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Abstract

GPUs are a class of specialized parallel architectures with tremendous computational power. The new Compute

Unified Device Architecture (CUDA) programming model from NVIDIA facilitates programming of general

purpose applications on NVIDIA GPUs. However, there are various performance-influencing factors specific

to GPU architectures that need to be accurately characterized to effectively utilize the parallel computing

power of GPUs and improve the performance of applications on GPUs. Often these factors are tightly coupled,

making their effective tuning a significant challenge. In addition, program-specific optimizations such as tiling,

loop unrolling, etc. involve performance trade-offs on GPUs that are difficult to characterize accurately using

performance models.

In this paper, we develop an automatic compiler framework for generating efficient parallel programs

on GPUs for given input regular programs. The framework generates program transformations (using the

general polyhedral model) that enable efficient execution over GPUs, and employs a model-driven empirical

optimization approach to find optimal values for system parameters that maximize performance, as well as the

best tile sizes and loop unroll factors. Experimental results show a significant improvement in performance for

kernels generated using our framework, and provide new insights into performance optimizations for GPUs.



1. Introduction

Graphics Processing Units (GPUs) today are among the most powerful computational systems on a chip. For ex-

ample, the NVIDIA GeForce 8800 GTX GPU chip uses over 680 million transistors and has a peak performance

of over 350 GFlops [30]. In addition to the primary use of GPUs in accelerating graphics rendering operations,

there has been considerable interest in General Purpose computation on GPUs (GPGPU) [13, 20, 19]. Until

very recently, GPGPU computations were performed by transforming matrix operations into specialized graph-

ics processing such as texture operations. The introduction of the CUDA (Compute Unified Device Architecture)

programming model by NVIDIA in late 2006 provided a general-purpose threaded SIMD/MIMD architectural

model for implementation of general-purpose computations on GPUs. Although more convenient than previ-

ous graphics programming APIs for developing GPGPU codes, the manual development of high-performance

codes with the CUDA model is still much more complicated than use of parallel programming models such as

OpenMP for general-purpose multi-core systems. It is therefore of great interest, for enhanced programmer pro-

ductivity and for software quality, to develop a compiler infrastructure to facilitate the automatic transformation

of sequential input programs into efficient parallel CUDA programs.

There has been significant progress over the last two decades on the development of powerful compiler frame-

works for dependence analysis and transformation of loop computations with affine bounds and array access

functions [2, 35, 27, 21, 14, 36, 33, 4]. For such regular programs, compile-time optimization approaches have

been developed using affine scheduling functions with a polyhedral abstraction of programs and data depen-

dences. Although the polyhedral model of dependence abstraction and program transformation is much more

powerful than the traditional model of data dependences currently used in production optimizing compilers,

until very recently polyhedral approaches were not considered practically efficient enough to handle anything

but simple toy codes. But advances in dependence analysis and code generation [36, 4, 41] have solved many

of these problems, resulting in the polyhedral techniques being applied to code representative of real applica-

tions like the spec2000fp benchmarks. CLooG [4, 10] is a powerful state-of-the-art code generator that captures

most of these advances and is widely used. Building on these advances, we have recently developed the PLuTo

compiler framework that enables end-to-end automatic parallelization and locality optimization of affine pro-

grams for general-purpose multi-core targets [6, 31]. The effectiveness of the transformation system has been

demonstrated on a number of non-trivial application kernels on a multi-core processor. However, building such

a system for GPUs requires the addressing of a number of additional issues. In this paper, we identify and

characterize key factors that affect GPGPU performance and build on the PLuTo system to develop an affine

compile-time transformation framework for GPGPU optimization.

The paper is organized as follows. A brief overview of the NVIDIA GeForce 8800 GTX GPU is provided

in Section 2. Section 3 develops an empirical characterization of three significant performance issues: efficient

global memory access, efficient shared memory access, and reduction of dynamic instruction count by enhanc-

ing data reuse in registers. In the next four sections, we discuss a general compiler framework for GPGPUs

that systematically addresses these performance-critical issues. Section 8 presents experimental performance

results that demonstrate the effectiveness of the proposed framework. Related work is discussed in Section 9.

We conclude in Section 10.



2. Overview of the GPU Architecture and the CUDA Programming Model

The GPU parallel computing architecture comprises of a set of multiprocessor units, each one containing a set of

processors executing instructions in a SIMD fashion. The NVIDIA GeForce 8800 GTX has 16 multiprocessor

units, each consisting of 8 processor cores that execute in a SIMD fashion. The processors within a multipro-

cessor unit communicate through a fast on-chip shared memory space, while the different multiprocessor units

communicate through a slower off-chip DRAM, also called global memory. Each multiprocessor unit also has

a fixed number of registers. The GPU code is launched for execution in the GPU device by the CPU (host). The

host transfers data to and from GPU’s global memory.

Programming GPUs for general-purpose applications is enabled through an easy-to-use C language interface

exposed by the NVIDIA Compute Unified Device Architecture (CUDA) technology [29]. The CUDA program-

ming model abstracts the processor space as a grid of thread blocks (that are mapped to multiprocessors in the

GPU device), where each thread block is a grid of threads (that are mapped to SIMD units within a multipro-

cessor). More than one thread block can be mapped to a multiprocessor unit, and more than one thread can be

mapped to a SIMD unit in a multiprocessor. Threads within a thread block can efficiently share data through the

fast on-chip shared memory and can synchronize their execution to coordinate memory accesses. Each thread

in a thread block is uniquely identified by its thread block id and thread id. A grid of thread blocks is executed

on the GPU by running one or more thread blocks on each multiprocessor. Threads in a thread block are divided

into SIMD groups called warps (the size of a warp for the NVIDIA GeForce 8800 GTX is 32 threads) and

periodic switching between warps is done to maximize resource utilization.

The shared memory and the register bank in a multiprocessor are dynamically partitioned among the active

thread blocks on that multiprocessor. The GeForce 8800 GTX GPU has a 16 KB shared memory space and

8192 registers per multiprocessor. If the shared memory usage per thread block is 8 KB or the register usage

is 4096, at most 2 thread blocks can be concurrently active on a multiprocessor. When any of the two thread

blocks complete execution, another thread block can become active on the multiprocessor.

The various memories available in GPUs for a programmer are as follows: (1) off-chip global memory

(768MB in 8800 GTX), (2) off-chip local memory, (3) on-chip shared memory (16KB per multiprocessor in

8800 GTX), (4) off-chip constant memory with on-chip cache (64KB in 8800 GTX), and (5) off-chip texture

memory with on-chip cache.

3. Performance Characterization of GPU

In this section, we characterize key factors that affect GPGPU performance and provide insights into optimiza-

tions that a compiler framework must address to enhance performance of computation on GPUs. We use micro-

benchmarks that can bring out the effect of the GPU architecture characteristics that are critical for efficient

execution. The micro-benchmarks were run on a NVIDIA GeForce 8800 GTX GPU device.

3.1 Global Memory Access

The off-chip DRAM in the GPU device i.e. the global memory has latencies of hundreds of cycles. While

optimizing for data locality helps improve the performance of programs with temporal locality, reducing the

latency penalty incurred is critical for good performance.



N Block (GBps) Cyclic (GBps)

2048 4.11 22.91
4096 4.78 37.98
8192 5.11 48.20

16384 5.34 56.50
32768 6.43 68.51

Table 1. Global memory bandwidth for block and cyclic access patterns

We evaluated the cost of global memory access by measuring the memory read bandwidth achieved for

different data sizes, for blocked and cyclic distribution of the computation amongst the threads of a single

thread block.

In the micro-benchmark used for bandwidth measurement, a one-dimensional array of size N is accessed

from global memory by a thread block with T threads. Each thread accesses N/T elements of the array (N is

chosen as a multiple of T ). Two different access patterns were compared: (1) blocked access, where thread 0

accesses the first N/T elements, thread 1 accesses the second set of N/T elements . . . , and thread T −1 accesses

the last N/T elements, and (2) cyclic access, where thread 0 accesses element 0, thread 1 accesses element 1, . . .

thread T −1 accesses element T −1, and the threads cyclically repeat the same access pattern. The bandwidth

achieved is shown in Table 1. Although the threads in both cases accessed the same number of elements from

global memory, cyclic access results in significantly higher memory bandwidth – up to 68.5GBps, improvement

by a factor of 10, compared to blocked access.

The significant difference in performance of the two versions is due to a hardware optimization called global

memory coalescing – accesses from adjacent threads in a half-warp to adjacent locations in global memory are

coalesced into a single quad-word memory access instruction. Interleaved access to global memory from the

threads in a thread block is essential to exploit this architectural feature.

Using cyclic data access by the threads, we measured the effect of the number of threads per thread block on

the achieved memory bandwidth. In addition, we evaluated the impact of strided data access on the observed

memory performance. The stride of access across threads was varied from 1 through 64, and the number of

threads per thread block was varied from 32 through 512. The results from this experiment are shown in Figure 1.
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We observe that non-unit strides across threads lead to significant degradation in performance. This is because

global memory coalescing only happens with unit stride access across threads. With non-unit access strides, all



memory accesses are issued individually to memory, resulting in similar poor performance. With unit access

stride, as the number of threads per thread block is increased, we observe an increase in the memory bandwidth

achieved, with the maximum bandwidth achieved for 512 threads. This is due to better ability to mask global

memory access latencies with increase in the number of warps per multiprocessor.

The significant performance benefits due to coalesced access of memory makes it one of the most important

optimizations to be enabled by a compiler framework. Also, the high latency of global memory access

recommends the reduction of number of global memory loads/stores.

3.2 Shared Memory Access

The shared memory is a fast on-chip software-managed cache that can be accessed by all threads within a

thread block. The shared memory space is divided into equal-sized memory modules called banks, which can

be accessed in parallel. In the NVIDIA GeForce 8800 GTX, the shared memory is divided into 16 banks.

Successive 32-bit words are assigned to successive banks. Hence, if the shared memory address accessed by

a half-warp (i.e. the first 16 threads or the next 16 threads of a warp) map to different banks, there are no

conflicting accesses, resulting in 16 times the bandwidth of one bank. However if n threads of a half-warp

access the same bank at a time, there is an n-way bank conflict, resulting in n sequential accesses to the shared

memory. In our further discussion, we refer to the number of simultaneous requests to a bank as degree of bank

conflicts. Hence k degree of bank conflicts means a k-way bank conflict and 1 degree of bank conflicts means no

bank conflicts (since there is only one request to a bank). The bandwidth of shared memory access is inversely

proportional to the degree of bank conflicts.
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Figure 2. Shared memory access time for different
access strides across threads

We conducted an experiment to study the effect of the degree of bank conflicts, by measuring the shared

memory access time for different access strides (strides from 1 to 16) across threads. 32 threads per thread block

were used for the experiment and each thread accessed 100 data elements. When access stride is 1, successive

threads in a thread block access successive words in shared memory, which fall in different banks. Hence there

are no bank conflicts between the thread accesses. When access stride is 2, the first thread accesses a word from

bank i, the second thread accesses a word from bank i+2 and so on. Thus there is a 2-way conflict, i.e., conflict

between the accesses of thread 1 and thread 9, thread 2 and thread 10, . . . , thread 8 and thread 16. Figure 2

shows the observed behavior. There are no bank conflicts when the access stride is odd and hence the observed

access time is fastest for odd access strides. From Figure 2, we clearly observe that shared memory access time

depends on the degree of bank conflicts and access time is almost the same for access strides that lead to the



same degree of bank conflicts. This characterization suggests that minimizing shared memory bank conflicts is

an important optimization to be handled by a compiler framework.

3.3 Degree of Parallelism vs Register Pressure

One of the important optimizations to be performed in the thread-level computation code is to reduce the

number of dynamic instructions in the run-time execution. Loop unrolling is one of the techniques that reduces

loop overhead and increases the computation per loop iteration. We studied the benefits of reducing dynamic

instructions in a thread using loop unrolling through a micro-benchmark that runs over a simple computation

loop of 1K iterations repeatedly adding a scalar to a shared memory data element. Figure 3 shows the effect

of various unroll factors for the micro-benchmark code. Also, register-level tiling through unroll-and-jam to

reduce number of loads/stores per computation is a well known program optimization when there is sufficient

reuse in the data accessed. Though loop unrolling reduces dynamic instructions and register tiling reduces the

number of loads/stores, they increase register usage. The number of threads that can be concurrently active in a

multiprocessor unit depends on the availability of resources such as shared memory and registers. A thread block

of threads can be launched in a multiprocessor unit only when the number of registers required by its threads and

the amount of required shared memory are available in the multiprocessor. Clearly, increased register pressure

may reduce the active concurrency in the system.
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For code for which performance is limited by memory access, having more threads can efficiently mask

global memory access latency. Figure 1 clearly illustrates the impact of parallelism on the bandwidth of global

memory access. Hence a memory-access-bound code requires more threads to efficiently overcome the global

memory access latency.

Putting the issues together, a computation that has huge global memory access overhead requires higher

concurrency and may also demand more registers to enable the benefits of loop unrolling such as loop overhead

reduction and reduction of number of loads/stores. Hence there is a clear trade-off between number of active

concurrent threads and number of registers available for a thread in a thread block to exploit the above benefits.

Due to such a tight coupling of GPU resources, an empirical evaluation becomes necessary to select an optimal

choice of program parameters such as unroll factors, and tile sizes and system parameters such as number of

threads and thread blocks.
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Figure 4. Compiler Framework for GPUs

4. Overview of Compiler Framework

Having identified several performance-influencing characteristics of GPUs, we now discuss the design of an end-

to-end compiler framework that targets the generation of efficient parallel programs for GPUs, performing the

optimizations required. We build the compiler framework for GPUs on top of PLuTo [31], an effective automatic

parallelization system. PLuTo optimizes sequences of imperfectly nested loops, simultaneously for parallelism

and locality through tiling transformations. Given an input sequential code, it automatically generates parallel

OpenMP code for multi-core processors. PLuTo has an effective automatic transformation framework along

with a source code scanner and parser, and dependence tester, and is integrated with the CLooG code generator

tool.

Building a compiler framework for GPUs requires attention to several additional issues: (1) utilizing and

managing on-chip shared memory, (2) exploiting multiple levels of parallelism (of varying granularities), (3)

optimizing global memory access, (4) optimizing shared memory access, (5) optimizing and tuning several

system and program parameters, and (6) generation of thread-centric code.

Issues (1) and (2) are addressed in our earlier work [3]. To address issue (3), we have developed a component

that is integrated with PLuTo’s transformation framework to generate program transformations that enable

optimized global memory access. This is discussed in detail in Section 5.2. A module that optimizes shared

memory access (issue (4)) is discussed in Section 6. A model-driven empirical search engine (discussed in

Section 7 is used for finding optimal or near-optimal system and program parameters that are infeasible

to characterize accurately with cost models alone, because of lack of knowledge/control over GPU register

allocation by the compiler.

The various components of the compiler framework are depicted in Figure 4. The components can be

broadly listed as, (1) the frontend PLuTo parallelization system, including the source code scanner and parser,

dependence tester, transformation framework, and skeleton code generator, (2) component for generating

transformations enabling global memory access, (3) component for managing on-chip shared memory and

mapping computation on multiple parallel units, (4) component that optimizes shared memory access, and (5)

model-driven empirical search engine to optimize system and program parameters.

In the following sections, we will describe each of the components addressed in this paper in detail.



5. Optimizing Global Memory Access

The results from Section 3.1 show that significant performance improvements for GPUs can be achieved

through program transformations that optimize global memory accesses. This section develops an approach for

performing such transformations. The proposed approach is based on the polyhedral model, a powerful algebraic

framework for representing programs and transformations [28, 33]. Our focus is on loop-based computations

where loop bounds are affine functions of outer loop indices and global parameters (e.g., problem sizes).

Similarly, array access functions are also affine functions of loop indices and global parameters. Such code

plays a critical role in many computation-intensive programs, and has been the target of a considerable body of

compiler research.

mv kernel : tmv kernel :

for ( i=0;i<n;i++) { for ( i=0;i<n;i++) {
P: x[ i ]=0; S: x[ i ]=0;
for ( j=0;j<n;j++) { for ( j=0;j<n;j++) {

Q: x[ i]+=a[i ][ j ]∗y[ j ]; T: x[ i]+=a[j ][ i ]∗y[ j ];
} }

} }

Figure 5. mv and tmv kernels

5.1 Background

A statement S surrounded by m loops is represented by an m-dimensional polytope, referred to as an iteration

space polytope. The coordinates of a point in the polytope (called the iteration vector ~xS) correspond to the

values of the loop indices of the surrounding loops, starting from the outermost one. Each point of the polytope

corresponds to an instance of statement S in program execution. The iteration space polytope is defined by a

system of affine inequalities, DS(~xS) ≥~0, derived from the bounds of the loops surrounding S. Using matrix

representation in homogeneous form to express systems of affine inequalities, the iteration space polytope can

equivalently be represented as

DS.







~xS

~n

1






≥~0,

where DS is a matrix representing loop bound constraints and ~n is a vector of global parameters (e.g., problem

sizes).

Consider the Matrix Vector (mv) multiply and Transpose Matrix Vector (tmv) Multiply kernels in Figure 5.

The iteration space polytope of statement Q is defined by {i, j | 0 ≤ i ≤ n− 1 ∧ 0 ≤ j ≤ n− 1}. In matrix

representation, this polytope is given by













1 0 0 0

−1 0 1 −1

0 1 0 0

0 −1 1 −1
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
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


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.


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

~xQ

n

1






≥~0



where ~xQ =
( i

j

)

is the iteration vector of statement Q.

Affine array access functions are also represented using matrices. If FkAS(~xS) represents the access function

of the kth reference to an array A in statement S, then

FkAS(~xS) = FkAS.







~xS

~n

1







where FkAS is a matrix representing an affine mapping from the iteration space of statement S to the data space of

array A. Each row in the matrix defines a mapping corresponding to one dimension of the data space. When the

rank of the access matrix of an array reference is less than the iteration space dimensionality of the statement in

which it is accessed, the array is said to have an order of magnitude (or higher-order) reuse due to the reference.

Thus, the condition for higher-order reuse of an array A due to a reference FkAS(~xS) is

rank(FkAS) < dim(~xS) (1)

Loops whose iterators do not occur in the affine access function of a reference are said to be redundant loops

for the reference.

In Figure 5, the access function of the reference to array a in statement T can be represented as

F1aT (~xT ) =

[

0 1 0 0

1 0 0 0

]

.







~xT

n

1







The rank of the access matrix is 2 and the iteration space dimensionality is 2, indicating that the array has no

higher-order reuse due to this reference.

Affine transformation of a statement S is defined as an affine mapping that maps an instance of S in the

original program to an instance in the transformed program. The affine mapping function of a statement S is

given by

φS(~xS) = CS.







~xS

~n

1






.

When CS is a row vector, the affine mapping φS is a one-dimensional mapping. An m-dimensional mapping can

be represented as a combination of m (linearly independent) one-dimensional mappings, in which case CS is a

matrix with m rows. In further discussion, we use θS to denote affine time mapping (to time points) and πS to

denote affine space mapping (to virtual processors).

There has been significant and advanced work on dependence analysis in the polyhedral model [14, 35]. An

affine transformation, found to improve performance of programs, is valid only if it preserves the dependences

in the original program. Affine transformations using polyhedral model are widely used for improvement

of sequential programs (source-to-source transformation) [15, 16] as well as automatic parallelization of

programs [27, 21, 17, 11].



Lim et al. [27] use an affine transformation framework for automatic parallelization. They define two different

categories of constraints on the transformations: space partition constraints and time partition constraints. The

space partition constraints ensure that any two dependent statement instances are always placed in the same

space partition, i.e., they are mapped to the same virtual processor in processor space. The time partition

constraints ensure that if a statement instance r depends on a statement instance s, then r is executed at the

same time point as s or at a later time point than s. Feautrier [15, 16] defines affine time schedule, which is

one-dimensional (single sequential loop in the transformed program) or multi-dimensional (nested sequential

loops in the program). The schedule associates a timestamp with each statement instance. Statement instances

are executed in increasing order of timestamps to preserve data dependences. Two statement instances that have

the same timestamp can be executed in parallel. The time schedule constraint in Feautrier’s framework, needed

to preserve a data dependence, is as follows

∀~xs ∈ Ds,∀~yt ∈ Dt s.t. ~yt depends on ~xs, θt(~yt)−θs(~xs) > 0 (2)

Using such constraints, one can define a system that characterizes the time schedule coefficients, taking into

account all dependencies. The system is then solved to find the legal time schedules. There has been a significant

body of work (e.g., [15, 27]) on the procedure to solve a system of constraints for affine partition mappings,

using the affine form of Farkas’ Lemma and Fourier-Motzkin projection algorithm.

5.2 Global Memory Coalescing

In GPUs, execution of a program proceeds by distributing the computations across thread blocks and across

threads within a thread block. In a thread block, data required for computation can be either accessed directly

from global memory or copied to shared memory and then accessed. We focus on the code executed in a thread

block to optimize for global memory access. We use PLuTo-generated tiling hyperplanes to distribute tiles

across thread blocks and a tile (with iteration space specified by the shape of the tile) is given as input to the

global memory access optimization component of our framework.

We first determine arrays that have either higher-order reuse (using condition defined by (1) or sufficient

constant reuse and mark them as arrays that have to be copied from global memory to shared memory for

efficient performance. Arrays that have no reuse due to any of its reference are candidates for direct access

from global memory. But inefficient access to global memory may degrade the performance as illustrated

in Section 3.1. We apply the framework to find program transformations that can lead to efficient global

memory access of as many array references (that have insufficient reuse) as possible. If a resulting program

transformation does not optimize access of an array reference, then the data accessed by the reference is copied

(efficiently) to shared memory.

To enable global memory coalescing for an array reference in a statement, iterations accessing adjacent

elements of the array (along the fastest varying dimension) have to be executed simultaneously (in time) by

distinct threads that are consecutive in thread (processor) space. In a timepoint, different statement instances in

the timepoint are executed collectively by all the threads. Hence iterations accessing adjacent data elements of

an array should have the same timestamp to ensure simultaneous access by adjacent threads. This is enforced

by the time schedule adjacency constraint which enforces two statement instances that access adjacent elements

of an array (that is not reused) to be executed at the time instance. The time schedule adjacency constraint is



defined (assuming row major storage of arrays) as:

∀~xs ∈ Ds,∀~ys ∈ Ds s.t. Frzs(~xs)+(0 . . .1)T = Frzs(~ys), θs(~xs) = θs(~ys) (3)

In a space partition, each instance is processed by distinct threads. Thus iterations accessing adjacent data

elements of an array have to be in adjacent space partitions so that adjacent data elements are accessed by

adjacent threads. This is enforced by the space partition adjacency constraint which enforces two statement

instances that access adjacent elements of an array (that is not reused) to be executed by adjacent processors in

the processor space. The space partition adjacency constraint is defined as:

∀~xs ∈ Ds,∀~ys ∈ Ds s.t. Frzs(~xs)+(0 . . .1)T = Frzs(~ys), πs(~ys) = πs(~xs)+1 (4)

The space adjacency constraint also enforce cyclic distribution of virtual processors to physical processors

as block distribution may nullify the effect of optimization achieved by the transformation satisfying space

adjacency constraint.

We now explain the procedure used to determine transformations, for code executed in a thread block, that

enable optimal global memory access. In our approach, we solve for a time schedule (for each statement) that

preserves all dependences and satisfies time schedule adjacency constraint (Equation 3) for all array accesses

(that do not have enough reuse) in the program. If there does not exist a solution, we combinatorially try all

subsets of array accesses and generate time schedules that satisfy the time schedule adjacency constraint and

potentially would generate space partitions that satisfy space partition adjacency constraint (Equation 4). Once

a t dimensional time schedule is determined for a statement with m loops surrounding it, we find a m − t

dimensional space partition mapping such that each of the m− t mappings are linearly independent of each

other and the time schedule and one of the space mappings (treated as the innermost space partition) satisfy

the space partition adjacency constraint. All transformations that have legal time schedules and also have valid

space partition mappings enabling coalesced global memory access are considered as candidate transformations

for the empirical search engine (discussed in Section 7). If there is no valid ‘space-time partition’ solution for

all statements, for any non-empty subset of array accesses considered, then we find, for each statement, a time

schedule that preserves all dependences and space partitions that are linearly independent to each other and the

time schedule. The procedure is summarized in Algorithm 1.

5.3 Examples

Consider the kernels in Figure 5. Array a in mv and tmv kernels has no reuse and is considered for coalesced

global memory access. Without applying the constraints defined by Equations 3 and 4, we get the following

valid time schedule and space partition mapping for statement Q in mv kernel and statement T in tmv kernel.

θQ(~xQ) = j and πQ(~xQ) = i

θT (~xT ) = j and πT (~xT ) = i

where ~xQ =
( i

j

)

and ~xT =
( i

j

)

.



Algorithm 1 Finding transformations enabling coalesced global memory access

Input Set of statements - S , Iteration Space Polytopes of all statements Is,s ∈ S, Array references (that do not
have reuse) - {Fkzr}, Set of Dependences - R

1: for all non-empty subsets G of array references do
2: Find a time schedule θ for each statement s that preserves all dependences in R and satisfies time schedule

adjacency constraint (3) for all references in G.
3: for each statement s (with dimensionality of iteration space being m and dimensionality of time schedule

being t) do
4: Find a space partition π1 that is linearly independent to θ and satisfies space partition adjacency

constraint (4) for all references in G. Mark this space partition as the innermost space partition.
5: Find m− t −1 space partitions that are linearly independent to each other and also to π1 and θ.
6: end for
7: end for
8: if no valid ‘space-time partition’ solution exists for all statements, for any non-empty subset of array

references considered then
9: Find a time schedule θ for each statement s that preserves all dependences in R .

10: For each statement s (with dimensionality of iteration space being m and dimensionality of time schedule
being t), find m− t space partitions that are linearly independent to each other and also to θ.

11: end if
Output Transformations enabling coalesced global memory access along with marking of references for which

copy to shared memory is needed

Applying adjacency constraints for the mv kernel (in a system with row major storage) yields no valid

transformation. Adjacent global memory access by distinct threads is possible only across different j-loop

iterations of an i-loop iteration. Hence the time schedule adjacency constraint results in a time schedule

θQ(~xQ) = i, which does not dismiss all dependences. Hence there is no valid transformation possible that can

enable coalesced global memory access. Hence the transformation (time schedule and space partition mapping)

obtained without applying adjacency constraints is used and array a in mv kernel is copied to shared memory

and accessed, but not accessed directly from global memory.

On the other hand, applying adjacency constraints for the tmv kernel, yields a time schedule θT (~xT ) = j

(as adjacent global memory access by distinct threads is possible across different i-loop iterations of an j-loop

iteration) and a space partition mapping πT (~xT ) = i, which preserve data dependences and hence resulting in a

valid transformation that has optimal coalesced global memory access.

5.4 Effective Use of Register and Non-register Memories

The compiler framework not only makes decision on what data needs to be moved to shared memory and what

needs to be accessed directly from global memory, but also makes optimal decisions on effectively using register

memory and non-register memories such as constant memory. Constant memory has an on-chip portion in the

form of cache which can be effectively utilized to reduce global memory access. Access to constant memory is

useful when a small portion of data is accessed by threads in such a fashion that all threads in a warp access

the same value simultaneously. When threads in a warp access different values in constant memory, then the

requests are serialized.

We determine arrays that are read-only and whose access function does not vary with respect to the loop

iterators corresponding to the parallel loops that are used for distributing computation across threads, as potential



candidates for storing in constant memory. Similarly arrays whose access function varies only with respect to the

loop iterators corresponding to the parallel loops are considered as potential candidates for storing in registers

in each thread.

5.5 Optimized Copy from Global Memory to Shared Memory

Arrays that have reuse and data accessed by array references that are marked to be copied to shared memory

because of infeasible transformation for coalesced global memory access, have to be efficiently copied from/to

shared memory. Given an iteration space polytope I and set of array access functions F1,F2, . . . ,Fk of k

references to an array in the iteration space, the elements accessed in the iteration space (further referred to

as accessed data space) is given by

DS =
k

[

j=1

F jI

where F jI is the image of the iteration space polytope I formed by the affine access function F j and it gives

the elements accessed by the reference F j in I .

For each array to be copied in a tile executed in a thread block, the accessed data space is determined for

a given tiled iteration space using Polylib [32], a tool providing library functions for operations done over

polyhedra. Using CLooG to scan the accessed data space polytope, we generate code to move data between

global memory and shared memory. The loop structure of the copy code is a perfect nest of n loops, where n is

the dimensionality of the accessed data space. By using a cyclic distribution of the innermost loop across threads

of a warp, we enable interleaved access of global memory by threads. This results in adjacent words from global

memory being accessed by adjacent threads, resulting in coalesced global memory access. The copy code, by

default, is placed at the start of the tile to copy data required in a tile, and at the end of the tile to move modified

data back to global memory. The copy code position in the loop structure of the program can be optimized by

moving it across any redundant loops.

A detailed discussion on copy code generation is presented elsewhere [3].

5.6 Model to Estimate Memory Traffic

In this subsection, we discuss a model to estimate memory traffic expected during the execution of a tile. This is

then used to guide the empirical search on tile sizes and unroll factors (as explained later in Section 7). Consider

a tile to be executed by a thread block or a thread. The iteration space of statements in the tile is parameterized by

the tile sizes of the loops defining the tile. Consider a tile of n loops with tile sizes being t1, t2, . . . , tn. Consider k

arrays (a1,a2, . . . ,ak) being accessed in the tile. Let ri be the number of read references and wi be the number of

write references of array ai. Let Fi1,Fi2, . . . ,Firi be the read accesses of array ai in the tile and Gi1,Gi2, . . . ,Giwi

be the write accesses of array ai in the tile. Let I be the iteration space of the tile parameterized by the tile sizes.

Let f be a function that counts the number of integer points in a polytope given the parameters. Let DS li denote

the accessed data space of read references of array ai. The number of integer points in polytope DS li gives the

number of loads due to array ai. Let DS si denote the accessed data space of write references of array ai. The

number of integer points in DS si gives the number of stores due to array ai.



The model to estimate memory loads and stores in a tile can be characterized as follows.

DS li =
ri

[

j=1

Fi jI and DS si =
wi
[

j=1

Gi jI

The number of loads and stores in a tile =

k

∑
i=1

f (DS li , t1, t2, . . . , tn)+ f (DS si , t1, t2, . . . , tn)

Having modeled the number of loads and stores in a tile, the total memory traffic is estimated based on the

number of iterations in the tiled iteration space, i.e., the number of tiles.

6. Optimizing Shared Memory Access

This section describes our approach to optimize access of on-chip shared memory in GPU multiprocessor units.

Following the observation from Section 3.2, optimization of shared memory access can be equivalently viewed

as minimization of bank conflicts. The strategy to minimize bank conflicts in shared memory access is to pad

the arrays copied into shared memory. However, finding a suitable padding factor for an array in shared memory

is not trivial. The procedure of finding a padding factor for an array in order to minimize bank conflicts has

to consider the effects of padding on all references made to the array. Padding to minimize bank conflict with

respect to one reference might have a negative impact with respect to another reference.

We define a formal relation between the degree of bank conflicts and the access stride across threads in a half

warp that determine the degree of bank conflicts and hence the shared memory access bandwidth. With shared

memory organized into banks and successive words stored in successive banks in a cyclic pattern, the degree of

bank conflicts is given by GCD(stride of array access across threads of a half warp, number of bank modules).

We model the cost of accessing a word from a shared memory bank as a linear function of the degree of bank

conflicts. Let C(n) be the cost of accessing a word from a shared memory bank when there are n simultaneous

requests to the bank (possibly by different threads of a half warp). The cost function is given by

C(n) = tstart + trequest ×n (5)

where tstart is the startup time to access a bank when there is one or more requests to the bank and trequest is

the time to service a request. Figure 6 shows the trend of the linear shared memory bank access cost function

(plotted using data obtained from the experiment described in Section 3.2).

The algorithm to find optimal padding factors for arrays in shared memory takes as input a sub-program to be

executed in a thread block which has been transformed for global memory coalescing using the framework from

Section 5.2. Thus, the algorithm has information regarding arrays that would be copied into shared memory, as

well as the space and time partitions in the transformed sub-program. For each reference, the distance between

successive points accessed by successive iterations of the innermost space loop provides the access stride across

threads for that reference. This information is provided as input to the algorithm that finds optimal padding

factor for each array in shared memory (shown in Algorithm 2). For each array in shared memory, the algorithm
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enumerates all effective padding factors (which vary from 1 to number of shared memory bank modules) to find

the optimal one that minimizes the total number of bank conflicts caused by all the references of the array.

Algorithm 2 Finding Optimal Padding Factor

Input Input array for which padding is to be determined - A, Number of references to A in the sub-program
- Nref , Original access strides across threads for the Nref references - AS[Nref ], Number of bank modules -
NB, Cost function from Eq. (5) - C

1: MinAccessCost = 0
2: OptPadding = 1
3: for pad = 1 to NB do
4: TotalAccessCost = 0
5: for ref = 1 to Nref do
6: Calculate new access stride ASnew[ref ] for reference ref using original access stride AS[ref ] and new

padding factor pad
7: BankConflict[ref ] = GCD(ASnew[ref ],NB)
8: AccessCost[ref ] = C(BankConflict[ref ])
9: TotalAccessCost+ = AccessCost[ref ]

10: end for
11: if TotalAccessCost < MinAccessCost then
12: OptPadding = pad
13: MinAccessCost = TotalAccessCost
14: end if
15: end for
Output Optimal padding factor for A - OptPadding

7. Model-driven Empirical Search for Optimal Tile sizes and Unroll factors

In this section, we discuss optimization of program parameters such as tile sizes and unroll factors that are

closely linked with the choice of system parameters such as number of threads and number of thread blocks

used for execution, and the availability of GPU local resources such as shared memory and registers.

We perform multiple levels of tiling for exploiting parallelism across thread blocks and threads, and also

perform register-level tiling through unroll-and-jam to optimize thread-level code. The first level of tiling is



done to exploit parallelism across thread blocks. In GPUs, the size of a tile executing in a thread block at a time

instance depends on the amount of shared memory available for execution of the thread block. The second level

of tiling within a thread block is done, if needed, to bound shared memory usage within available limits. When

the number of iteration points in a loop executed within a thread block is more than the number of threads, one

more level of tiling is needed to distribute the computation across threads. Tiling to distribute computation across

thread blocks and threads is performed according to the space partition mapping derived by the framework, as

explained in Section 5.2. Finally, if there is enough reuse to be exploited, register-level tiling is done to reduce

the number of loads from global/shared memory.

For a GPU architecture, performance is enhanced by optimizing memory access and exploiting parallelism,

as illustrated in Section 3. Hence it would be ideal to characterize and model tile size determination based on

the number of loads/stores between global and shared memory, and the number of loads/stores between shared

memory and registers. Using the polyhedral model discussed in Section 5.6, we can obtain an accurate estimate

of memory loads/stores. However, because of the lack of control on the the number of registers actually used

by NVIDIA CUDA C Compiler (NVCC), and because of the tight coupling of the GPU resources, optimal tile

sizes and unroll factors cannot be determined by a cost model alone. An empirical search is needed to find an

optimal set of tile sizes for the tiled loops and optimal unroll factors for the loops that are unrolled. Hence in

our framework, we employ an empirical search to pick the optimal code among various code variants resulting

due to different transformations enabling efficient global memory access, different tile sizes at multiple levels,

and different unroll factors. The search space due to different choices of tile sizes and unroll factors are pruned

with the help of the cost model that estimates memory laods/stores.

The model-guided empirical search procedure used in our compiler framework is outlined below.

• For each valid program transformation structure obtained by the framework described in Section 5.2, perform

multi-level tiling (except register-level tiling).

• Generate optimal copy code for arrays that need to be copied to shared memory (as explained in Section 5.5).

• For each tiled loop structure, determine the register usage r and determine the maximum concurrency (L

threads) possible within a multiprocessor. (NVCC has an option to generate a low-level object code file

called the cubin file that provides information on the amount of shared memory used by a thread block and

the number of registers used by a thread in a thread block). Set the exploration space of number of threads in

a thread block to be T,T/2,T/4, where T is the nearest multiple of warp size of the GPU device less than L

and 512.

• For all valid tile sizes that distribute computation almost equally among thread blocks and also among

threads within a thread block, and satisfy shared memory limit constraint, estimate the total number of global

memory loads/stores using the polyhedral model in Section 5.6. Discard loop structures that have p% more

loads/stores than the structure with lowest number of loads/stores.

• For all selected loop structures, do register-level tiling and explicit unrolling, instrument the register usage

and discard those for which register pressure is increased to an extent where concurrency is reduced to less

than 25% of maximum possible concurrency.



N Direct Global Optimized Shared Non-Optimized Shared

4K 0.43 13.18 5.61
5K 0.48 13.87 5.79
6K 0.35 14.37 6.04
7K 0.30 13.86 5.78
8K 0.24 13.63 5.52

Table 2. Performance comparison (in GFLOPS) of mv kernel

N Non-optimized Global Optimized Global

4K 4.22 25.21
5K 3.09 28.90
6K 3.24 33.47
7K 3.70 33.58
8K 4.13 34.93

Table 3. Performance comparison (in GFLOPS) of tmv kernel

• In all selected code versions, pad the arrays in shared memory with optimal padding factor determined using

Algorithm 2.

• Search empirically among the remaining candidate loop structures by explicitly running them and timing the

execution time and select the optimal one.

8. Experimental Results

The experiments were conducted on a NVIDIA GeForce 8800 GTX GPU device. The device has 768 MB of

DRAM and has 16 multiprocessors (MIMD units) clocked at 675 MHz. Each multiprocessor has 8 SIMD units

running at twice the clock frequency of the multiprocessor and has 16 KB of shared memory per multiprocessor.

We used CUDA version 1.0 for our experiments. The CUDA code is compiled using the NVIDIA CUDA

Compiler (NVCC) to generate the device code that is launched from the CPU (host). The CPU is an Intel Core2

Duo processor at 2.13 GHz with 2 MB L2 cache. The GPU device is connected to the CPU through a 16-x PCI

Express bus. The host programs are compiled using the icc compiler at -O3 optimization level.

8.1 Illustration of the Benefits of Optimized Global Memory Access

We discuss the performance of the mv and tmv kernels (Figure 5) to illustrate the benefits of global memory

access optimization. Table 2 shows the performance of mv kernel implemented using space and time partition

mappings, as discussed in Section 5.3. An implementation with efficient copy of elements of array a from

global memory to shared memory (column “Optimized Shared”), as deduced by the framework, provides an

order of magnitude better performance than the version implemented with direct access of a from global

memory (column “Direct Global”). In addition, an implementation without optimized padding of array a in

shared memory (column “Non-Optimized Shared”) leads to a 2x degradation in performance.

Table 3 shows the performance of the tmv kernel implemented using the space and time partition mappings

discussed in Section 5.3. When tiling along space loops is done in a blocked fashion to map virtual processors

in a space partition mapping to threads, it violates the coalesced memory access constraints and performance

degrades (column “Non-Optimized Global”). Hence tiling along space loops is done in a cyclic fashion (column

“Optimized Global”), as inferred with the optimization framework.



8.2 Illustration of the Model-driven Empirical Search using Matrix-Matrix Multiply (MM) kernel

We use the MM kernel to illustrate the steps involved in the model-driven empirical search procedure explained

in Section 7. We used a problem size of 4K ×4K, a size that is large enough to just fit in the GPU DRAM.

For the multi-level tiled code generated using the program transformations (without loop unrolling and

register-level tiling), the register usage per thread varied was estimated using cubin as 13, leading to a possibility

of 512 concurrent threads. Further experiments were done for a thread space of 128, 256 and 512 threads per

thread block. The number of thread blocks was varied between 16, 32 and 64.

For various tile sizes that distribute computation almost equally among thread blocks and also equally among

threads within a thread block, and satisfy shared memory limit constraint, the total global memory loads varied

from the order of 4K3

27 to 4K3

24 . The framework considered all code versions that had loads in the order of 4K3

27 to
4K3

26 and various combinations of loop unrolling and register-level tiling were done for the selected code versions.

Since the choices of register-level tiling depend on the size of the tile being executed in a thread, the choices

were limited. The register usage of each unrolled, register-tiled version was found to eliminate those that had

excessive register usage that reduces the number of concurrent threads to below 128. Figure 7 illustrates the

performance of the selected candidates that were run empirically to select the best one. Our approach resulted

in a performance of around 97 GFLOPS as compared to vendor-optimized MM kernel’s performance of around

101 GFLOPS.
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8.3 Performance Evaluation on Kernels

8.3.1 Matrix Kernels

Figure 8 shows the performance of several kernels: Matrix Vector multiply (mv), Transpose Matrix Vector

multiply (tmv), Matrix Vector Transpose (mvt), which involves both mv and tmv kernels, and Matrix Matrix

multiply (mm). The comparison is done with the vendor-optimized CUBLAS library from CUDA. The strength

of the proposed optimization framework is evident from these results: for mv, tmv and mvt kernels, our approach

achieves better performance than the CUBLAS implementation, and for mm kernel, the performance is close to

CUBLAS.
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Figure 8. Performance of Matrix kernels

Version MRI-Q MRI-FHD

CPU 0.17 0.18
Non-optimized GPU 9.62 10.14

Optimized GPU 159.79 154.93

Table 4. Performance of MRI kernels

8.3.2 Magnetic Resonance Imaging Kernels

We employed our framework for few important kernels used in Magnetic Resonance Imaging [38, 37] appli-

cation, namely, MRI-Q and MRI-FHD. The performance improvement over the non-optimized versions of the

kernels are clearly illustrated in Table 4. The performance improvement is primarily due to efficient tile sizes

and unroll factors determined, and utilization of constant memory. Ryoo et al. [38, 37] report performance

improvement of these kernels in their work, but our approach detects the optimization to be performed in an

automatic fashion unlike their approach that is aimed at manually improving the performance of the kernels.

8.3.3 FDTD Kernel

Figure 9 shows the performance of 2D Finite-Difference Time-Domain (FDTD) kernel (a realistic scientific

kernel characterized by a Jacobi-like stencil computation) generated using our approach.
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9. Related Work

Prior to the introduction of CUDA [29], GPU programming systems have relied on graphics API-based

implementations, which have limited the size and kind of codes that have been implementable on GPUs. In

addition, CUDA has significantly enhanced programmer productivity by relieving the programmer of the burden

of thinking in terms of graphics operations.

Previous GPU generations and their APIs had restrictive memory access patterns such as allowing only

sequential writes to a linear array. For example, Accelerator [40] does not allow access to an individual element

in parallel arrays and operations are performed on all array elements. Brook [8] is a stream-based model that

executes its kernel for every element in the stream with restrictions. The GeForce 8800 allows for general

addressing of memory by each thread, which supports a much wider variety of algorithms. With this general

addressing, it is important to apply data locality optimizations in order to exploit high bandwidth and hide

memory latency.

Traditional GPUs also provided limited cache bandwidth for GPGPU applications. Fatahalian et al. [13]

mention that low-bandwidth cache designs on GPUs prevent general purpose applications from benefiting from

the available computational power. Govindaraju et al. [19] use an analytical cache performance prediction

model for GPU-based algorithms. Their results indicate that memory optimization techniques designed for

CPU-based algorithms may not directly translate to GPUs. New graphics architectures provide a variety of

storage resources, which need to be exploited for getting good performance. In the context of architectures

with explicitly managed memory hierarchies, Fatahalian et al. [12] and Knight et al. [25] present respectively a

language and an optimizing compiler system.

In the context of getting good performance on graphics applications running on CPUs, two works have

developed compiler solutions. Breternitz et al. [7] have developed a compiler to generate efficient code on a CPU

for SIMD graphic workloads by extending the base ISA to SSE2. Liao et al. [26] have developed a framework

that works with Brook [8] to perform aggressive data and computation transformations. Recently, Ryoo et al.

[38, 37] have presented experimental studies on program performance on NVIDIA GPUs using CUDA; they

do not use or develop a compiler framework for optimizing applications, but rather perform the optimizations

manually. Ryoo et al. in [39] have presented performance metrics to prune the optimization search space on

a pareto-optimality basis. However, they manually generate the performance metrics data for each application

they have studied.



A number of efforts have focused on automatically generating efficient implementations of programs for

different architectures, though none of these have addressed GPUs. A significant example in this space is

the SPIRAL project which is aimed at the design of a system to generate efficient libraries for digital signal

processing algorithms [34]. Other efforts include FFTW [18], the telescoping languages project [23], works

on iterative compilation [1, 9, 24], ATLAS [42] for deriving efficient implementation of BLAS routines, and

the PHIPAC [5] and the OSKI [22] projects. All these efforts use search-based approaches for performance

tuning of codes. A comparison of model-based and search-based approaches for matrix-matrix multiplication is

reported in [43].

10. Conclusions

We have characterized critical performance influencing factors on GPUs and have developed an automatic com-

piler framework to efficiently enable an optimized execution over GPUs. We have developed techniques to gen-

erate effective program transformations for GPUs, and have employed a model-driven empirical optimization

approach to find optimal values for system and program parameters that maximize performance. The effective-

ness of the developed approach is demonstrated with various kernels.
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