
PLuTo: A Practical and Fully Automatic Polyhedral Program
Optimization System

Uday Bondhugula1 J. Ramanujam2 P. Sadayappan1

1Dept. of Computer Science and Engineering 2Dept. of Electrical & Computer Engg. and
The Ohio State University Center for Computation & Technology

2015 Neil Ave. Columbus, OH, USA Louisiana State University
{bondhugu,saday}@cse.ohio-state.edu jxr@ece.lsu.edu

OSU

OSU-CISRC-10/07-TR70

Abstract
We present the design and implementation of a fully automatic
polyhedral source-to-source transformation framework that can op-
timize regular programs (sequences of possibly imperfectly nested
loops) for parallelism and locality simultaneously. Through this
work, we show the practicality of analytical model-driven auto-
matic transformation in the polyhedral model – far beyond what is
possible by current production compilers. Unlike previous works,
our approach is an end-to-end fully automatic one driven by an
integer linear optimization framework that takes an explicit view
of finding good ways of tiling for parallelism and locality using
affine transformations. We also address generation of tiled code
for multiple statement domains of arbitrary dimensionalities under
(statement-wise) affine transformations – an issue that has not been
addressed previously. Experimental results from the implemented
system show very high speedups for local and parallel execution on
multi-cores over state-of-the-art compiler frameworks from the re-
search community as well as the best native compilers. The system
also enables the easy use of powerful empirical/iterative optimiza-
tion for general arbitrarily nested loop sequences.

1. Introduction and Motivation
Current trends in microarchitecture are increasingly towards larger
number of processing elements on a single chip. This has led to par-
allelism and multi-core architectures becoming mainstream. In ad-
dition, several specialized parallel architectures (accelerators) like
the Cell processor and General-Purpose GPUs have emerged. The
difficulty of programming these architectures to effectively tap the
potential of multiple on-chip processing units is a significant chal-
lenge. Among several approaches to addressing this issue, one that
is very promising but simultaneously very challenging is automatic
parallelization. This requires no effort on part of the programmer
in the process of parallelization and optimization and is therefore
very attractive.

Many compute-intensive applications often spend most of their
running time in nested loops. This is particularly common in scien-
tific and engineering applications. The polyhedral model provides a
powerful abstraction to reason about transformations on such loop
nests by viewing a dynamic instance (iteration) of each statement
as an integer point in a well-defined space called the statement’s
polyhedron. With such a representation for each statement and a
precise characterization of inter or intra-statement dependences, it
is possible to reason about the correctness of complex loop trans-
formations in a completely mathematical setting relying on ma-
chinery from Linear Algebra and Linear Programming. The trans-

formations finally reflect in the generated code as reordered exe-
cution with improved cache locality and/or loops that have been
parallelized. The polyhedral model is applicable to loop nests in
which the data access functions and loop bounds are affine combi-
nations (linear combination with a constant) of the enclosing loop
variables and parameters. While a precise characterization of data
dependences is feasible for programs with static control structure
and affine references/loop-bounds, codes with non-affine array ac-
cess functions or code with dynamic control can also be handled,
but with conservative assumptions on some dependences.

The task of program optimization (often for parallelism and lo-
cality) in the polyhedral model may be viewed in terms of three
phases: (1) static dependence analysis of the input program, (2)
transformations in the polyhedral abstraction, and (3) generation of
code for the transformed program. Significant advances were made
in the past decade on dependence analysis [15, 14, 35] and code
generation [26, 21] in the polyhedral model, but the approaches suf-
fered from scalability challenges. Recent advances in dependence
analysis [46] and more importantly in code generation [37, 6, 45]
have solved many of these problems resulting in the polyhedral
techniques being applied to code representative of real applications
like the spec2000fp benchmarks. CLooG [6, 1] is a powerful state-
of-the-art code generator that captures most of these advances and
is widely used. The key missing step is the absence of a scalable
and practical approach for automatic transformation for paralleliza-
tion and locality. Our work addresses this problem by developing a
compiler framework that enables end-to-end fully automatic paral-
lelization and locality optimization.

Tiling is a key transformation in optimizing for parallelism and
data locality. There has been a considerable amount of research
into these two transformations. Tiling has been studied from two
perspectives – data locality optimization and parallelization. Tiling
for locality requires grouping points in an iteration space into
smaller blocks (tiles) allowing reuse in multiple directions when
the block fits in a faster memory (registers, L1, or L2 cache). Tiling
for coarse-grained parallelism involves partitioning the iteration
space into tiles that may be concurrently executed on different
processors with a reduced frequency and volume of inter-processor
communication: a tile is atomically executed on a processor with
communication required only before and after execution. One of
the key aspects of our transformation framework is to find good
ways of performing tiling.

Existing automatic transformation frameworks [31, 30, 29, 20]
have one or more drawbacks or restrictions that limit their effec-
tiveness. A significant problem is the lack of a realistic cost func-
tion to choose among the large space of legal transformations that

1 2008/3/2

are suitable for coarse-grained parallel execution, as is used in
practice with manually developed/optimized parallel applications.
Most previously proposed approaches also do not consider locality
and parallelism together. Comprehensive performance evaluation
on parallel targets using a range of test cases has not been done
using a powerful and general model like the polyhedral model.

This paper presents the end-to-end design and implementation
of a practical parallelizer and locality optimizer in the polyhe-
dral model. Finding good ways to tile for parallelism and lo-
cality directly directly through an affine transformation frame-
work is the central idea. Our approach is thus a departure from
scheduling-based approaches in this field [16, 17, 13, 20] as well
as partitioning-based approaches [31, 30, 29] (due to incorpora-
tion of more concrete optimization criteria), however, is build on
the same mathematical foundations and machinery. We show how
tiled code generation for statement domains of arbitrary dimen-
sionalities under statement-wise affine transformations is done for
local and shared memory parallel execution; this issue has not been
addressed previously. We also evaluate the performance of the im-
plemented system by use of a number of non-trivial application
kernels on a multi-core processor.

Model-driven empirical optimization and automatic tuning ap-
proaches have been shown to be very effective in optimizing single-
processor execution for some regular kernels like Matrix-matrix
multiplication [47, 51], and ATLAS is well-known. There is consid-
erable interest in developing effective empirical tuning approaches
for arbitrary input kernels. Our framework can enable such model-
driven or guided empirical search to be applied to arbitrary affine
programs, in the context of both sequential and parallel execution.
Also, since our transformation system operates entirely in the poly-
hedral abstraction, it is not just limited to C or Fortran code, but
could accept any high-level language from which polyhedral do-
mains can be extracted.

The rest of this report is organized as follows. Section 2 pro-
vides mathematical background on the polyhedral model and affine
transformations. Section 3 provides an overview of our theoretical
framework that drives automatic transformation. Sec. 4 and Sec-
tion 5 discuss the design of our system, mainly focusing on tech-
niques for generation of tiled and shared memory parallel code
from transformations found. Finally, Sec 6 provides experimental
results from the implemented system. Section 7 discusses related
work and conclusions are presented in Section 8.

2. Background and Notation
This section provides background on the polyhedral model. All row
vectors are typeset in bold.

2.1 The polytope model
DEFINITION 1 (Affine Hyperplane). The set X of all vectors x ∈
Zn such that h.~x = k, for k ∈ Z, forms an affine hyperplane.

In other words, a hyperplane is a higher dimensional analog of
a (2-d) plane in three-dimensional space. The set of parallel hyper-
plane instances corresponding to different values of k is character-
ized by the vector~hwhich is normal to the hyperplane. Two vectors
~x1 and ~x2 lie in the same hyperplane if h. ~x1 = h. ~x2.

DEFINITION 2 (Polyhedron). The set of all vectors ~x ∈ Zn such
that A~x +~b ≥ 0, where A is an integer matrix, defines a (convex)
integer polyhedron. A polytope is a bounded polyhedron.

A well-known known result useful for polyhedral analyses is the
affine form of the Farkas Lemma.

LEMMA 1 (Affine form of Farkas Lemma). LetD be a non-empty
polyhedron defined the affine inequalities or faces

ak.~x+ bk ≥ 0, 1 ≤ k ≤ s
Then, an affine form ψ is non-negative everywhere in D iff it is a
positive affine combination of the faces of D:

ψ(~x) ≡ λ0 +
X

k

λk(ak~x+ bk), λk ≥ 0 (1)

The non-negative constants λk are referred to as Farkas multipliers.
For a detailed proof, see Schrijver [42].

Polyhedral representation of programs. Given a program, each
dynamic instance of a statement, S, is defined by its iteration vector
~i which contains values for the indices of the loops surrounding
S, from outermost to innermost. Whenever the loop bounds are
linear combinations of outer loop indices and program parameters
(typically, symbolic constants representing problem sizes), the set
of iteration vectors belonging to a statement define a polytope. Let
DS represent the polytope and its dimensionality be mS . Let ~p be
the vector of program parameters.

2.2 Polyhedral Dependences
Our dependence model is of exact affine dependences and same
as the one used in [16, 30, 12, 46, 34]. Dependences are deter-
mined precisely, but we consider all dependences including anti
(write-after-read), output (write-after-write) and input (read-after-
read) dependences, i.e., input code does not require conversion
to single-assignment form. Non-affine accesses or dynamic con-
trol can be handled conservatively; however, how such a conserva-
tive approximation is derived for general programs is not a part of
this report. The Polyhedral Dependence Graph (PDG) is a directed
multi-graph with each vertex representing a statement, and an edge,
e ∈ E, from node Si to Sj representing a polyhedral dependence
from a dynamic instance of Si to one of Sj : it is characterized by a
polyhedron,Pe, called the dependence polyhedron that captures the
exact dependence information corresponding to e. The dependence
polyhedron is in the sum of the dimensionalities of the source and
target statement’s polyhedra (with dimensions for program param-
eters as well).

Pe ≡

"
DP~s

DP~t
he

264 ~s
~t
~p
1

375 "
≥ 0

= 0

#
(2)

The equalities inPe typically represent the affine function mapping
the target iteration vector ~t to the particular source ~s that is the
last access to the conflicting memory location, also known as the
h-transformation [16]. The last access condition is not necessary
though; in general, the equalities can be used to eliminate variables
from Pe. In the rest of this section, it is assumed for convenience
that ~s can be completely eliminated using the he, being substituted
by he(~t).

2.3 Statement-wise Affine Transforms
A one-dimensional affine transform for statement Sk is defined by:

φsk =
h
f1 . . . fmSk

i `
~i

´
+ f0 (3)

= fSk
~i+ f0,where fSk = [f1, . . . , fmSk

], fi ∈ Z

A multi-dimensional affine transformation for a statement can now
be represented by a matrix with each row being an affine hyper-
plane. If such a transformation matrix has full column rank, it com-
pletely specifies when and where an iteration executes. The total
number of rows in the matrix may be much larger as some special
rows, splitters, may represent unfused loops at a level. Consider the

2 2008/3/2

for (i=0; i<n; i++)
for (j=0; j<n; j++)

S1: C[i , j] = 0;

for (i=0; i<n; i++)
for (j=0; j<n; j++)

for (k=0; k<n; k++)
S2: C[i , j] = C[i , j]

+ A[i ,k]∗B[k, j]

for (i=0; i<n; i++)
for (j=0; j<n; j++)

for (k=0; k<n; k++)
S3: D[i , j] = D[i , j]

+ E[i ,k]∗C[k, j]

S1 S2 S3
i j const ij k const ij k const

c1 1 0 0 10 0 0 00 1 0
c2 0 1 0 01 0 0 01 0 0
c3 0 0 0 00 0 0 00 0 1
c4 0 0 0 00 1 0 10 0 0
c5 0 0 0 00 1 0 10 0 0

for (c1=0; c1<n; c1++)
for (c2=0; c2<n; c2++)

C[c1,c2] = 0;
for (c5=0; c5<n; c5++)

C[c1,c2] = C[c1,c2] +
A[c1,c5]∗B[c5,c2]

for (c5=0; c5<n; c5++)
D[c5,c2] = D[c5,c2] +

E[c5,c1] ∗ C[c1,c2]

Figure 1. Statement-wise transformation and corresponding trans-
formed code

code in Fig. 1 for example. Such transformations capture the fu-
sion structure as well as compositions of permutation, reversal, rel-
ative shifting, and skewing transformations. This representation for
transformations has been used by many researchers [17, 25, 12, 18],
and directly fits with scattering functions that a code generator like
CLooG [6] supports.

3. Overview of Automatic Transformation
Approach

In this section, we give an overview of our theoretical framework
for automatic transformation. Full details are available in another
report [8].

3.1 Legality of tiling multiple domains with affine
dependences

LEMMA 2. Let φsi be a one-dimensional affine transform for
statement Si. For {φs1 , φs2 , . . . , φsk}, to be a legal (statement-
wise) tiling hyperplane, the following should hold for each edge
e ∈ E:

φsj

`
~t
´
− φsi (~s) ≥ 0, 〈~s,~t〉 ∈ Pe (4)

The above is a generalization of the classic condition proposed
by Irigoin and Triolet [23] (as hT .R ≥ 0) for the legality of
tiling a single domain. The tiling of a statement’s iteration space
by a set of hyperplanes is said to be legal if each tile can be
executed atomically and a valid total ordering of the tiles can be
constructed. This implies that there exist no two tiles such that they
both depend on each other. The above is a generalization to multiple
iteration domains with affine dependences, with possibly different
dimensionalities or corresponding to imperfectly nested input.

Let {φ1
s1 , φ1

s2 , . . . , φ1
sk
}, {φ2

s1 , φ2
s2 , . . . , φ2

sk
} be two statement-

wise 1-d affine transforms that satisfy (4). Then, {φ1
s1 , φ1

s2 , . . . ,
φ1

sk
}, {φ2

s1 , φ2
s2 , . . . , φ2

sk
} represent rectangularly tilable loops in

the transformed space. A tile can be formed by aggregating a group
of hyperplane instances along φ1

si
and φ2

si
. Due to (4), if such a

tile is executed on a processor, communication would be needed
only before and after its execution. From the point of view of data
locality, if such a tile is executed with the associated data fitting in
a faster memory, reuse is exploited in multiple directions. Hence,
any φj

S1
, φj

S2
, . . . , φj

Sn
that is a solution to (4) represents a com-

mon dimension (for all statements) in the transformed space with
both inter and intra-statement affine dependences in the forward
direction along it.

Partial tiling at any depth. The legality condition as written in
(4) is imposed on all dependences. However, if it is imposed only
on dependences that have not been carried up to a certain depth,
the independent φ’s that satisfy the condition represent tiling hy-
perplanes at that depth, i.e., tiling at that level is legal. In the rest
of this section, we use the term affine transform (with property (4))
and tiling hyperplane interchangeably.

3.2 Cost function, bounding approach and minimization
Consider the following affine form δe:

δe(~t) = φsi(~t)− φsj (he(~t)), ~t ∈ Pe (5)

The affine form δe(~t) is very significant. This function is the num-
ber of hyperplanes the dependence e traverses along the hyperplane
normal φ. If φ is used as a space loop to generate tiles for paral-
lelization, this function is a factor in the communication volume.
On the other hand, if φ is used as a sequential loop, it gives us
a measure of the reuse distance. An upper bound on this function
would mean that the number of hyperplanes that would be commu-
nicated as a result of the dependence at the tile boundaries would
not exceed the bound, the same for cache misses at L1/L2 tile
edges, or L1 cache loads for a register tile. Of particular interest
is, if this function can be reduced to a constant amount or zero (free
of a parametric component) by choosing a suitable direction for φ:
if this is possible, then that particular dependence leads to constant
boundary communication or no communication (respectively) for
this hyperplane.

An attempt to minimize the above cost function ends up in an
objective non-linear in loop variables and hyperplane coefficients.
For example, φ(~t) − φ(he(~t)) could be c1i + (c2 − c3)j, where
1 ≤ i ≤ N ∧ 1 ≤ j ≤ N ∧ i ≤ j. One ends up with
such a form when a dependence is not uniform or for an inter-
statement dependence. The difficulty can be overcome by using a
bounding function approach that allows the application of Farkas
Lemma and casting the objective into an ILP formulation. Since
the loop variables themselves are bounded by affine functions of
the parameters, one can always find an affine form in the program
parameters, ~p, that bounds δe(~t) for every dependence edge e, i.e.,
there exists v(~p) = u.~p+ w, such that

φsi(~t)− φsj (he(~t)) ≤ v(~p), ~t ∈ Pe, ∀e ∈ E
i.e., v(~p) − δe(~t) ≥ 0, ~t ∈ Pe, ∀e ∈ E (6)

Such a bounding function approach was first used by Feautrier [16],
but for a different purpose – to find minimum latency schedules.
Now, Farkas Lemma can be applied to (6).

v(~p)− δe(~t) ≡ λe0 +

meX
k=1

λekPk
e , λek

T ≥ ~0

where Pk
e is a face of Pe. Coefficients of each of the iterators

in ~i and parameters in ~p on the LHS and RHS can be gathered
and equated, to obtain linear equalities and inequalities entirely in
coefficients of the affine mappings for all statements, components
of row vector u, and w. The ILP system comprising the tiling
legality constraints from (4) and the bounding constraints can be
at once solved by finding a lexicographic minimal solution with ~u
and w in the leading position. Let u = (u1, u2, . . . uk).

minimize≺ {u1, u2, . . . , uk, w, . . . , c
′
is, . . . } (7)

Finding the lexicographic minimal solution is within the reach of
the Simplex algorithm and can be handled by the Parametric Integer
Programming (PIP) software [14]. Since the program parameters
are quite large, their coefficients are minimized with the highest
priority. The solution gives a hyperplane for each statement.

3 2008/3/2

Iteratively finding independent solutions through orthogonal ba-
sis. Solving the ILP formulation in the previous section gives us
a single solution to the coefficients of the best mappings for each
statement. We need at as many independent solutions (for a state-
ment) as the dimensionality of its domain. Hence, once a solution
is found, we augment the ILP formulation with new constraints
that make sure of linear independence with solutions already found.
This is done by constructing the orthogonal sub-space [33, 28, 9] of
the transformation rows found so far (HS) and forcing a non-zero
component in it for the next solution.

H⊥
S = I −HT

S

“
HSH

T
S

”−1

HS (8)

Unified view of communication and locality optimization The
best possible solution to (7) is with (u = 0, w = 0), which is a
hyperplane that has no dependence components along its normal
– this is a fully parallel loop requiring no synchronization if at the
outer level (outer parallel); it could be an inner parallel loop if some
dependences were removed previously and so a synchronization
is required after the loop is executed in parallel. Thus, in each
of the steps that we find a new independent hyperplane, we end
up first finding all synchronization-free hyperplanes when they
exist; these are followed by a set of hyperplanes requiring constant
boundary communication (u = 0;w > 0). In the worst case,
we have a hyperplane with u > 0, w ≥ 0 resulting in long
communication from non-constant dependences; such solutions are
pushed to inner levels. Hence, all degrees of parallelism are found
in the order of their preference. From the point of view of data
locality, since the same hyperplanes used to scan the tile space scan
points in a tile, cache misses at tile boundaries (that are equivalent
to communication along processor tile boundaries) are minimized.

Algorithm 1 Affine transformation algorithm
INPUT Dependence polyhedra: Pe, e ∈ E

1: for each dependence e ∈ E do
2: Build legality constraints: apply Farkas Lemma on φ(~t) −

φ(he(~t)) ≥ 0 under ~t ∈ Pe

3: Build communication volume/reuse distance bounding con-
straints: apply Farkas Lemma to v(~p)−(φ(~t)−φ(he(~t))) ≥
0 under ~t ∈ Pe

4: Aggregate constraints from both into Ce(i)
5: end for
6: repeat
7: C ←

S
e∈E Ce(i)

8: Find lexicographic minimal solution for (u, w) and itera-
tively find as many independent solutions to C as possible

9: if no solutions were found then
10: Cut dependences between SCCs in the dependence graph
11: end if
12: Remove edges carried by solutions of Step 8/10 from E
13: until H⊥

Si
= 0 for each Si and E = ∅

OUTPUT A transformation matrix for each statement

Outer space and inner time. By minimizing φ(~t) − φ(~s) as we
find hyperplanes from outermost to innermost, we push dependence
carrying to inner loops, at the same time ensuring that the new loops
have non-negative dependence components (to the extent possible)
so that they can be tiled for locality and pipelined parallelism can
be extracted in the presence of forward space dependences. If the
outer loops are used as space (how many ever desired, say k), and
the rest are used as time, communication in the processor space is
minimal as the outer space loops are the k best ones. Whenever the
loops are tiled, they result in coarse-grained parallelism as well as
better reuse within a tile.

Fusion using hyperplanes Fusion across multiple iteration spaces
that are weakly connected, as in sequences of producer-consumer
loops is also enabled. Since the hyperplanes do not include coef-
ficients for program parameters, a solution found corresponds to
a fine-grained interleaving of different statement instances at that
level (Fig. 1).

The algorithm is summarized as Algorithm. 1. Dependences
from previously found hyperplanes are not removed as independent
tiling hyperplanes are found (in Step 8) unless they have to be
(Step 12) to allow finding the next band of tiling hyperplanes.

4. Design
We have implemented our algorithm to transform C/Fortran code
completely automatically. Fig. 2 shows the entire tool-chain. We
used the scanner, parser and dependence tester from the LooPo in-
frastructure [2]. LooPo is a polyhedral source-to-source transfor-
mation system that includes implementations of various polyhedral
analyses and transformations from the literature. We used PipLib
1.3.3 [3, 14] as the ILP solver and CLooG 0.14.1 (with 64 bits)
for code generation. Our tool takes as input dependence polyhe-
dra from LooPo’s dependence tester. Flow, anti and output depen-
dences are considered for legality as well as the bounding func-
tion, while input dependences can optionally be considered for the
bounding objective. We have also integrated the annotation-based
transformation system of Norris et al. [32] to perform some syntac-
tic transformations on the code generated from CLooG as a post-
processing; these include register tiling and unrolling and scalar
replacement.

(OpenMP)

gcc/icc

Dependence

CLooG

Compilable

Annotated code

framework
transformation

Our affine

affine transforms
Statement−wise

tile
specifier

Polyhedral

Syntactic
Transformer

sequences

scanner/parser
 +

Dependence
tester locality optimization)

(parallelization +

polyhedra

LooPo
Nested loop

target code

with supernodes
and scatterings
Updated domains

Figure 2. Our source-to-source transformation system

4.1 Handling input dependences
Input dependences need to be considered for optimization in many
cases as reuse can be exploited by minimizing them. Clearly, le-
gality (ordering between dependent RAR iterations) need not be
preserved. We thus do not add legality constraints (4) for such de-
pendences, but consider them for the bounding objective function.
Since input dependences can be allowed to have negative compo-
nents in the transformed space, they need to be bounded from both
above and below. For every, PR

e corresponding to a input depen-
dence, we have the constraints:˛̨

φsj

`
~t
´
− φsi (~s)

˛̨
≤ v(~p), 〈~s,~t〉 ∈ PR

e

i.e., φsj

`
~t
´
− φsi (~s) ≤ v(~p), 〈~s,~t〉 ∈ PR

e

φsi (~s)− φsj

`
~t
´
≤ v(~p), 〈~s,~t〉 ∈ PR

e

4.2 Single-pass polyhedral tiling vs. post-transformation
tiling

Before proceeding further, we differentiate between using the term
‘tiling’ for, (1) modeling and enabling tiling through a transfor-
mation framework (as was described in the previous section), and
(2) final generation of tiled code from the hyperplanes found. Both
are generally referred to as tiling. Our approach models tiling in
the transformation framework by finding affine transformations that

4 2008/3/2

make rectangular tiling in the transformed space legal. The hyper-
planes found are the new basis for the loops in the transformed
space and have special properties that have been detected when the
transformation is found – e.g. being parallel, sequential or belong-
ing to a band of loops that can now be rectangularly tiled. Hence,
the transformation framework guarantees legality of rectangular
tiling in the new space. The final generation of tiled loops can be
done in two ways broadly, (1) directly through the polyhedral code
generator itself in one pass itself, or (2) as a post-pass on the ab-
stract syntax tree generated after applying the transformation. Each
has its merits and both can be combined too. Tiled code genera-
tion with parametric tile sizes within the polyhedral model was re-
cently addressed by Renganarayana et al. [39]. Their approach only
handles single domains that are rectangularly blockable. While the
techniques could be extended to tile loops in an abstract syntax tree
(AST) at any level, it falls into the second category, and we show
that tiling the transformed AST is less powerful than generating the
transformed-cum-tiled code in one pass through a code generator.

For transformations that possibly lead to imperfectly nested
code, polyhedral tiling is a natural way to get tiled code from
the code generator in one pass guaranteeing legality. Consider
the code in Fig. 4(a) for example. If code is generated by just
applying the transformation first, we get code shown in Fig. 4(b).
Even though the transformation framework obtained two tiling
hyperplanes, the transformed code in Fig. 4(b) has no 2-d perfectly
nested kernel. Doing a simple unroll-jam of the imperfect loop nest
is illegal in this case; hence, straightforward 2-d syntactic tiling
violates dependences. The legality of syntactic tiling or unroll/jam
(for register tiling) of such loops cannot be reasoned about in the
target AST easily since once we obtain the transformed code, we
are outside of the polyhedral model, unless advanced techniques
like re-entrance [44] are used. Even when re-entrance is used to
reason about legality through dependence analysis on the target
AST, such an approach would miss ways of tiling that are possible
by reasoning about the obtained tiling hyperplanes on original
domains itself – we propose an approach to accomplish the latter
which is the subject of Section 5. For example, for the code in
Fig. 4, 2-d tiled code can be generated in one pass, both applying
the transformation as well as accomplishing tiling.

In other cases when there exists a perfectly nested band of loops
in the AST that carry most of the computation, it is easy to do
multi-level parametric tiling with existing techniques [39, 27]; that
would require another pass of CLooG on the AST and lead to
much simpler code with separation of full and partial tiles, allowing
unrolling for ILP, register reuse and avoiding max’s and min’s in the
inner loop bounds for the core of the computation. Alternatively,
such bands in the target AST can be tiled efficiently syntactically
too.

4.3 Syntactic transformations
We have also integrated an annotation-based transformation sys-
tem to perform syntactic transformations on the code generated
from CLooG as a post-processing; these include syntactic tiling of
innermost perfect nests in the AST, which as mentioned in some
cases is more efficient, register tiling followed by unrolling, scalar
replacement, and scalar bound replacement and hoisting to facil-
itate auto-vectorization. Such syntactic transformations fit nicely
as a post-pass on code generated from CLooG since the automat-
ically generated code has a known and fixed structure making it
amenable to syntactic treatment. Also, for transformations like syn-
tactic tiling and unroll-jamming, the legality is guaranteed by the
transformation framework. In this paper, we do not discuss any fur-
ther on how exactly these transformations are performed and the
corresponding performance improvement. They are non-trivial for
non-rectangular iteration spaces for example, or when a sequence

of those has to be composed. The complementary benefits of syn-
tactic tiling will be reported in future, and is not the focus of this pa-
per. However, a preview of the potential performance improvement
is provided for a kernel in the experimental evaluation section.

5. Tiled code generation for arbitrarily-nested
loops under statement-wise transformations

In this section, we describe how tiled code is generated from trans-
formations found in the previous section. This is a key step in gen-
eration of high performance code.

We first give a brief description of CLooG. CLooG can scan
a union of polyhedra, and optionally, under a new global lexico-
graphic ordering specified as through scattering functions. Scatter-
ing functions are specified statement-wise, and the legality of scan-
ning the polyhedron with these dimensions in the specified order
should be guaranteed by the specifier – in our case, an automatic
transformation system. The code generator does not have any in-
formation on the dependences and hence, in the absence of any
scattering functions would scan the union of the statement polyhe-
dra in the global lexicographic order of the original iterators (state-
ment instances are interleaved). CLooG uses PolyLib (which in
turn uses the efficient Chernikova algorithm) for its core polyhe-
dral operations, and the code generated is far more efficient than
older code generators based on Fourier-Motzkin variable elimina-
tion, e.g. Omega Codegen [35] or LooPo’s internal code genera-
tor [21, 20]). Also, code generation time and memory utilization are
much lower, allowing code generation to be feasible for hundreds
of statements with a number of free parameters without memory ex-
plosion [6]. Such a powerful and efficient code generator is essen-
tial in conjunction with the transformation framework we develop,
since the statement-wise transformations found when coupled with
tiling lead to complex execution reordering. This is especially so for
imperfectly nested loops and generation of parallel code, as will be
seen in the rest of this paper.

We now explain our tiled code generation scheme for any num-
ber of domains (with possibly different dimensionalities) under
(domain-wise) scattering functions. We initially use fixed tile sizes
in our framework; we plan to extend it to use parametric tiling by
incorporating [39, 27] to make it convenient for iterative/empirical
optimization.

5.1 Tiles under a transformation
Our approach to tiling is to specify a modified higher dimensional
domain and specify transformations for what would be the tile
space loops in the transformed space. Consider a very simple ex-
ample: a two-dimensional loop nest with original iterators: i and j.
Let the transformation found be c1 = i, and c2 = i+j, with c1 and
c2 both found in Step 8 of Algorithm 1; hence, they can be blocked
leading to 2-d tiles. We would like to obtain target code that is tiled
rectangularly along c1 and c2. The domain supplied to the code
generator is a higher dimensional domain with the tile shape con-
straints like that proposed by Ancourt and Irigoin [5]. The tile space
and intra tile loop scattering functions are specified as follows:

Domain Scattering
0 ≤ i ≤ N − 1 c1T = iT

0 ≤ j ≤ N − 1 c2T = iT + jT

0 ≤ i− 32iT ≤ 31 c1 = i

0 ≤ (i + j)− 32(iT + jT) ≤ 31 c2 = i + j

(c1T, c2T, c1, c2) ← scatter(iT, jT, i, j)

c1T and c2T are the tile space loops in the transformed space.
This approach can seamlessly tile across statements of arbitrary di-
mensionalities, irrespective of original nesting structure, as long as
the c′is have dependences (inter-stmt and intra-stmt) in the forward

5 2008/3/2

Algorithm 2 Tiling for multiple stmts under transformations

INPUT Statement-wise hyperplanes: φi
S , φ

i+1
S , . . . , φi+k−1

S ex-
pressed as affine functions of corresponding original it-
erators ~iS to tile; Original domains: DS ; Tile sizes:
τi, τi+1, . . . , τi+k−1

1: /* Update the domains */
2: for each statement S do
3: for each φj

S = f j(~iS) + f j
0 do

4: Increase the domain (DS) dimensionality by creating su-
pernodes for all original iterators that appear in φj

S

5: Let the supernode iterators be ~iT
6: Add the following two constraints to DS :

τj ∗ f j(~iTS) ≤ f j(~iS) + f j
0 ≤ τj ∗ f j(~iTS) + τj − 1

7: end for
8: end for
9: /* Update the transformation matrices */

10: for each statement S do
11: Add k new rows to the transformation of S at level i
12: Add as many columns as the number of supernodes added

DS in Step 4
13: for each φj

S = f j(~iS), j = i, . . . , i+ k − 1 do
14: Add a supernode for this hyperplane: φT j

S = f j(~iTS)
15: end for
16: end for
OUTPUT Updated domains (DS) and transformations/scatterings

direction – this is guaranteed and detected by the transformation
framework (Step 8 of Algorithm 1).

With this, we formally state the algorithm to modify the orig-
inal domain and updating the statement-wise transformations (Al-
gorithm 2). The (higher-dimensional) tile space loops are referred
to as supernodes in the description. For example, in the exam-
ple above, iT, jT were supernodes in the original domain, while
c1T, c2T are supernodes in the transformed space. Note that the
transformation for each statement by Algo. 1 has the same number
of rows.

THEOREM 1. The set of scattering supernodes, φT i
S , φT i+1

S , . . . ,
φT i+k−1

S obtained from Algorithm 2 satisfy the tiling legality con-
dition (4)

The proof is straightforward. Since, φj
S , i ≤ j ≤ i + k − 1

satisfy (4) and since the supernodes step through an aggregation
of parallel hyperplane instances, dependences continue to be in
the forward direction for the scattering supernode dimensions too.
This holds true for both intra and inter-statement dependences.
φT j

S1
, φT j

S2
, . . . , φT j

Sn
thus represent a common supernode di-

mension in the transformed space with all affine dependences in
its forward direction or null-space.2

5.2 Example: 3-d tiles for LU
The transformation obtained for LU (Fig. 10(a)) is:

S1 :

"
c1
c2
c3

#
=

"
1 0
0 1
1 0

»
k
j

–
S2 :

"
c1
c2
c3

#
=

"
1 0 0
0 0 1
0 1 0

"
k
i
j

#
Hyperplanes c1, c2 and c3 are identified as belonging to one

tilable band. Hence, 3-d tiles for LU decomposition from the above
transformation are specified as shown in Fig. 3.

Fig. 5.2 shows tiles for imperfectly nested 1-d Jacobi. Note that
tiling it requires a relative shift of S2 by one and skewing the space
loops skewing by a factor of two (as opposed to skewing by a factor
of one that is required for the space memory-inefficient perfectly
nested version).

Domains

S1 S2

0 ≤ k ≤ N − 1 0 ≤ k ≤ N − 1

k + 1 ≤ j ≤ N − 1 k + 1 ≤ i ≤ N − 1

k + 1 ≤ j ≤ N − 1

0 ≤ k − 32kT ≤ 31 0 ≤ k − 32kT ≤ 31

0 ≤ j − 32jT ≤ 31 0 ≤ i− 32iT ≤ 31

0 ≤ j − 32jT ≤ 31

Scatterings

S1 S2
c1T = kT c1T = kT

c2T = jT c2T = jT

c3T = kT c3T = iT

c1 = k c1 = k

c2 = j c2 = j

c3 = k c3 = i

(c1T, c2T, c3T, c1, c2, c3) (c1T, c2T, c3T, c1, c2, c3)

← scatter(kT, jT, k, j) ← scatter(kT, jT, iT, k, j, i)

Figure 3. Tiled specification for LU

5.3 Tiling multiple times
The same tiling hyperplanes can be used to tile multiple times (The-
orem 1) if one wishes to tile for registers, L1, L2, and for par-
allelism, and the legality of the same is guaranteed by the trans-
formation framework. The scattering functions are duplicated for
each such level as it was done for one level. An example is shown
in Fig. 14(e) for a matrix-vector transpose kernel tiled for L1 and
L2 caches. However, for parallel code generation, some additional
treatment is needed. This is discussed shortly.

5.4 Parallel code generation
Once the algorithm in Sec. 5.1 is applied, outer parallel or inner
parallel loops can be readily marked parallel (for example with
openmp pragmas). However, unlike scheduling-based approaches,
since we find tiling hyperplanes and the outer ones are used as
space, there may not be a single loop in the transformed space that
carries all dependences (even if the code admits a one dimensional
schedule). Hence, when one or more of the space loops carries a
(forward) dependence (also called doacross loops), care has to be
taken while generating parallel code. Recall, the framework makes
sure that the dependence is in the forward direction. Pipelined
parallelism exists in such cases, and our approach to coarse-grained
(tiled) shared memory parallel code generation is as described in
Fig. 3.

Once the technique described in the previous section is applied
to generate the tile space scatterings and intra-tiled loops – depen-
dence components are all forward and non-negative for any band
of tile space loops. Hence, the sum φ1 + φ2 + · · · + φp+1 carries
all affine dependences carried by φ1, φ2, . . . , φp+1, and gives a
legal wavefront of tiles. This tile space transformation thus obtains
a valid schedule of tiles and preserves tile shapes. Also, not that all
degrees of pipelined parallelism need not be exploited. In practice,
we observe that a few are sufficient. Moreover, performing such a
unimodular transformation to the tile space introduces very less ad-
ditional code complexity (modulo’s do not appear in the generated
code due to unimodularity).

Note that communication still happens along boundaries of φ1,
φ2, . . . , φs, and the same old hyperplanes φ1, φ2, . . . , φk are used

6 2008/3/2

for (t=0; t<T; t++) {
for (i=2; i<N−1; i++) {

b[i] = 0.333∗(a[i−1] + a[i]
+ a[i +1]);

}
for (j=2; j<N−1; j++){

a[j] = b[j];
}

}
(a) Original sequential code

#define S1(t , i) {b[i]=(0.333∗(a[1+i]+a[i]+a[i−1]);}
#define S2(t , j) {a[j]=b[j];}

for (c1=0;c1<=T−1;c1++) {
S1(c1 ,2);
for (c2=2∗c1+3;c2<=2∗c1+N−2;c2++) {

S1(c1,−2∗c1+c2);
S2(c1,−2∗c1+c2−1);
}
S2(c1,N−2);
}
(b) Transformed (without tiling)

S1

S2
c1

c2

(d) Tiles under a
transformation

"
1 0
2 1
0 0

»
t
i

–
+

"
0
0
0

#

241 0
2 1
0 0

35 »
t
j

–
+

240
1
1

35

#define S1(t , i) {b[i]=((double)(333))/1000∗(a[1+i]+a[i]+a[i−1]);}
#define S2(t , j) {a[j]=b[j];}
/∗ Generated by CLooG v0.14.1 64 bits in 0.02s . ∗/
for (c1=0;c1<=floord(T−1,256);c1++) {

for (c2=max(0,ceild(512∗c1−253,256));
c2<=min(floord(N+2∗T−3,256),floord(512∗c1+N+509,256));c2++){

if ((c1 <= floord(256∗c2−N+1,512)) && (c2 >= ceild(N−1,256))) {
if ((−N+1)%2 == 0) {

S2(c1,−2∗c1+c2,(256∗c2−N+1)/2,N−2) ;
}
}
}
for (c3=max(max(ceild(256∗c2−N+2,2),256∗c1),0);

c3<=min(min(T−1,256∗c1+255),floord(256∗c2−N+256,2));c3++){
for (c4=256∗c2;c4<=2∗c3+N−2;c4++) {

S1(c1,−2∗c1+c2,c3,−2∗c3+c4) ;
S2(c1,−2∗c1+c2,c3,−2∗c3+c4−1) ;
}
S2(c1,−2∗c1+c2,c3,N−2) ;
}
for (c3=max(max(0,256∗c1),ceild(256∗c2−N+257,2));

c3<=min(min(256∗c1+255,T−1),128∗c2−2);c3++){
for (c4=256∗c2;c4<=256∗c2+255;c4++) {

S1(c1,−2∗c1+c2,c3,−2∗c3+c4) ;
S2(c1,−2∗c1+c2,c3,−2∗c3+c4−1) ;
}
}
for (c3=max(max(128∗c2−1,0),256∗c1);

c3<=min(min(128∗c2+126,256∗c1+255),T−1);c3++){
S1(c1,−2∗c1+c2,c3) ;
for (c4=2∗c3+3;c4<=256∗c2+255;c4++) {

S1(c1,−2∗c1+c2,c3,−2∗c3+c4) ;
S2(c1,−2∗c1+c2,c3,−2∗c3+c4−1) ;
}
}
}
}

(c) Optimized with tiling (tile size 256), cloog −f 3 −l 5

S1 S2 S1 S22664
c1
c2
c3
c4
c5

3775 =

2664
1 0 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 0 0 0

3775
2664

tT
iT
t
i
1

3775
2664

1 0 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 1
0 0 0 0 1

3775
2664

tT
jT
t
j
1

3775
2664

c1
c2

c3
c4
c5

3775 =

2664
3 1 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 0 0 0

3775
2664

tT
iT
t
i
1

3775
2664

3 1 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 1
0 0 0 0 1

3775
2664

tT
jT
t
j
1

3775
(e) Transformation for generation of locally tiled code in (c) (f) Transformation for generation of parallelized + locally tiled code

Figure 4. Tiling imperfectly nested 1-d Jacobi

Algorithm 3 Tiled pipelined parallel code generation
INPUT Given that Algorithm 2 has been applied, a set of k

(statement-wise) supernodes in the transformed space belong-
ing to a tilable band: φT 1

S , φT
2
S , . . . , φT

k
S

1: To extract m (< k) degrees of pipelined parallelism:
2: /* Update transformation matrices */
3: for each statement S do
4: Perform the following unimodular transformation on only

the scattering supernodes: φT 1 → φT 1 + φT 2 + · · · +
φTm+1

5: Mark φT 2, φT 3, . . . , φTm+1 as parallel
6: Leave φT 1, φTm+2, . . . , φT k as sequential
7: Place a barrier at the end of the tile schedule loop, φT 1 +

φT 2 + · · ·+ φTm+1

8: Intra-tile loops (and thus the tile shapes) are untouched
9: end for

OUTPUT Updated transformation matrices/scatterings

to scan a tile preserving the benefits of the optimization performed
by the bounding approach. Fig. 5 shows a simple example with
tiling hyperplanes (1,0) and (0,1). In contrast, obtaining an affine
(fine-grained) schedule and then enabling time tiling would lead to
shapes different from above our approach. Our technique resembles
that of [31] where (permutable) time partitions are summed up
for maximal dependence dismissal; however, we do this in the
tile space as opposed to for finding a schedule that provides the
maximum degree of parallelism. Fig. 10 shows the parallel code
generated for LU.

The above scheme allows clean generation of parallel code
without any syntactic treatment. Alternate ways of generating
pipelined parallel code exist that insert special post/notify or wait-
/signal directives to handle dependences in the space loops; how-
ever, these require syntactic treatment. In practice, a few degrees
of pipelined parallelism may be sufficient. Using several degrees
could introduce code complexity with diminishing return.

7 2008/3/2

for (i=1; i<N; i++)
for (j=1; j<N; j++)

a[i , j] = a[i−1,j] + a[i , j−1];

(a) Original (sequential) code

for (c1=−1;c1<=floord(N−1,16);c1++)
#pragma omp parallel for shared(c1,a) private (c2,c3,c4)

for (c2=max(ceild(32∗c1−N+1,32),0);
c2<=min(floord(16∗c1+15,16),floord(N−1,32));c2++)

for (c3=max(1,32∗c2);c3<=min(32∗c2+31,N−1); c3++)
for (c4=max(1,32∗c1−32∗c2);

c4<=min(N−1,32∗c1−32∗c2+31); c4++)
S1(c2,c1−c2,c3,c4) ;

/∗ barrier happens only here (in tile space) ∗/

(b) Coarse-grained parallel barrier after a tile-space transformation

Figure 5. Shared memory parallel code generation example

5.5 Preventing code expansion in tile space
The overhead of floor and ceil operations as well as conditionals in
the tile-space loops (at the outer levels) is insignificant. Hence, we
would like to have compact code at the outer level while allowing
code expansion in the intra-tile loops to decrease control complex-
ity. This improves performance while keeping the code size under
control.

Table 5.5 shows the sensitivity in performance for a 1-d stencil
code shown in Fig. 4. Using the default options with tiling speci-
fied as described leads to significant code expansion since the trans-
formed space we are tiling is a shifted and skewed space. Prevent-
ing any code expansion at all leads to an if condition in the inner-
most loop, resulting in very low performance. However, optimizing
only the intra-tile loops for control is very effective. Also, it also
avoids large numbers in the intermediate operations performed by
code generators, that could possibly lead to PolyLib exceptions for
large tile sizes or deep loop nest tiling.

CLooG Code sizeCodegenPerformance Speedup
(lines) time of code base: icc -fast

Full code ex-
pansion

2226 1.84s 2.57s 2.7x

Only intra-tile
expansion

40 0.04s 1.6s 4.3x

No code ex-
pansion

15 0.01s 17.6s 0.39x

Table 1. Performance sensitivity of L1-tiled imperfectly nested
stencil code with codegen options: N = 106, T = 1000,
tSize=2048x2048

The described tile code generation schemes have been fully
implemented into the system to generate compilable parallel-cum-
locally tiled code.

6. Experimental evaluation
In this section, we evaluate the performance of the transformed
codes generated by our implementation.

Comparison with previous approaches
Several previous papers on automatic parallelization have pre-
sented experimental results. However, significant jumps were made
in the process of going from the compiler framework to evaluation.
A direct comparison is difficult since the implementations of those

approaches (with the exception of Griebl’s) is not available; fur-
ther most previously presented studies did not use an end-to-end
automatic implementation, but performed manual code generation
based on solutions generated by a transformation framework, or
by picking solutions from a large space of solutions characterized.
In addition, a common missing link in the chain was the lack of a
powerful and efficient code generator like CLooG, which has only
recently become available.

In assessing the effectiveness of our system, we compare per-
formance of the generated code with that generated by produc-
tion compilers, as well as undertaking a best-effort fair comparison
with previously presented approaches from the research commu-
nity. The comparison with other approaches from the literature is
in some cases infeasible because there is insufficient information
for us to reconstruct a complete transformation (e.g. [4]). For oth-
ers [31, 30, 29], a complete description of the algorithm allows
us to manually construct the transformation; but since we do not
have access to an implementation that can be run to determine the
transformation matrices, we have not attempted an exhaustive com-
parison for all the cases.

The current state-of-the-art with respect to optimizing code has
been semi-automatic approaches that require an expert to manu-
ally guide transformations. As for scheduling-based approaches,
the LooPo system [2] includes implementations of various polyhe-
dral scheduling techniques including Feautrier’s multi-dimensional
time scheduler which can be coupled with Griebl’s space and FCO
time tiling techniques. We thus provide comparison for some num-
ber of cases with the state of the art – (1) Griebl’s approach that uses
Feautrier’s schedules along with Forward-Communication-Only al-
locations to enable time tiling [20], and (2) Lim/Lam’s affine parti-
tioning [31, 30, 29]. For both of these previous approaches, the in-
put code was run through our system and the transformations were
forced to be what those approaches would have generated. Hence,
these techniques get all benefits of CLooG and our fixed tile size
code generation scheme.

Experimental setup. The results were taken on a quad-core Intel
Core 2 Quad Q6600 CPU clocked at 2.4 GHz (1066 MHz FSB)
with a 32 KB L1 D cache, 8MB of L2 cache (4MB shared per core
pair), and 2 GB of DDR2-667 RAM, running Linux kernel version
2.6.22 (x86-64). ICC 10.0 is the primary compiler used to compile
the base codes as well as the source-to-source transformed codes;
it was run with “-fast -funroll-loops” (-openmp for parallelized
code); the ’-fast’ option turns on -O3, -ipo, -static, -no-prec-div on
x86-64 processors – these options also enable auto-vectorization
in icc. Whenever gcc is used, it is GCC 4.1.1 with options “-
O3 -funroll-loops” (-fopenmp for parallelized code). The OpenMP
implementation of icc supports nested parallelism – this is needed
for exploiting multiple degrees of pipelined parallelism when they
exist. For easier presentation and analysis, local tiling for most
codes is done for the L1 cache, with equal tile sizes used along all
dimensions; they were set empirically (without any comprehensive
search) and agreed with the cache size quite well. In all cases, the
optimized code for our framework was obtained automatically in
a turn-key fashion from the input source code. When comparing
with approaches of Lim/Lam and Griebl, the best tile sizes for each
approach were almost always the same.

Our transformation framework itself runs quite fast – within a
fraction of a second for all benchmarks considered. Along with
code generation time, the entire source-to-source transformation
does not take more than a few seconds in any of the cases. . The
OpenMP “parallel for” directive(s) achieves the distribution of the
blocks of the tile space loop(s) among processor cores. Hence,
execution on each core is a sequence of L1 or L2 tiles. No explicit
tile sizes are chosen for the time loops at the processor level since
the L2 time tile sizes are already quite large – hence, L1 or L2 is

8 2008/3/2

the last level at which time tiling is done. Analysis is more detailed
for the first example which is simple.

6.1 Imperfectly nested stencil code
The original code, code optimized by our system without tiling,
and optimized tiled code are shown in Fig. 4. The performance
of the optimized codes are shown in Fig. 6.1. Speedup’s ranging
from 4x to 7x are obtained for single core execution due to local-
ity enhancement. The best tile size proved to be 2048 (2*2048*8
= 32KB same as L1 D cache size). The parallel speedups are com-
pared with Lim/Lam’s technique (Algorithm A in [31]) which finds
(2,-1), (3,-1) as the maximally independent time partitions. These
do minimize the order of synchronization and maximize the degree
of parallelism (O(N)), but any legal independent time partitions
would have one degree of pipeline parallelism. With scheduling-
based techniques, the schedules found by LooPo’s Feautrier sched-
uler are 2t and 2t + 1 for S1 and S2, respectively (note that this
does not imply fusion). An FCO allocation here is given by 2t+ i,
and this enables time tiling. Just space tiling in this case does not
expose sufficient parallelism granularity and an inner space paral-
lelized code has very poor performance. This is the case with icc’s
auto parallelizer; hence, we just show the sequential run time for icc
in this case. Fig. 7 shows L1 cache misses with each approach for a
problem size that completely fits in the L2 cache. Though Griebl’s
technique incurs considerably lesser cache misses than Lim-Lam’s,
the schedule introduces non-unimodularity leading to modulo com-
parison in inner loops; it is possible to remove the modulo through
an advanced technique using non-unit strides [44] that CLooG does
not implement yet. Our code incurs two times lesser number of
cache misses than Griebl’s and nearly 50 times lesser cache misses
than Lim/Lam’s scheme. Note that both Lim-Lam’s and our trans-
formation in this case are unimodular and hence have the same
number of points in a tile for a given tile size. Comparison with gcc
is provided in Fig. 6(d) (gcc used to compile all codes) to demon-
strate that the relative benefits of our source-to-source system will
be available when used in conjunction with any sequential com-
piler.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

Four coresSequential

L
1

 c
ac

h
e

m
is

se
s

(l
o

g
 s

ca
le

)

pluto
Griebl

Lim/Lam
icc

Figure 7. 1-d Jacobi: L1 tiling: N = 105, T = 10000

6.2 Finite Difference Time Domain electromagnetic kernel
FDTD code is as shown in Fig. 8. ex, ey represent electric fields
in x and y directions, while hz is the magnetic field. The code
has four statements - three of them 3-d and one 2-d and are nested
imperfectly. Our transformation framework finds three tiling hy-
perplanes (all in one band - fully permutable). The transformation
represent a combination of shifting, fusion and time skewing. Par-
allel performance results shown are for nx = ny = 2000 and

for (t=0; t<tmax; t++) {
for (j=0; j<ny; j++)

ey [0][j] = exp(−t1);

for (i=1; i<nx; i++)
for (j=0; j<ny; j++)

ey[i][j] = ey[i][j] −
coeff1∗(hz[i][j]−hz[i−1][j]);

for (i=0; i<nx; i++)
for (j=1; j<ny; j++)

ex[i][j] = ex[i][j]
− coeff1∗(hz[i][j]−hz[i][j−1]);

for (i=0; i<nx; i++)
for (j=0; j<ny; j++)

hz[i][j] = hz[i][j] −
coeff2∗(ex[i][j+1]−ex[i][j]

+ey[i+1][j]−ey[i][j]);
}

24 1 0 0
1 1 0
1 0 0

35
24 1 0 0 0

1 0 1 0
1 1 0 0

35

24 1 0 0 0
1 0 1 0
1 1 0 0

35
24 1 0 0 0

1 0 1 1
1 1 0 1

35

Figure 8. 2-d Finite Difference Time Domain code

tmax = 500. L1 and L2 tile sizes of 32 and 256 were used for each
of the three dimensions. Results are shown in Fig. 9. With polyhe-
dral scheduling-based techniques, the outer loop is identified as the
sequential schedule loop and the inner loops are all parallel – this
is also the transformation applied by icc’s auto parallelizer. This
does not fuse the inner loops, and synchronization has to be done
every time step. With our approach, all three dimensions are tiled
(due to a relative shift followed by a skew), the loops are fused,
and each processor executes a 3-d tile (which itself is a sequence
of 3-d L2 tiles) before synchronization. Multi-core results exhibit
highly super-linear speedups. We have two degrees of pipelined
parallelism here – to exploit both, a tile space wavefront of (1,1,1)
is needed; however, to exploit one, we just need a wavefront of
(1,1,0) (Sec. 5.4 leading to much simpler code. Note that two de-
grees of parallelism are only meaningful when the number of cores
is not prime. The slight drop in performance for N = 4000 for the
sequential case is due to sub-optimal L2 cache tile sizes.

6.3 LU decomposition
Three tiling hyperplanes are found – all belonging to a single band
of permutable loops. The first statement though lower-dimensional
is naturally sunk into a a 3-dimensional fully permutable space.
Thus, there are two degrees of pipelined parallelism. Icc is unable
to parallelize such code. Exploiting both degrees of pipelined paral-
lelism requires a tile wavefront of (1,1,1) while exploiting only one
requires (1,1,0). The code for the latter is likely to be less complex,
however, has a lesser computation to communication ratio. Perfor-
mance results on the quad core machine are shown in Fig. 11. The
GFLOPs is computed using an operation count of 2N3

3
. Tiling was

done for both L1 and L2 caches. An L1 tile size of 16x16x300 (kij)
and an L2 tile size of 256x256x1200 was used. With scheduling-
based approaches, 2k and 2k + 1 are the schedules found for S1
and S2 respectively. In this case, time tiling is readily enabled by
choosing a simple orthogonal allocation (since they have positive
non-uniform dependence components).

6.4 Matrix vector transpose
The MVT kernel is a sequence of two matrix vector transposes as
shown in Fig. 14 (a). It is encountered in a time loop in Biconjugate
gradient. The only inter-statement dependence is a non-uniform
read/input on matrix A. The cost function bounding (6) leads to

9 2008/3/2

8x

7x

6x

5x

4x

3x

2x

1x

4M2M1M 500000

S
p
e
e
d
u
p
 o

v
e
r

n
a
ti
v
e
 c

o
m

p
ile

r

N (space extent)

pluto
Lim/Lam

Scheduling-based (time tiling)
icc -fast

(a) Single core: T = 104

 0

 2

 4

 6

 8

 10

 4 3 2 1

G
F

L
o

P
s

Number of cores

pluto (tiled parallel)
Lim/Lam affine partitioning

Scheduling-based (time tiling)
icc -parallel -fast

(b) Multi-core parallel: N = 106, T = 105

8x

7x

6x

5x

4x

3x

2x

1x

4M2M1M 500000

S
p
e
e
d
u
p
 o

v
e
r

G
C

C
 -

O
3

N (space extent)

pluto
Lim/Lam

Scheduling-based (time tiling)
gcc -O3

(c) Single core (with gcc): T = 104

 0

 2

 4

 6

 8

 10

 4 3 2 1

G
F

L
o

P
s

Number of cores

pluto (tiled parallel)
Lim/Lam affine partitioning

Scheduling-based (time tiling)
gcc -O3

(d) Multi-core parallel (with gcc): N = 106, T = 105

Figure 6. Imperfectly nested 1-d Jacobi stencil

6x

5x

4x

3x

2x

1x

 4000 2000 1000 500

S
p
e
e
d
u
p
 o

v
e
r

n
a
ti
v
e
 c

o
m

p
ile

r

N (problem size)

pluto
icc -fast / Scheduling-based (space tiling)

Scheduling-based (time tiling)

(a) Single core: T=500

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 3 2 1

G
F

L
o

P
s

Number of cores

pluto (1-d pipelined parallel)
pluto 2-d pipelined parallel

Scheduling-based (time tiling)
icc -parallel -fast / scheduling-based space tiling

(b) Parallel: nx = ny = 2000, tmax = 500

Figure 9. 2-d FDTD

minimization of this dependence distance by fusion of the first MV
with the permuted version of the second MV (note that φ(~t)−φ(~s)
for this dependence becomes 0 for both c1 and c2). This however
leads to loss of synchronization-free parallelism, since, in the fused
form, each loop carries a dependence. However, since these de-

pendences are in the forward direction, the parallel code is gener-
ated corresponding to one degree of pipelined parallelism. Existing
techniques, even if they consider input dependences, cannot auto-
matically fuse the first MV with the permuted version of the second
MV. Note that each of the matrix vector multiplies is one strongly

10 2008/3/2

for (k=0; k<N; k++)
for (j=k+1; j<N; j++)

a[k][j] = a[k][j]/ a[k][k];

for (i=k+1; i<N; i++)
for (j=k+1; j<N; j++)

a[i][j] = a[i][j]−a[i][k]∗a[k][j];

(a) Original code

S1 2666664
c1
c2

c3
c4
c5
c6

3777775 =

2666664
1 1 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

3777775
264kT

jT
k
j

375
S22666664

c1
c2

c3
c4
c5
c6

3777775 =

2666664
1 0 1 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

3777775

2666664
kT
iT
jT
k
i
j

3777775
c2 is marked omp parallel

(b) 1-d pipelined parallel

#define S1(zT0,zT1,k, j) {a[k][j]=a[k][j]/ a[k][k];}
#define S2(zT0,zT1,zT2,k, i , j) {a[i][j]=a[i][j]−a[i][k]∗a[k][j];}

/∗ Generated by CLooG v0.14.1 64 bits in 0.02s . ∗/
for (c1=−1;c1<=floord(2∗N−3,32);c1++)

lb = max(max(ceild(16∗c1−15,32),ceild(32∗c1−N+2,32)),0);
ub = min(floord(32∗c1+31,32), floord (N−1,32));

#pragma omp parallel for shared(c1, lb ,ub,a) private (c2,c3,c4,c5,c6, i , j ,k, l ,m,n)
for (c2=lb;c2<=ub;c2++)

for (c3=max(ceild(16∗c1−16∗c2−465,496),ceild(16∗c1−16∗c2−15,16));c3<=floord(N−1,32);c3++)
if (c1 == c2+c3) {

for (c4=max(0,32∗c3);c4<=min(min(32∗c3+30,N−2),32∗c2+30);c4++)
for (c5=max(32∗c2,c4+1);c5<=min(N−1,32∗c2+31);c5++)

S1(c1−c2,c2,c4,c5) ;
for (c6=c4+1;c6<=min(32∗c3+31,N−1);c6++)

S2(c1−c2,c1−c2,c2,c4,c6,c5) ;
}
for (c4=max(0,32∗c1−32∗c2);c4<=min(min(32∗c1−32∗c2+31,32∗c3−1),32∗c2+30);c4++)

for (c5=max(32∗c2,c4+1);c5<=min(N−1,32∗c2+31);c5++)
for (c6=32∗c3;c6<=min(32∗c3+31,N−1);c6++)

S2(c1−c2,c3,c2,c4,c6,c5) ;

if ((−c1 == −c2−c3) && (c1 <= min(floord(32∗c2+N−33,32),floord(64∗c2−1,32)))) {
for (c5=max(32∗c1−32∗c2+32,32∗c2);c5<=min(32∗c2+31,N−1);c5++)

S1(c1−c2,c2,32∗c1−32∗c2+31,c5);
}

(c) LU (1−d pipelined parallel + L1 tiled) (tile size 32) cloog −f 4 −l 7

Figure 10. LU decomposition (3-d tiling)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

8K4K2K1K

G
F

L
O

P
s

Problem size

pluto (tiled)
Scheduling-based (time tiling)

icc -parallel -fast

(a) Single core (L1 and L2 tiled)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 3 2 1

G
F

L
O

P
s

Number of cores

pluto (2-d pipe parallel+tiled)
pluto 1-d pipeline parallel

Scheduling-based (time tiling)
icc -parallel -fast

(b) On a quad core: N=8000

Figure 11. LU performance

connected component. Hence, previous approaches are only able to
extract synchronization-free parallelism from each of the MVs sep-
arately with a barrier between the two, giving up reuse on array A.
Though Lim/Lam’s approach does consider optimization between
two adjacent SCCs through a near-neighbor constraint [30], it is
a set-and-test approach and its automatability is not clear from the
description. Fig. 12 shows the results for a problem sizeN = 8000.
Note that both the optimized versions were tiled for the L1 cache.
Fusion of ij with ij does not exploit reuse on matrix A, whereas the
code that our tool comes up with performs best – it fuses ij with
ji, tiles it and exploits a degree of pipelined parallelism. Results
are also shown for this case with further syntactic transformations
performed on our code to serve as a preview.

6.5 3-D Gauss-Seidel successive over relaxation
The Gauss-Seidel computation allows tiling of all three dimensions
after skewing. The transformation our tool obtains skews each of
the two space dimensions by a factor of one and two, respectively,
w.r.t time. Two degrees of pipelined parallelism can be extracted
subsequently, and all three dimensions can be tiled. Fig. 15 shows
the performance improvement achieved with 2-d pipelined parallel
space as well as 1-d: the latter is better in practice mainly due to
simpler code. Again, icc is unable to parallelize such code due
to a simple dependence-level based parallel loop detection. The
GFLoPs performance is on the lower side when compared to other

11 2008/3/2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 3 2 1

G
F

L
O

P
s

Number of cores

pluto (+ syntactic post-processing)
pluto (1-d pipelined parallel, fused (ij/ji))

Scheduling-based, Lim-Lam
fused (ij/ij), i parallel

gcc -O3

Figure 12. MVT performance on a quad core: N=8000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 4 3 2 1

T
im

e
(s

)

Number of cores

pluto (1-d pipelined parallel, fused))
Scheduling-based, Lim-Lam

icc -fast -parallel

Figure 13. Advect3d performance on a quad core: nx=ny=nz=300

for (i=0; i<N; i++)
for (j=0; j<N; j++)

x1[i] = x1[i] + a[i][j]∗y 1[j];

for (i=0; i<N; i++)
for (j=0; j<N; j++)

x2[i] = x2[i] + a[j][i]∗y 2[j];
(a) Original code

for (c1=0;c1<=N−1;c1++)
for (c2=0;c2<=N−1;c2++)

x1[c1] = x1[c1] + a[c1][c2]∗y 1[c2];
x2[c2] = x2[c2] + a[c1][c2]∗y 2[c1];

(b) Transformed

S1 S2»
c1
c2

–
=

»
1 0
0 1

– »
i
j

– »
0 1
1 0

– »
i
j

–
Figure 14. Matrix vector transpose

schemes is due to the lack of auto-vectorization due to a unique
dependence structure for this code.

6.6 Advect3d
Advect3d is a weather-modeling kernel (considered by Qasem et
al. [36] for evaulation of their model-driven empirical search ap-
proach) that is a sequence of eight 3-d nested loops with a producer-
consumer relationship. All arrays are 3-dimensional making the
problem memory-bandwidth bound. Though there is a time loop
around the eight statements and our tool was able to time tile it, gen-
erating 4-d time tiled code became infeasible in this case. Hence, no
tiling was done with respect to the outer loop. Fusion is not legal
unless constants shifts are applied along various dimensions. Our
framework is able to fuse all loop nests (applying 6 shifts) and ex-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 4 3 2 1

G
F

L
O

P
s

Number of cores

pluto (1-d pipe parallel)
pluto (2-d pipeline parallel)

icc -parallel -fast

Figure 15. 3-D Gauss Seidel on a quad core: Nx = Ny = 2000;
T=1000

tract pipelined parallelism (since fusion introduces dependences).
Existing approaches cannot enable fusion across such a long se-
quence SCCs. Results are shown in Fig. 13.

6.7 Analysis.
All experiments show very high speedups with our approach, both
for single thread and multicore parallel execution. The performance
improvement is very significant over production compilers as well
as state-of-the-art from the research community. Speedup ranging
from 2x to 5x are obtained over previous automatic transformation
approaches in most cases, while an order of 10x improvement
is obtained over the best native production compilers. Linear to
super-linear speedups are seen for almost all compute-intensive
kernels considered here due to optimization for locality as well as
parallelism. To the best of our knowledge, such speedup’s have not
been reported by any automatic compiler framework as general as
ours.

Hand-parallelization of many of the examples we considered
here is extremely tedious and not feasible in some cases, especially
when time skewed code has to be pipelined parallelized or imper-
fectly nested loops are involved; this coupled by the fact that the
code has to be tiled for at least for one level of local cache, and a
2-d pipelined parallel schedule of 3-d tiles is to be obtained makes
manual optimization very complex. The performance of the opti-
mized stencil codes through our system is already in the range of
that of hand optimized versions reported in [24]. Also, for many
of the codes, a simple parallelization strategy of exploiting inner
parallelism and leaving the outer loop sequential (i.e., no time
tiling) hardly yields any parallel speedup (Fig. 9(b), Fig. 6(b)).
Scheduling-based approaches that do not perform time tiling, or
production compilers’ auto-parallelizers come up with such trans-
formations.

As mentioned before, tile sizes were not optimized through any
extensive search or a model. In addition, studying the interplay
of the transformed codes with vectorization and prefetching is
crucial. Using cost models for effective tile size determination, with
some amount of empirical search, in a manner decoupled with the
pure model-driven scheme presented is a reasonably guaranteed
approach to take this performance closer to the machine peak.
Integration of these techniques is in progress. For simpler codes
like matrix-matrix multiplication, this latter phase of optimization,
though very simple and straightforward when compared to the rest
of our system, brings most of the benefits.

12 2008/3/2

7. Related work
Iteration space tiling [23, 48, 38] is a standard approach for ag-
gregating a set of loop iterations into tiles, with each tile being exe-
cuted atomically. It is well known that it can improve register reuse,
locality and optimize communication. Researchers have considered
the problem of selecting tile shape and size to minimize communi-
cation, improve locality or minimize finish time [41, 38, 10, 49, 22,
40]. But these studies were restricted to perfectly nested loops with
uniform dependences or had other restrictions that limited their ap-
plicability to very simple codes. Some specialized works [43, 50]
also exist on tiling a restricted class of imperfectly nested loops.

Loop parallelization has been studied extensively. The reader
is referred to the survey of Boulet et al.[11] for a detailed sum-
mary of older parallelization algorithms which accepted restricted
input and/or were based on weaker dependence abstractions than
exact polyhedral dependences. Overall, automatic parallelization
efforts in the polyhedral model broadly fall in two classes: (1)
scheduling/allocation-based, and (2) partitioning-based. The works
of Feautrier [16, 17], Darte/Vivien [13] and Griebl [20] (to some
extent) fall into the former class, while Lim/Lam’s approach falls
into the second class. We now compare with approaches from both
classes.

Pure scheduling-based approaches are geared towards find-
ing minimum latency schedules or maximum fine-grained paral-
lelism, as opposed to tilability for coarse-grained parallelization
with minimized communication and improved locality. Clearly, on
most modern parallel architectures, at least one level of coarse-
grained parallelism is desired as communication/synchronization
costs matter, and so is improving locality. Several works are based
on such schedules [7, 20, 12, 34].

Griebl [20] presents an integrated framework for optimizing lo-
cality and parallelism with space and time tiling, by treating tiling
as a post-processing step after a schedule is found. When sched-
ules are used, the inner parallel (space) loops can be readily tiled.
In addition, if coarser granularity of parallelism is desired, Griebl
finds an allocation that satisfies the forward communication-only
constraint: this enables time tiling. As argued in [8] from a theo-
retical standpoint and as demonstrated here through experiments,
using schedules as one of the loops is not best suited for communi-
cation and locality optimization as well as target code complexity.
Also, loop fusion (both within an SCC or across SCCs) is not ad-
dressed, since a schedule specifying maximum parallelism need not
interleave operations of different statements.

Lim et al. [31, 30] proposed an affine partitioning framework
that identifies outer parallel loops (communication-free space par-
titions) and permutable loops (time partitions) to maximize the
degree of parallelism and minimize the order of synchronization.
They employ the same machinery for blocking [29]. Several (in-
finitely many) solutions equivalent in terms of the criterion they
optimize for result from their algorithm, and these significantly dif-
fer in performance. No metric is provided to differentiate between
these solutions as maximally independent solutions without a cost
function are sought. As shown through this work, without a cost
function, solutions obtained even for simple input may be unsat-
isfactory with respect to communication cost, locality, and target
code complexity. Also, tiled and parallel code generation for the
general case are not discussed. Our approach addresses all of these
aspects.

Our approach is closer to the latter class of partitioning-based
approaches. However, to the best of our knowledge, it is the first
to explicitly model tiling in the transformation framework thereby
enabling it to find good tiling hyperplanes for parallelism and
locality. The view of tiling hyperplanes on the original domain
is preserved till code generation. At the same time, input which

cannot be tiled or only partially tiled is all handled, and standard
transformations are captured.

In addition to model-based approaches, semi-automatic and
search-based transformation frameworks in the polyhedral model
also exist [25, 12, 18, 34]. Cohen et al., Girbal et al. [12, 18] pro-
posed and developed a powerful framework (URUK/WRAP-IT)
to compose and apply sequences of transformations in a semi-
automatic fashion. Transformations are applied automatically, but
specified manually by an expert. Though our system now is fully
model-driven, some amount of empirical and iterative optimization
may be required on complementary aspects, like tile size and unroll
factor determination. Also, decision problems involved with fu-
sion are good candidates for empirical search. Alternatively, more
powerful cost models may be employed once transformations in a
smaller space are enumerated.

Code generation under multiple affine mappings was first ad-
dressed by Kelly et al. [26]. Significant advances were made by
Quilleré et al [37] and more recently by Bastoul [6] and Vasilache
et al [45, 44], resulting in a powerful open-source code genera-
tor, CLooG [1]. Our tiled code generation scheme uses Ancourt
and Irigoin’s [5] classic approach to specify domains with fixed tile
sizes and shape information, but combines it with CLooG’s support
for scattering functions to allow generation of tiled code for mul-
tiple domains under transformations obtained from our theoretical
framework. Goumas et al. [19] reported an alternate tiled code gen-
eration scheme (to [5]) to address the inefficiency involved in using
Fourier-Motzkin (FM) – however, this is no longer an issue as the
state-of-the-art uses PolyLib. Techniques for parametric tiled code
generation [39, 27] were recently proposed for single statement do-
mains for which rectangular tiling is valid. Such techniques com-
plement our parallelization framework very well and we plan to
integrate them into our system.

8. Conclusions
We have presented the design and implementation of a fully au-
tomatic polyhedral source-to-source program optimizer that can
simultaneously optimize sequences of arbitrarily nested loops for
parallelism and locality. Through this work, we have shown the
practicality and promise of automatic transformation in the polyhe-
dral model, beyond what is possible by current production compil-
ers. Experimental results show very significant speedup for single
core and parallel execution on multi-cores. Our system also leaves
a lot of flexibility for future optimization, mainly iterative and em-
pirical and/or through more sophisticated cost models, and promise
to achieve performance close to or beat manually developed codes.

The transformation system presented here is not just applicable
to C/Fortran code, but to any input language from which polyhedra
can be extracted. Since our entire transformation framework works
in the polyhedral abstraction, only the polyhedral frontend (polyhe-
dra and dependence information extractor) needs to be adapted to
accept a future high-productivity language. It could be applied for
example to very high-level languages like MATLAB or domain-
specific languages to generate high-performance parallel code.

Acknowledgments
We would like to acknowledge Cédric Bastoul (Paris-Sud XI Uni-
versity, Orsay, France) and all other contributors to CLooG for this
code generation masterpiece. We would also like to thank Martin
Griebl and team (FMI, Universität Passau, Germany) for the LooPo
infrastructure. This work is supported in part by the U.S. National
Science Foundation through grants 0121676, 0121706, 0403342,
0509442, and 0509467.

13 2008/3/2

References
[1] CLooG: The Chunky Loop Generator. http://www.cloog.org.

[2] LooPo - Loop parallelization in the polytope model. http://www.fmi.uni-
passau.de/loopo.

[3] PIP: The Parametric Integer Programming Library. http://www.piplib.org.

[4] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing transformations
for locality enhancement of imperfectly-nested loop nests. IJPP,
29(5), Oct. 2001.

[5] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In
PPoPP’91, pages 39–50, 1991.

[6] C. Bastoul. Code generation in the polyhedral model is easier than
you think. In IEEE PACT, pages 7–16, Sept. 2004.

[7] C. Bastoul and P. Feautrier. More legal transformations for locality.
In Euro-Par’10, pages 272–283, Aug. 2004.

[8] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Affine transformations for
communication minimal parallelization and locality optimization
of arbitrarily-nested loop sequences. Technical Report OSU-CISRC-
5/07-TR43, The Ohio State University, May 2007.

[9] U. Bondhugula, J. Ramanujam, and P. Sadayappan. Automatic
mapping of nested loops to FPGAs. In ACM SIGPLAN PPoPP’07,
Mar. 2007.

[10] P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling?
Integration, the VLSI Journal, 17(1):33–51, 1994.

[11] P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop parallelization
algorithms: From parallelism extraction to code generation. Parallel
Computing, 24(3–4):421–444, 1998.

[12] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and
N. Vasilache. Facilitating the search for compositions of program
transformations. In ACM ICS, pages 151–160, June 2005.

[13] A. Darte and F. Vivien. Optimal fine and medium grain parallelism
detection in polyhedral reduced dependence graphs. Int. J. Parallel
Programming, 25(6):447–496, Dec. 1997.

[14] P. Feautrier. Parametric integer programming. Operationnelle/Oper-
ations Research, 22(3):243–268, 1988.

[15] P. Feautrier. Dataflow analysis of array and scalar references. IJPP,
20(1):23–53, 1991.

[16] P. Feautrier. Some efficient solutions to the affine scheduling problem:
I. one-dimensional time. IJPP, 21(5):313–348, 1992.

[17] P. Feautrier. Some efficient solutions to the affine scheduling problem.
part II. multidimensional time. IJPP, 21(6):389–420, 1992.

[18] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations.
IJPP, 34(3):261–317, June 2006.

[19] G. Goumas, M. Athanasaki, and N. Koziris. Code Generation
Methods for Tiling Transformations. Journal of Information Science
and Engineering, 18(5):667–691, Sep. 2002.

[20] M. Griebl. Automatic Parallelization of Loop Programs for
Distributed Memory Architectures. FMI, University of Passau, 2004.
Habilitation Thesis.

[21] M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the
polytope model. In IEEE PACT, pages 106–111, 1998.

[22] K. Hogstedt, L. Carter, and J. Ferrante. Selecting tile shape for
minimal execution time. In SPAA, pages 201–211, 1999.

[23] F. Irigoin and R. Triolet. Supernode partitioning. In PoPL, pages
319–329, 1988.

[24] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yellick.
Implicit and explicit optimization for stencil computations. In MSPC,
2006.

[25] W. Kelly and W. Pugh. A unifying framework for iteration reordering
transformations. Technical Report CS-TR-3430, Dept. of Computer

Science, University of Maryland, College Park, 1995.

[26] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple
mappings. In FRONTIERS, page 332, 1995.

[27] D. Kim, L. Renganarayanan, M. Strout, and S. Rajopadhye. Multi-
level tiling: ’m’ for the price of one. In SC, 2007.

[28] W. Li and K. Pingali. A singular loop transformation framework
based on non-singular matrices. IJPP, 22(2):183–205, 1994.

[29] A. Lim, S. Liao, and M. Lam. Blocking and array contraction across
arbitrarily nested loops using affine partitioning. In ACM SIGPLAN
PPoPP, pages 103–112, 2001.

[30] A. W. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning
algorithm to maximize parallelism and minimize communication. In
ACM ICS, pages 228–237, 1999.

[31] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing
synchronization with affine partitions. Parallel Computing, 24(3-
4):445–475, 1998. Extended version of PoPL’97 paper.

[32] B. Norris, A. Hartono, and W. Gropp. Annotations for performance
and productivity. 2007. Preprint ANL/MCS-P1392-0107.

[33] R. Penrose. A generalized inverse for matrices. Proceedings of the
Cambridge Philosophical Society, 51:406–413, 1955.

[34] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative
optimization in the polyhedral model: Part I, one-dimensional time.
In ACM CGO, Mar. 2007.

[35] W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. Communications of the ACM,
8:102–114, Aug. 1992.

[36] A. Qasem and K. Kennedy. Profitable loop fusion and tiling using
model-driven empirical search. In ICS, pages 249–258, 2006.

[37] F. Quilleré, S. V. Rajopadhye, and D. Wilde. Generation of efficient
nested loops from polyhedra. IJPP, 28(5):469–498, 2000.

[38] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration
spaces for multicomputers. JPDC, 16(2):108–230, 1992.

[39] L. Renganarayana, D. Kim, S. Rajopadhye, and M. M. Strout.
Parameterized tiled loops for free. In PLDI’07, pages 405–414,
2007.

[40] L. Renganarayana and S. Rajopadhye. A geometric programming
framework for optimal multi-level tiling. In SC, 2004.

[41] R. Schreiber and J. Dongarra. Automatic blocking of nested loops.
Technical report, University of Tennessee, Knoxville, TN, Aug. 1990.

[42] A. Schrijver. Theory of Linear and Integer Programming. Wiley,
1987. SchRI a 87:1 1.Ex.

[43] Y. Song and Z. Li. New tiling techniques to improve cache temporal
locality. In PLDI, pages 215–228, 1999.

[44] N. Vasilache. Scalable Program Optimization Techniques in the
Polyhedral Model. PhD thesis, Université de Paris-Sud, INRIA,
Futurs, Sept. 2007.

[45] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code generation
in the real world. In ETAPS CC’06, pages 185–201, Mar. 2006.

[46] N. Vasilache, C. Bastoul, S. Girbal, and A. Cohen. Violated
dependence analysis. In ACM ICS, June 2006.

[47] R. Whaley, A. Petitet, and J. Dongarra. Automated Empirical
Optimizations of Software and the ATLAS Project. Parallel
Computing Journal, 2000.

[48] M. Wolf and M. S. Lam. A data locality optimizing algorithm. In
PLDI ’91, pages 30–44, 1991.

[49] J. Xue. Communication-minimal tiling of uniform dependence loops.
JPDC, 42(1):42–59, 1997.

[50] Q. Yi, K. Kennedy, and V. Adve. Transforming complex loop nests
for locality. J. Supercomput., 27(3):219–264, 2004.

[51] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. A.
Padua, K. Pingali, P. Stodghill, and P. Wu. A comparison of empirical

14 2008/3/2

and model-driven optimization. In PLDI’03, pages 63–76, 2003.

15 2008/3/2

