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Abstract—Most embedded systems have limited amount of  Unfortunately, selecting the minimum memory size (without
memory. In contrast, the memory requirements of the DSP and jmpacting performance) is not always easy. This is because
video processing codes (in nested loops, in particular) running data declarations (which specify the total size of eachyarra
on embedded systems is significant. This paper addresses th% le) i d decided based high-
problem of estimating and reducing the amount of memory or example) in .many codes a-re eC|-e ased on hig
needed for transfers of data in embedded systems. First, the level representation of the algorithm being coded not based
problem of estimating the region associated with a statement or on actual memory requirements. The important point here is
the set of elements referenced by a statement during the exett  that not every data item (declared data location) is needed
of nested loops is analyzed. For a fixed execution ordering, athroughout the execution of the program. That is, at anyrgive

quantitative analysis of the number of elements referenced is . t during th i tvoicall | " f 1h
presented; exact expressions for uniformly generated referaes point duning the execution, typically, only a porton or the

and a close upper and lower bound for non-uniformly generated declared storage space (e.g., array size) is actually deede
references are derived. Second, in addition to presenting an This is particularly true for embedded systems that process

algorithm that computes the total memory required, this paper data arrays in signal processing codes. Therefore, thiedata
also discusses the effect of transformations (that change the memory size can be reduced by determining thaximum

execution ordering) on the lifetimes of array variables, i.e., the b f data it that af t int during th
time between the first and last accesses to a given array location, "UMDEr OF data items thal ale/eé at any point during the

The term maximum window size is introduced and quantitative COurse of execution. Two complementary steps to achieve
expressions are derived to compute the maximum window size. A this objective is (i) estimating the memory consumption of a

detailed analysis of the effect of unimodular transformations on  given code, and (ii) reducing the memory consumption thioug
data locality including the calculation of the maximum window access pattern transformations.

size is presented. The problem of estimating the minimum amount of memory

Index Terms—Memory estimation, signal processing codes, for a fixed execution ordering of nested loops was recently
fri::;g?rﬁgﬁgrnoscessors, data reuse, execution ordering, compileryyqressed by Zhao and Malik [18]. Their work characterizes
' the memory estimation problem as one of counting the number
of live variables in each iteration of the innermost loop of
|. INTRODUCTION loop nest—which is prohibitively expensive for large multi-
An important characteristic of embedded systems that ex@mensional arrays—and deriving the maximum of these. In
cute signal and image processing codes is that the hardwtie paper, we present a technique that quickly and acdyrate
can be customized according to the needs of a single oestimates the number of distinct array accesses and the mini
small group of applications. An example of such customarati mum amount of memory in nested loops, which does not in-
is parameterized memory/cache modules whose topologiwalve calculations at each iteration of a nested loop. Megeo
parameters (e.g., total capacity, block size, assodigtigan we present a technique that reduces the amount of memory
be set depending on the data access pattern of the appiicatigruired through the use of loop-level transformationse Se
at hand. In many cases, it is most beneficial to use the srhalldee section on related work for a comparison of our approach
amount of data memory that satisfies the target performaricethose in other works [4], [9], [11], [12], [18].
level [18]. Employing a data memory space that is larger thanNested loops are of particular importance as many em-
necessary has several negative consequences. First, thebpdded codes from image and video processing domains
access energy consumption of a memory module increasesnipulate large arrays using several nested loops. In most
with its size [2]. Second, larger memory modules tend teases, the number of distinct accesses is much smaller than
incur larger delays, thereby increasing the data accessdat the size of the array(s) in question and the size of the loop
Third, large memories by definition occupy more chip spac#eration space. This is due to the repeated accesses to the
Consequently, significant savings in energy, area and dekgme memory location in the course of execution of the loop
may be possible through a more careful selection of memaonmgst. The proposed technique identifies this reuse of memory
size. locations, and takes advantage of it in estimating the mgmor
. . . , consumption as well as in reducing it.
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overhead. Our experimental results obtained using a setnafsting level, the reuse of an element is along the direatfon
seven codes show that the proposed techniques are g null space of the access matrix and the amount of reuse
accurate, and are capable of reducing the memory consumptitue to an element depends on the loop bounds. In the example
significantly through high-level optimizations. given above, the reuse is in the direction of the middle loop
The rest of this paper is organized as follows. Sectioni@dex (j). Arrays whose number of dimensions is one less
presents a brief background. Section 3 presents our teaésigthan the depth of the nested loop enclosing them are common
for estimating the number of distinct references to arrays ain DSP applications [2]. Fod-dimensional arrays accessed in
cessed in nested loops (as a function of loop bounds and reuseested loops wherd < n in general, the extent of reuse
distances) in which the execution ordering is fixed to be thidepends on the loop bounds as well the basis vectors of the
sequential execution ordering. In Section 4, we presenbp lonull space of the access matrix.
transformation technique that finds the best executionriorgle

general method of deriving the transformation is presented . -
. . Dependence and reuse analysis are critical to the success of
Section 5 presents experimental results on seven benchmark:. " : .
. ) . . o’?tlmlzmg compilers [16], [17]. We deal with sets of pertigc
from signal and image processing domains. Related wor )
o : ; . ... hested loops, whose upper and lower bounds are all linear,
is discussed in Section 6, and Section 7 concludes with & " . : .
summar enclosing a loop body with affine array references. That is,
Y- each subscript of an array variable index expression must be
an affine expression over the scalar integer variables of the
. . program. We assume familiarity with definitions of the types
DSP programs mainly consist of perfectly nested l0oRst dependences [17].
(loop nests in which every statement is inside the innermostDependences arise between two iteratiénand ; when
loop) that access single and multi-dimensional arrays, [1fhey both access the same memory location and one of them
[18]. Therefore, we will limit our discussion to these casegyrites to the location [17]. Lei execute beforg in sequential
In our framework, the execution of each iteration of @ execution; the vectod = j — i is referred to thedependence
level nested loop is represented using 'wnit'on VeCtor yector[17]. This forces sequentiality in execution. The level of
I'=(L,---, 1), where[; corresponds to thg'" loop from 5 dependence vector is the index of the first non-zero element
the outermost position. We assume that the array subsciiptjt [17]. Let i = (i1, yin) and}' = (ji,-.-,jn) be two
expressions and loop bounds aftine functionsof enclosing iterations of a nested loop such that< j (readi precedes
loop indices and loop-independent parameters or variablgsexecutes beforg in sequential execution) and there is a
[17]. Each reference to é&dimensional array/ is represented dependence of constant distanteetween them. Applying a
by anaccesgor data referencematrix Ap and aroffset vector |inear transformatiori” to the iteration space (nest vector) also
_b suqh thatApl + b is the eIen_1e_nt accessed_ by a specifighanges the dependence matrix sifi¢g) —7'(7) = T(j—i) =
iteration/ [17]. The access matrix is@x n matrix. An array 7 4. All dependence vectors apmsitive vectorsi.e., the first
element which is referenced (read or written) more than onggn-zero component should be positive. We do not include
in a loop nest constitutes i@use. The degree of reuse ('-e-aIoop-independentdependences which are zero vectors. A
reuse count) depends on the number of references to the ag@nsformation is legal if the resulting dependence vectse
in the loop (), the relative values of the loop nest levels angi|| positivevectors [17]. Thus, the linear algebraic view leads
the dimensionality d) of the array, and also the loop limits.to a simpler notion of the legality of a transformation. For a
If |terat|on31_ arld j_access the same location, we say that the nested sequential loop, thex n identity matrix (7,,) denotes
reuse vectolis j — i. The level of a reuse vector is the indexsequential execution order. Any unimodular transfornratian

Il. BACKGROUND

fori=1to N do [17].
forj=1to N do
fork=1to N do B. Distinct References
Ul k=3] - The number of distinct referenced {) can be found using

The iteration vector igi, j, k)T (note that we write a column dépendences in the loop as shown in Figure 1. The
vector as transpose of the corresponding row vector), the ddimensional cube (in the case of 2-nested loop, this is a

) , 1 0 0 square) formed by the dependence vectdr—2) as shown
access matrix for array/ is < 00 1 ) and the offset , Figure 1 represents the reused area (the shaded area in th
) iteration space. The dependence (reuse also)vector bl
vectoris{ 5 |- the iterations(i, j) and (i + 3, j — 2) access the same memory

For an array whose reference matrix is square (that is, if thecation Az, j]. The array elementd[i, j] is live between
dimensiond of the array and the deepest loop nesting level iterations (i,j) and (i + 3,7 — 2) in sequential execution.
are the same), the number of times an element is referencetiés us suppose that the array elemetit, j] is mapped to
at mostr wherer is the number of references to the array isome memory locatior:;, and that the second reference is a
a loop. Therefore theeusefor a data element is at most-1.  write in Example 1(a) shown below. This means that after the
For an array whose dimension is one less than the deepest luajue in Afs, j] is used in iteratior(: + 3, j — 2), the memory



C. Uniformly Generated References and Maximum Window
Size

We assume that all the references to an arrayuarormly
generated5], [7]. Uniformly generated references are those,
for which the access matrices are the same but the offset
vectors are different, i.e., the subscript functions of the
ferent references differ only in the constants. To illustrnis
concept, consider the following loop.

for iy =1 to u; do

Dependence ( 3, -2) for i =1 tou dO
n — 'n n

Fig. 1. lteration space for a 2-nested loop. Ri[A1(i1, ... i) + bi]

Ri[Ag(in, ..y in) + by

location x can hold other array elements. In fact, can where Rq,..., R are references to arrays not necessarily
hold all the values of the array elements written in itenagio distinct. The A; are matrices of sizex x d; whered; is the
(4,7), 1+3,5—2), (i+6,5—4),---, (i+3t,5—2t),--- wheret dimension of the array referenced R;; b; is a vector of
is any integer. Every iteration in the non-shaded regiorhef t size d;. We assume that all array reference to an atkayre
iteration space accesses a distinct array element; the igemaniformly generated, i.e 4; for all references toX are equal.
requirement is the area of the non-shaded region. Note tiai example of a loop with a uniformly generated references
every iteration in the shaded region of the iteration spag® shown below:
reuses an array element. Consider the following examples: fori=1to N; do

for j =11to N, do

Example 1(a): fori= .1 to 10 do X[2i+3j 2] =Y[i+j]
for j=11to 10 do Y{itj 1) = X[2i + 3) |+3]

Al — 1 2. ..
AE ]3’3 +2] Here, the two references toX are of the form
) 2i+3j+constan¢ and both references to array are
Example 1(b): fori=11to0 10 do of the form ]i+j+constan We use the notion of a
for j=11to 10 do reference window of an array in loop nest (which is different
e AR2%i+ 3] form the notion of the reference window of a dependence

as used by [5], [7]) that allows us to deal with each distinct

In both Example 1(a) and 1(b), the dependence Vector j§,, a5 3 whole and not on a per-reference-pair-to-tryarr

(3,—2). Note that in the first example, the dimensionality of ;s

the array is the same as that of the loop ne_st level, the numbeta amount of memory required is a function of the number
of references() is 2 and the reuse count is at most 1. (Thg¢ ie variables,i.e., variables that will be accessed again in
number of times an element of the array is referenced IS @k fyture. We now introduce a notion that is useful in this
most 2). context. Thereference windoWVx (i) (wherei = (i1, . .. ,in)

In the second example, the dimensionality is less than tkean iteration of thex-nested loop) is the set of all elements
loop nest level, the number of referenceg (s 1, and the of array X that are referenced by any of the statements in
maximum reuse count for an element/i€)/3] = 4. The total all iterationsj; < i (readj; precedes in sequential execution
reuse (i.e., the area of the shaded region) is the same in beths the same a$) that are also referenced in some (later)
the examples which i$10 — 3) x (10 — 2) = 56. Let the ijterationj, such thatj; - i (readj follows 7). This allows us
dependence vector l{d;, dz). In general, the signs af; and to precisely the define those iterations which need a specific
dy do not affect the amount of reuse. In a nested loop @&lue in local memory. The size of the winddx (i) is the
size N1 x N, the amount of reuse is given §; — |d1|) x  number of elements in that window. Theaximum window
(N2 — |d2]). The total number of distinct locations accessegize (MWS) is given by
(the minimum memory size), therefore, 4, x Ny — (N7 — -
|d1[)x (Na—|d2|) = N1x|da|+Nax|di|—|di|x|d2|. Note that Hax ‘WX(Z)’
in contrast to other works [4], [9], [11], [12], [18] that rege and is defined over the entire iteration space. In the case of

the Ioop_ hounds ta be_ k.nown constants,_ we derive CI(.jsed'foFﬂqultiple arraysXy, ..., Xk, the maximum reference window
expressions for the minimum memory size as a function of t ;

. e is:
loop bounds and dependence vectors. We consider the cases K .
where the dimension of the array accessed within the loop is mgxz ’WXk (z) .
the same as the nest level and where the dimensionalityss les tok=1
than the loop nesting level. It should be emphasized thaethe Note that the reference window isdynamicentity, whose

cases are commonly found in DSP codes [2]. shape and size change with execution. For nested loops with




uniformly generated references, the maximum window size

(MWS) is a function of the loop limits. The smaller the value Here there is a dependence, —2) from statementsS; to

of MWS, the higher the amount of data locality in the loogtatements;. This dependence is used to calculate the amount
nest for the array. For simplicity of exposition, we assutmat Of reuse for each element. The amount of reuséNg —
there are multiple uniformly generated references to alsing)(V2 — 2), and the number of distinct accesses to the array
array in a loop nest. The results derived here easily geimeralA in the above loop isA; = N1 x N3 x 2 —reuse

to multiple arrays and higher levels of nesting. Example 3 (shown below) illustrates the case of several
uniformly generated references.
lIl. ESTIMATING THE NUMBER OF DISTINCT ACCESSES IN  EXample 3: for i =110 10

NESTEDLOOPS FORFIXED (SEQUENTIAL) EXECUTION _ forj = 1o 10
ORDERING 1 AL
. . SQ "'A[Z—l,]]"‘
The amount of memory needed is a function of the accegs. Al —1]
pattern. In this section, we develop estimates of the memogy. ~--A[i’— 1,j—1]

requirement in terms of the total number of distinct accesse Th. dependence vectors from statemeht to the other
a nested loop, assuming no transformations are employed ?‘sﬁements aré1,0), (0, 1), (1,1). The amount of reuse is

no dynamic memory management is used; dynamic memaly, . iated as reuse (10 = 1)(10 — 0) + (10 — 0)(10 — 1) +

management would allow one to use the same memory lo¢as 1)(10 — 1) = 90 + 90 + 81 — 261, and the the number
tion for accesses to two variables whose lifetimes (the ti § distinct accesses isty — 10 x 10 x4£—261 —139. Thus

spar:jr_wgd_frtor]"nrhthe first ?j(_:cess to da' IoScatlt(_)n ti the last acCeRR)see that, for cases where the loop nesting level is the same

are disjoint. These are discussed in section 4. as the dimension of the array accesses in the loop, there is
only one dependence vector between a pair of statements and

A. Loops with Array Dimensiondf = Nesting () the maximum reuse for a particular element is at most1.

With just one reference to each array in such a nedfl other words, there are a maximum ofreferences to any

the number of distinct accesses equals the total numberdfen array element.

iterations. Therefore, we focus only on the case where there

multiple references to the same array. Stencil codes inuud g Loops with Array Dimensiod = n — 1

some relaxation codes such as SOR exhibit such an access i ] )
pattern. a) Single ReferenceConsider the case of a single ref-

In general forr references in a loop where the arrayfreénce where the dimension of the array is at least one less
dimension is the same as the loop nesting level there arala téfan the loop nest. I = n —1, then there is reuse along the
of r(r2—1) dependences. Note that there is at least one nddiEection of the null space vector of the access matrix.
in the dependence graph which is a sink to the dependefe@mple 4:  for i =1 to 20 do

vectors from each of the remaining— 1 nodes. In other for j =110 10 do
words, there exists a statement with- 1 direction vectors o ARi+5
directed from each of the remaining statements. The 1 ~ Here the reuse vector i$5, —2) which is the same as

dependences due to all the other references to this referefite dependence vector for the loop. We now look at the -
gives the amount of reuse. Consider a two-level nested lognensional cube formed by the dependence vector (in this
in which there arer uniformly generated references. Let thé€ase, a square) on the iteration space which represents the

dependences on one reference due to all other references g&ised elements of the array. Note that all elements witen t
square formed by the vector is a sink to a direction vector

( di doy -0 dre1g ) which is a reused element by definition. Therefore, for the
diz de2 -0 dro12 above example where there is a single statement, we camobtai
The amount of reuse for that array is: the figure for the number of data elements reused in the array
as:
r—1
reuse= 3 (N1 — [du ) (N2 — |dizl) reuse= (N3 —dy1)(Nz — |daa]) = (20-5)(10—2) = 120,

=1

and the number of distinct elements is given by and the number of distinct accesses to the array is
Ay = Ny x Ny X 7 — reuse Ay = N1 x Ny —reuse= 20 x 10 — 120 = 80.

Consider the following loop (in Example 2) where there arBow consider the case of a 2-dimensional array accessed in a
two uniformly generated references to the array A and thkree-level nested loop.

access matrix is non-singular. Example 5:
Example 2: fori=1to N; for s =1 to 10 do
for j =11to N for ; =1 to 20 do
St < Aldy gl for k=1 to 30 do
Sa: Al —1,542] - A3+ Ry g+ K]



_ _ either(2,5) or (—2,—5). Any transformation that useg, 5)
Here the reuse vector id, 3, —3); the reuse is calculated asias its first row is illegal because of the distance ve¢sor-2);
the first component of(3, —2) after the transformation is
reuse= (10 — 1)(20 — 3)(30 — 3) = 4131 N L .
( I ) ) ’ ((2,5) - (3,—2)T = —4 is < 0). Similarly any transformation

and the number of distinct accesses is that useg—2, —5) as its first row is illegal due to the distance
vector (2,0) since ((—2,-5) - (2,0)T = —4 is < 0). The
Ag =10 x 20 x 30 — 4131 = 1869. maximum window size i$0. Li and Pingali’s technique will

Extensions to handle the case of multiple uniformly genef©t find any partial transformation that can be completed

ated references and general classes of references arecbey8rf €92l transformation. Where as, by applying techniques
the scope of this paper. presented in the following sections, we can apply the legal

transformation, T’ = ? E Applying T reduces the

IV. MINIMIZING THE MAXIMUM WINDOW SIZE USING  maximum window size t®1. A combination of reversal and
TRANSFORMATIONS interchange does not change the maximum window size from

The last section presented estimates of the memory requi?é-
ment in terms of the total number of distinct accesses in a
nested loop, assuming no transformations are employedi(fix&. Effect of Transformations on Locality
execution ordering) and no dynamic memory managementc,qider a nested loop with uniformly generated refer-

is used. In this section, we show how to derive prograi, es to an arrag of the form: Ayi+Aajtep (k = 1 r)
transformations that can be used to reduce the size of the M3X shown below: B

imum amount of memory required. Of course, this assume%Qamme 8:

dynamic memory management scheme that would allow usdl ; — 1 to N, do

use the same memory location for accesses to two variablesforj —1to N, do

whose lifetimes are disjoint. X+ g ]
Consider the following example which is a minor variant of o

the example from [5]: X[+ Aaj o]
Exa.mple 6: We need to compute the effect of a legal unimodular trans-
for i =1 to 20 do a0 b
for j =1 to 30 do formation, T = e d on the maximum window size. In
e X[20-34] - addition to legality, we require that the loop nesttile-able

Eisenbeis et al. [5] mention that the cost of the windoy10], [16]; this permits us to use block transfers, which are
(the same as MWS) for this loop &9. They use only two very useful to minimize the number of off-chip accesses. The
transformations: loop interchange and reversal. On apglyioptimum transformation thus satisfies two conditions:
interchange, the MWS reduces 4a. On reversal applied to 1) |egality condition for tiling
the original loop, the cost becom&$ while reversing the 2) minimizes the maximum window size
interchanged loop reduces the cosBto Using the technique T

presented here, the cost or MWS for this loop can be reduc ximum window size (MWS) is a function of the maximum

to 1, i.e., all iterations accessing any element of the arkay inner loop span omaxspanwhich is the maximum trip count

can be made.cons.ecutive itergtions of an inner loop. The o'?)ly the inner loop (difference between the upper and lower
dependence in this example is the vectBr2). We use the limits of the inner loop) over all outer loop iterations [5].

2 _3
. Note that
1 -1 a MWS — maxspanx A x (Asa — Ab) )

the first row of the transformation matr{2 —3) is the same as ) _ ) _

the coefficients of the access functi2i-3;. Li and Pingali's where A is the determinant of the transformation matrix. Let
technique [14] constructs the transformation matrix udgimg ¢ = A2a — Ai1b. The simplified expression derived for the
rows of the access matrix. Even though the technique in [1F@Ximum window size is:

can be used to derive this transformation, there are situsti MWS — (|22 +1) 10| if a—b>aN; —bN,

where the techniques presented hengroveslocality while -

(|%| + 1) 0] if a—b<aN; —bNy (2)
Fhat in [14] does not improve locality. Consider the loopwho Thus to minimize the maximum window size, the value of
in the next example.

Example 7: for i — 1 to 25 do MWS from equation (2) should be minimized among all
for?j _ 1 o 10_d0 unimodular transformations that are valid for tiling. In many
X[2 +5j + 1] = X[2i + 5§ + 5] cases, MWS is minimized whehoa — A1b| is minimized.

The  distance  vectors for this loop  are: )
(3,-2),(2,0),(5,—2); (3,—2) is the flow dependence,B- Legal Transformation
(2,0) is an anti-dependence an(b,—2) is the output Letd; = (diq,d;2) (i=1,...,m) be a set of dependence
dependence vector. These are the only direct dependenicedistance vectors. With uniformly generated referencdshal
and Pingali use transformation matrices whose first row @ependences in a nested loop are distance vectors. Given any

e detailed derivation is beyond the scope of this papeg. Th

following legal transformation]” =




two uniformly generated referencesi + \oj +c¢; andA;i+  valid solutions, we find the best of these. If only one group
A2j + ¢o, to test for a dependence from iterati¢én,i2) to has valid solutions, the problem is a lot easier. For thet&miu
iteration (51, j2), we check for integer solutions within thea = 2,b = 3, the set of values for and d which give rise

loop range to the equation: to unimodularT while satisfying tiling legality condition is
. . . . c=1,d=1.
At + Aolz er = Auji+ daja + e The window size in 3-nested loops cannot be just derived
ie., A (31 —i1) + Xo(Jo —i2) = ¢1 — co. using the coefficients of the access functions and is a fomcti

of the null space vector and the loop limits. It is estimated

We can writez; = ji — i1 andxs = ja —is Where (z1,23) sing the largest lexicographic dependence vector.
is a distance vector. Sincky, Ao, ¢1, co are constants, every

solution gives a distance vector. The smallest lexicogably
positive solution is the dependence vector of interestrtien V- EXPERIMENTAL RESULTS ONSIGNAL, IMAGE AND

for the transformatiorf” to render the loop nest tile-able, the VIDEO PROCESSINGCODES
following conditions must hold: In order to evaluate the proposed estimation and opti-
ad; 1 +bd; 5 > 0 i=1--m mization technique, we tested it using seven codes from
' T DSP and video processing domaispoi nt and3_poi nt
cdi +dd;2 >0 t=1,---,m are two-point and three-point stencil codes, respectively

We illustrate the use of technique through Example 2. Cansic> 'S @ §uccesswe.-over-relaxatlon (.:Odmt.m” .t IS a
the loop nest: matrix-multiply kernel; two different motion estimatiorodes,

fori—1 to 25 do 3s.t ep_J og a@df ul | ,sear_ch; and finally,rasta_flt is
for j = 1 to 10 do a fllf[erlng routine from MedlaBer_mh [13]
X[2i +5j + 1] = X[2i + 5j + 5] Figure | presents'our results in columns 2 through'S. The
The distance vectors for this loop are:column def aul t gives the normal memory size which is
(3,-2), (2,0, (5,—2). The problem here is to find athe total number of array elgments decl_aremsm_mpt and_
" PAT AT . a b MAB,,,;, on the other hand, give the maximum window sizes
unimodular transformationT” = (= ) such that the (MWS) before and after optimizing the code, respectively. In

loop is tile-able (which allows bringing chunks of data wtic columns 3 and 4, following each number, within parentheses,

can fully operated upon before discarding., represented We also give thepercentage reductiomwith respect to the
by the following constraints: corresponding value in the second column. Column 5 denotes

©30-20>0,2a>0 5a—2b>0. 3¢—2d> 0,2 >0, the ratio of MAB,,,; to M/\Blfnopt. as a percentage. We seg
Se—92d>0 - - - from these results that estimating the memory consumption
N i i (requirements) of the original (unoptimized) codes intisa
and the maximum window size (MWS) a 81.9% saving, and that for the optimized codes brings
24| +1) [5a — 20| if a — b > 25a — 10b about an average saving of 92.3%. Note that these savings
2|+ 1)|5a—2b] if a—b<25a—10b directly correspond to reduction in the required data mgmor
sizes. We also need to mention that exceptrfast a_fl t,

is minimized. Given the set of inequalities that should bgur estimations were exact. In theasta.flt code, our

s

satisfied, estimation is around 13% higher than the actual memory
3¢ —2b>0=10b< 3a = 9b < &, requirement for both the original and the optimized codés It
N -2 -2 useful to note that except forat nul t , we see a significant

Since, 9% < % the second condition applieise., 9b < 24a. reduction in memory through the use of transformations.
So,

MWS = (9 + 1) (5a — 2b) = 45 + (5a — 20) — =0 VI RELATED WORK

a a The estimation of the number of references to an array in

needs to be minimized subject to inequalities5€2.10). order to predict cache effectiveness in hierarchical mgmor
We use either a branch and bound technique (or genemahchines have been discussed by Ferrante et al. [6] and
nonlinear programming techniques) to minimize this fumeti Gallivan et al. [7]. The image of the iteration space onto the
the number of variables is linear in the number of nesteddooprray space to optimize global transfers have been disdusse
which is usually very small in practide< 4) resulting in small in [7]. A framework for estimating bounds for the number of
solution times. Alternately, if we minimiz&a — 2b subject to elements accessed only was given. Ferrante et al. gave exact
constraints £.5—2.10), we get very good solutions in practicevalues for uniformly generated references but did not aersi
In the example loop nest, = 2,b = 3 is an optimal solution, multiple references. Also, for non-uniformly generatefkere
giving an minimum MWS estimate @2 which is very close to ences, arbitrary correction factors were given for arigviat
the actual minimum MWS which i81. In general, the system lower and upper bounds for the number of distinct references
of inequalities arising legal tiling requirement are comdd We present a technique in this paper which gives accurate
with eithera — b < alN7y — bNy or with a — b > aN; — bN,  results for most practical cases and very close bounds where
to form two groups of inequalities; if both the groups havever necessary. Clauss [3] and Pugh [15] have presented more



TABLE |

DEFAULT AND ESTIMATED MEMORY REQUIREMENTS FOR SIGNAL IMAGE AND VIDEO PROCESSING CODES

code def aul t MAB.,nopt MAB,p ¢ W\Z’f;’pt

2_poi nt 4,096 65 (98.4%) 3 (99.9%) 4.6%
3_point 1,024 68 (93.3%) | 35 (96.5%) 51.5%
sor 1,024 65 (93.6%) | 35 (96.5%) 53.8%
mat mul t 768 273 (64.4%) | 273 (64.4%) 100.0%
3step.log 2,064 511 (75.2%) | 122 (94.0%) 23.9%
full search 2,064 252 (87.8%)| 60 (97.1%) 23.8%
rastaflt 5,152 | 2,040 (60.4%)| 127 (97.5%) 6.2%

Average Reduction: 81.9% 92.3%

Average Ratio: 37.7

expensive but exact techniques to count the number of distin Kjeldsberg et al. [11], [12] allow users to specify partiat e
accesses. ecution orderings and assume that the loop bounds are known

Some early approaches in high-level synthesis that deg@nstants. They are able to apply their work to imperfectly
with minimum register allocation for scalars [8] can be exdested loops as well by deriving the notion of a common
tended to arrays by treating each array element as a sepalt@@tion space of a set of loops. We note that there is no
scalar; such an approach is highly expensive. Researchépiue way to construct such a common iteration space, and
from IMEC [1], [4], [11], [12], Grun et al. [9], and Zhao approaches to this problem have so far been ad hoc [17].
and Malik [18] present techniques that estimate the minimuRifferent choices of common iteration space lead to diffiére
amount of memory required. Of these [11], [12] allow thé&emory requirements. Kjeldsberg et al. [11], [12] also assu
user to Specify an arbitrary execution Ordering, Balasa. é]_h that the whole code is in static Single assignment form which

ignores execution ordering, while the rest of the works amsu IS Not a requirement in our case.
a fixed sequential execution ordering. None of the above works discuss how to derive transforma-

Balasa et al. [1] do not take into account the effects dPNS that reduce the amount of minimum memory required.
execution ordering in deriving memory estimates; their kvorl? 2ddition, in contrast to these works, we present closed
assumes that all loop bounds are given constants and res{Qf§" €xpressions for memory reuse and derive the memory
in significant over-estimation. De Greef et al. [4] considdiduirement as a function of loop transformations.
in-place mappingwhich exploits non-overlapping life times ©Our work on loop transformations for improving data lo-
of arrays and array elements to reduce the overall memd§lity bears most similarity to work by Gannon et al. [7] and
storage, for a given execution ordering. They also requias t E/S€NPeis et al. [5]. They define the notion of a reference
all loop bounds are constants. We do not consider the eftéctaVindow for each dependence arising from uniformly genefate
array layouts and interleaving in this paper. Our first gsabi references. Unllke.our work, they do not use compou_nd trans-
reduce the the memory needs of individual arrays by reduciffgmations — only interchange and reversal are considéred.

their maximum window sizes through loop transformation&ddition, the use of a reference window and the resultard nee
We are currently exploring the use of-place mapping. to approximate the combination of these windows results in

) . . a loss of precision. Ferrante et al. [6] present a formula tha
Grun et al. [9] assume fixed execution ordering and constaf P [6] p

loop bounds and derive estimates of uoper and lower bou Hsttimates the number of distinct references to array elesmnen
P PP Bir technique does not use dependence information. Wolf

on thg memory requwement of codes by using t-he first and Iaa%td Lam [16] develop an algorithm that estimates temporal
iterations of each loop in a nest as starting points and éurth

. . L . . and spatial reuse of data usitaralized vector spacelheir
refining by using additional iterations as needed to getebettal orithm combines reuses from multiple references. Their

estimates. In the vyorst case, complete unrolling of neSt?ﬁ%thod does not use loop bounds and the estimates used
loops may be required. In contrast, we present closed for,

. ) ) e less precise than the ones presented here. Their method

expressions for memory reqqlrem(_ant and derive par ar.nemr'z?performs an exhaustive search of loop permutations that max

choice of qup transformations in order to minimize th'mizes locality. Li and Pingali [14] discuss the completioh

memory requirement. partial transformations derived from the data access mafri
Zhao and Malik [18] addressed the problem of estimating |oop nest; the rows of the data access matrix are selected

the minimum amount of memory for a fixed execution orderingypscript functions for various array accesses (excludong

of nested loops. They view memory estimation as counting tagynt offsets). While their technique exploits reuse agiéiom

number of live variables in each iteration of the innermosid  inpyt and output dependences, it does not work well with flow
of loop nest—which is prohibitively expensive for large mult o gnti-dependences.

dimensional arrays—and deriving the maximum of these. Our
work differs from Zhao and Malik’s [18] in that we present
analytical expressions for memory requirement that do not
involve calculations for each iteration of any loop. Alsairo
work addresses loop transformations to reduce memory.

VIl. SUMMARY

Minimizing the amount of memory required is very im-
portant for embedded systems. The problem of estimating



the minimum amount of memory was recently addressed [y] M. Wolf and M. Lam. A Data Locality Optimizing Algorithm.
Zhao and Malik [18]. In this paper, we presented techniques Proc. ACM SIGPLAN 91 Conf. Programming Language Design and

. . . . Implementationpp. 30—44, June 1991.
that (i) quickly and accurately estimates the number of dig~ v, wolfe. High Performance Compilers for Parallel Computing

tinct array accesses and the minimum amount of memory Addison-Wesley, 1996.
in nested |OOpS, and (ii) reduces this number through |OOBB] Y. Zhao and S. Malik. Exact memory size estimation for arcaynpu-

. . . . tation without loop unrolling. InProc. Design Automation Conference,
level transformations. The main abstraction that our tegi pp. 811-816 Jun% 1999. 9 9

manipulates is that of data dependence and re-use [17]e Sinc
many compilers that target array-dominated codes maintain
some sort of data dependence information, implementing our
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