ences, arbitrary correction factors were given for arriving at
lower and upper bounds for the number of distinct references.
We present a technique in this paper which gives accurate
results for most practical cases and very close bounds where
ever necessary. Clauss [3] and Pugh [15] have presented more

7

TABLE I

DEFAULT AND ESTIMATED MEMORY REQUIREMENTS FOR SIGNAL, IMAGE AND VIDEO PROCESSING CODES.

code default MWSunopt MWSopt
MWSopt

MWSunopt

2 point 4,096 65 (98.4%) 3 (99.9%) 4.6%
3 point 1,024 68 (93.3%) 35 (96.5%) 51.5%
sor 1,024 65 (93.6%) 35 (96.5%) 53.8%

matmult 768 273 (64.4%) 273 (64.4%) 100.0%
3step log 2,064 511 (75.2%) 122 (94.0%) 23.9%
full search 2,064 252 (87.8%) 60 (97.1%) 23.8%
rasta flt 5,152 2,040 (60.4%) 127 (97.5%) 6.2%

Average Reduction: 81.9% 92.3%
Average Ratio: 37.7

expensive but exact techniques to count the number of distinct
accesses.

Some early approaches in high-level synthesis that dealt
with minimum register allocation for scalars [8] can be ex-
tended to arrays by treating each array element as a separate
scalar; such an approach is highly expensive. Researchers
from IMEC [1], [4], [11], [12], Grun et al. [9], and Zhao
and Malik [18] present techniques that estimate the minimum
amount of memory required. Of these [11], [12] allow the
user to specify an arbitrary execution ordering, Balasa et al. [1]
ignores execution ordering, while the rest of the works assume
a fixed sequential execution ordering.

Balasa et al. [1] do not take into account the effects of
execution ordering in deriving memory estimates; their work
assumes that all loop bounds are given constants and results
in significant over-estimation. De Greef et al. [4] consider
in-place mappingwhich exploits non-overlapping life times
of arrays and array elements to reduce the overall memory
storage, for a given execution ordering. They also require that
all loop bounds are constants. We do not consider the effectsof
array layouts and interleaving in this paper. Our first goal is to
reduce the the memory needs of individual arrays by reducing
their maximum window sizes through loop transformations.
We are currently exploring the use ofin-place mapping.

Grun et al. [9] assume fixed execution ordering and constant
loop bounds and derive estimates of upper and lower bounds
on the memory requirement of codes by using the first and last
iterations of each loop in a nest as starting points and further
refining by using additional iterations as needed to get better
estimates. In the worst case, complete unrolling of nested
loops may be required. In contrast, we present closed form
expressions for memory requirement and derive parameterized
choice of loop transformations in order to minimize the
memory requirement.

Zhao and Malik [18] addressed the problem of estimating
the minimum amount of memory for a fixed execution ordering
of nested loops. They view memory estimation as counting the
number of live variables in each iteration of the innermost loop
of loop nest—which is prohibitively expensive for large multi-
dimensional arrays—and deriving the maximum of these. Our
work differs from Zhao and Malik’s [18] in that we present
analytical expressions for memory requirement that do not
involve calculations for each iteration of any loop. Also, our
work addresses loop transformations to reduce memory.

Kjeldsberg et al. [11], [12] allow users to specify partial ex-
ecution orderings and assume that the loop bounds are known
constants. They are able to apply their work to imperfectly
nested loops as well by deriving the notion of a common
iteration space of a set of loops. We note that there is no
unique way to construct such a common iteration space, and
approaches to this problem have so far been ad hoc [17].
Different choices of common iteration space lead to different
memory requirements. Kjeldsberg et al. [11], [12] also assume
that the whole code is in static single assignment form which
is not a requirement in our case.

None of the above works discuss how to derive transforma-
tions that reduce the amount of minimum memory required.
In addition, in contrast to these works, we present closed
form expressions for memory reuse and derive the memory
requirement as a function of loop transformations.

Our work on loop transformations for improving data lo-
cality bears most similarity to work by Gannon et al. [7] and
Eisenbeis et al. [5]. They define the notion of a reference
window for each dependence arising from uniformly generated
references. Unlike our work, they do not use compound trans-
formations – only interchange and reversal are considered.In
addition, the use of a reference window and the resultant need
to approximate the combination of these windows results in
a loss of precision. Ferrante et al. [6] present a formula that
estimates the number of distinct references to array elements;
their technique does not use dependence information. Wolf
and Lam [16] develop an algorithm that estimates temporal
and spatial reuse of data usinglocalized vector space.Their
algorithm combines reuses from multiple references. Their
method does not use loop bounds and the estimates used
are less precise than the ones presented here. Their method
performs an exhaustive search of loop permutations that max-
imizes locality. Li and Pingali [14] discuss the completionof
partial transformations derived from the data access matrix of
a loop nest; the rows of the data access matrix are selected
subscript functions for various array accesses (excludingcon-
stant offsets). While their technique exploits reuse arising from
input and output dependences, it does not work well with flow
or anti-dependences.

VII. SUMMARY

Minimizing the amount of memory required is very im-
portant for embedded systems. The problem of estimating

8

the minimum amount of memory was recently addressed by
Zhao and Malik [18]. In this paper, we presented techniques
that (i) quickly and accurately estimates the number of dis-
tinct array accesses and the minimum amount of memory
in nested loops, and (ii) reduces this number through loop-
level transformations. The main abstraction that our technique
manipulates is that of data dependence and re-use [17]. Since
many compilers that target array-dominated codes maintain
some sort of data dependence information, implementing our
estimation and optimization strategy involves only a small
additional overhead. Our experimental results obtained using
a set of seven codes show that the proposed techniques
are very accurate, and are capable of reducing the memory
consumption significantly through high-level optimizations.
Work is in progress to extend our techniques to include the
effects of memory layouts of arrays and inter-array in-place
mapping, to extend the scope of transformations used, and to
increase the applicability of our solution to whole programs.

REFERENCES

[1] F. Balasa, F. Catthoor and H. De Man. Background memory area
estimation for multi-dimensional signal processing systems.IEEE Trans.
on VLSI Systems,3(2):157–172, June 1995.

[2] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle.Custom Memory Management Methodology.Kluwer
Academic Publishers, June 1998.

[3] P. Clauss. Counting solutions to linear and nonlinear constraints through
Ehrhart polynomials: Applications to analyze and transformscientific
programs. InProc. ACM Int. Conf. Supercomp.,May 1996.

[4] E. De Greef, F. Catthoor and H. De Man. Array placement for storage
size reduction in embedded multimedia systems.Proc. 11th Int. Conf.
Application-Specific Systems, Architectures and Processors, pp. 66–75,
July 1997.

[5] C. Eisenbeis, W. Jalby, D. Windheiser and F. Bodin. A strategy for array
management in local memory.Advances in Languages and Compilers
for Parallel Computing,pp. 130–151, 1991.

[6] J. Ferrante, V. Sarkar and W. Thrash. On Estimating and Enhancing
Cache Effectiveness.Proc. 4th Workshop on Languages and Compilers
for Parallel Computing,August 1991.

[7] K. Gallivan, W. Jalby and D. Gannon. On the Problem of Optimizing
Data Transfers for Complex Memory Systems.Proc. ACM Int. Conf.
Supercomp.,pp. 238–253, 1988.

[8] C. Gebotys, M. Elmasry. Simultaneous Scheduling and Allocation for
Cost Constrained Optimal Architectural Synthesis. InProc. Design
Automation Conference,pp. 2–7, June 1991.

[9] P. Grun, F. Balasa, and N. Dutt. Memory size estimation for multimedia
applications. InProc. of the 6th IEEE/ACM Int. Workshop on Hard-
ware/Software Co-Design (CODES/CASHE ’98),pp. 145-149, March
1998.

[10] F. Irigoin and R. Triolet. Supernode Partitioning.Proc. 15th Annual
ACM Symp. Principles of Programming Languages,pp. 319–329, Jan.
1988.

[11] P. Kjeldsberg, F. Catthoor, and E. Aas. Automated data dependency
size estimation with a partially fixed execution ordering. InProc.
International Conference on Computer Aided Design (ICCAD 2000),
pp. 44–50, November 2000.

[12] P. Kjeldsberg, F. Catthoor, and E. Aas. Detection of Partially Simul-
taneously Alive Signals in Storage Requirement Estimation for Data
Intensive Applications. InProc. 38th Design Automation Conference
(DAC 2001),pp. 365–370, June 2001.

[13] C. Lee and M. Potkonjak, and W. H. Mangione-Smith. MediaBench:
A tool for evaluating and synthesizing multimedia and communications
systems. In Proc.30th Annual International Symposium on Microarchi-
tecture,pp. 330–335, 1997.

[14] W. Li and K. Pingali. A Singular Loop Transformation Framework
Based on Non-singular Matrices.Proc. 5th Workshop on Languages
and Compilers for Parallel Computing,August 1992.

[15] W. Pugh. Counting solutions to Presburger formulas: Howand why.
Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation,1994.

[16] M. Wolf and M. Lam. A Data Locality Optimizing Algorithm.
Proc. ACM SIGPLAN 91 Conf. Programming Language Design and
Implementation,pp. 30–44, June 1991.

[17] M. Wolfe. High Performance Compilers for Parallel Computing,
Addison-Wesley, 1996.

[18] Y. Zhao and S. Malik. Exact memory size estimation for arraycompu-
tation without loop unrolling. InProc. Design Automation Conference,
pp. 811–816, June 1999.

J. Ramanujam received the B. Tech. degree in electrical engineering fromthe
Indian Institute of Technology, Madras, India in 1983, and his M.S. and Ph. D.
degrees in computer science from The Ohio State University in1987 and 1990
respectively. He is currently a Professor in the Department of Electrical and
Computer Engineering at Louisiana State University. His research interests
are in compilers for high-performance computer systems, embedded systems,
software optimizations for low-power computing, high-levelhardware synthe-
sis, parallel architectures and algorithms. He has published over nearly 120
papers in refereed journals and conferences in these areas in addition to several
book chapters and a book. He received the National Science Foundation’s
Young Investigator Award in 1994. In addition, he has received the best paper
awards at the 2003 International Conference on High Performance Computing
(HiPC 2003) and the 2004 International Parallel and Distributed Processing
Symposium (IPDPS 2004) for his work with others on compiler optimizations
for quantum chemistry computations.

Jinpyo Hong received a bachelor and a master of engineering degree in
Computer Engineering from Kyungpook National University in1992 and
1994 respectively. For, the next three and half years, he worked at KEPRI
(Korea Electrical Power Research Institute). He joined thegraduate program
in Electrical and Computer Engineering at Louisiana State University (LSU)
in the Fall of 1997 and received his PhD degree in Electrical Engineering from
LSU in August 2002. He was a research scientist at LSU betweenAugust 2002
and August 2004, where he was supported in part by a post-doctoral research
fellowship from the National Science Foundation. Since August 2004, he has
been at the University of Memphis, where he is an assistant professor of
electrical and computer engineering. His research interests are in the areas of
embedded systems, compiler optimizations, design automation, and special-
purpose architectures.

Mahmut Kandemir received his M.S. in Control and Computer Engineering
at Istanbul Technical University, Turkey in 1992 and his Ph.D. degree in
Electrical Engineering and Computer Science from Syracuse University in
1999. He has been on the Penn State faculty since then, where he is now an
associate professor. His research interests include embedded systems, power-
conscious software development, optimizing and parallelizing compilers,
input/output systems, and large-scale application analysis. He is a member
of the Embedded and Mobile Computing Center at Penn State and actively
collaborates with other faculty in this group. His most recent work focuses
on design and implementation of energy-aware compiler optimizations and
a heap-compressing garbage collector. His current work on energy-aware
computation and embedded systems is supported by an NSF CAREER award
and a DARPA/GSRC grant. In addition, he works on on optimizingcompilers
and in the area of large-scale data management concentrating on developing
strategies for efficient input/output (I/O) on parallel systems.

Ashish Narayan received a Bachelor of Engineering degree from Sri Jay-
achamarajendra College of Engineering, Mysore, India in Electronics and
Communications Engineering in December 1986. After working inIndia for
several years, he came to Louisiana State University to attend graduate school,
where he received a Master of Science in Electrical Engineering degree in May
1994. Since then, he has been working in the computer industryin the New
Jersey area. His research interests include optimizing compilers and computer
architecture.

