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Abstract
This paper present a framework for automatic mapping of
perfectly nested loops with constant dependences onto regu-
lar processor arrays, suitable for direct implementation on
Field Programmable Gate Arrays (FPGAs). The problem
is modeled as that of finding a suitable completion proce-
dure for a full-rank linear transformation on the iteration
space. The approach enables extraction of necessary degrees
of communication-free and pipelined parallelism to opti-
mize performance under the resource constraints of limited
logic resources and I/O bandwidth available on an FPGA.
The generation of control signals for the custom processing
elements is also addressed. Examples of automatic deriva-
tion of parallel designs for some common nested loops are
provided. Experimental results on the Cray XD1 show that
an FPGA-based matrix-multiplication design obtained us-
ing the framework attains significant speedup on the XD1’s
attached FPGA, when compared to execution on the XD1
CPU.

Categories and Subject Descriptors C.1.3 [Processor Ar-
chitectures]: Other Architecture Styles—Adaptable archi-
tectures; D.3.4 [Programming Languages]: Processors—
Compilers, Optimization

General Terms Algorithms, Design, Performance

Keywords FPGA, resource constraints, regular processor
arrays, FPGA compilation, nested loops, linear transforma-
tion, scheduling, control signals

1. Introduction
Field Programmable Gate Arrays (FPGAs) are user-
programmable VLSI devices comprised of configurable
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logic blocks and a configurable interconnect, allowing the
user to “field program” the device any number of times.
Modern FPGAs have a large amount of configurable re-
sources that enable highly parallel designs. These designs
can be adapted well to specific problems, leading to very
efficient use of on-chip resources.

FPGAs have long been used in embedded image and sig-
nal processing applications. However, densities of FPGAs
have currently reached a point where they are competing in
performance with modern general-purpose microprocessors.
For many applications, custom-built parallel FPGA designs
are a number of times faster. Moreover, trends in peak per-
formance of FPGAs [27] show this gap widening. All of
these have led to vendors offering high performance systems
that couple general-purpose microprocessors with reconfig-
urable application accelerators. Cray XD1 [8], SRC Mapsta-
tion, and SGI RASC are such systems.

Today, the most significant impediment to more widespread
use of FPGA acceleration for high-performance computing
is the effort required by the application designer to gen-
erate an FPGA-based implementation. The productivity of
developing applications for FPGAs currently is extremely
low compared to that for microprocessors. This is mainly
due to the complexity involved in hardware design. Al-
though a number of applications have demonstrated high
speedups with FPGAs for high-performance computing ap-
plications [28, 11, 31, 6], all designs were developed manu-
ally.

In this paper, we address the problem of automatically
mapping perfectly nested loop computations onto FPGAs.
The main contributions of this paper are as follows. We
provide an algorithm to automatically map perfectly nested
loops with constant dependences and arbitrary polyhedral
bounds to linear or 2-D processor arrays on FPGAs. We
also address the generation of control signals for the designs
synthesized by the algorithm. Experimental results on the
Cray XD1 show that these designs sustain a high speedup
over execution on the CPU. Our framework is also applica-
ble to other parallel co-processor architectures such as the
ClearSpeed CSX600 [7] and MPSoCs.



The rest of this paper is organized as follows: In Sec-
tion 2, we provide a brief overview of FPGAs and the Cray
XD1. In Section 3, we describe the problem addressed. We
outline the solution approach in Section 4. Section 5 devel-
ops the algorithm for mapping. Generation of control signals
and other aspects of the target processor array are discussed
in Section 6. This is followed by experimental results on the
Cray XD1 in Section 7.

2. Background
In this section, we provide a brief overview of modern FP-
GAs and the Cray XD1 system.

An FPGAs comprises various configurable elements and
embedded blocks. At the lowest hardware level, an FPGA is
made up of multiple configurable blocks connected to a con-
figurable interconnect (Fig. 1(b). Configurable Logic Blocks
(CLBs) provide functional elements for combinatorial and
synchronous logic, including basic storage elements. Apart
from CLBs, modern FPGAs comprise I/O blocks, Block
RAM, embedded dedicated multipliers, and sufficient re-
sources for routing and global clocking.

In the Virtex-II Pro series of FPGAs [29], each CLB
includes four slices, and dedicated horizontal routing re-
sources. Each slice is equivalent, and comprises two function
generators, two storage elements, large multiplexers, arith-
metic logic gates, a fast look-ahead carry chain, and a few
other resources. Each function generator is configurable as
a 4-input look-up table (LUT), as a 16-bit shift register, or
as 16-bit distributed RAM. Each CLB has an internal fast
interconnect and connects to a switch matrix to access gen-
eral routing resources. Apart from CLBs, the Virtex fam-
ily provides a number of dual-ported RAM blocks, allowing
the user to store data on-chip, and create deeper and wider
pipelines. Each block RAM resource is an 18Kb dual-ported
RAM, programmable in various depth and width configura-
tions.

Each compute blade on the Cray XD1 system (Fig.1(a))
contains two 64-bit AMD Opteron processors, an intercon-
nect processor which provides two 2 GB/s RapidArray links
to the switch fabric, and an application acceleration mod-
ule [8]. The application acceleration module provides an
FPGA, a programmable clock source, and four banks of
Quad Data Rate II SRAM. Communication with the system
is done from pinned buffers in the system memory’s from
and to which the FPGA can access data via DMA transfer. A
peak bandwidth of 1.6 GB/s is available each way over the
interconnect. The FPGA on the XD1 is a Xilinx Virtex-II Pro
XC2VP50 that has about 23,000 slices, and can be clocked
at a maximum of 200 MHz.

3. Problem
We consider perfectly nested loops with constant depen-
dences and arbitrary polyhedral bounds. These need to be
mapped to processor arrays on FPGAs in a way that paral-

lelism is maximized under the resource constraints of fixed
I/O bandwidth and logic resources available to the FPGA.
An efficient way of providing control signals to the proces-
sor array should also be derived.

Interconnection. Arbitrary interconnection of PEs in-
creases routing complexity, thereby affecting target clock
rate directly. A linear array has the least connectivity while
being regularly and locally connected, followed by a 2-D
mesh. Also, loop bounds are sufficiently large compared to
the number of processors that can be put on a chip that a
smaller dimensional processor space is preferable. The tar-
get architecture we map to is a linear or a 2-d processor array
with links in the forward direction or (0,1) and (1,0) direc-
tions, respectively. We show that our approach can map all
nested loops with constant dependences to these without the
need for backward communication. Modern FPGAs use an
island-style hierarchical routing fabric that fits well with a
1-D or a 2-D processor array. Since the maximum space di-
mensionality we have is two, our framework accommodates
multi-dimensional time.

There is no abstraction of a global shared memory on
the FPGA. All movement has to be explicitly managed and
data access conflicts need to be taken care of. Hardware
elements have limited fan-out. To capture this, we also take
into account read dependences in the framework we propose.

Near-neighbor communication on chip is inexpensive.
Communication costs arising out of pipelined or fine-grained
parallelism are thus not a concern. For FPGA-based designs,
coarser granularity leads to more control and state ending up
on the FPGA. A fine-grained parallel design shifts this over-
head to software on the system making the design simpler to
build, and is thus preferred.

LPGS tiling. Since the iteration space may be large along
with the data set being processed, we tile the nested loops
and accelerate computation for the inner set of loops on FP-
GAs keeping the outer tile-space loops in software. This
technique is the well-known Locally Parallel Globally Se-
quential (LPGS) scheme used in the synthesis of fixed-size
systolic arrays [21]. Each tile is executed in parallel on the
FPGA and tiles are processed in sequence.

3.1 Control signals

The array of processors we map to are custom processors ca-
pable of performing computation specified in the loop body.
These processors are not instruction-based and so cannot
process a sequence of them; hence, the need to provide con-
trol signals to precisely inform when an iteration needs to
be executed, along with information necessary to compute
access functions to execute the iteration.

The cost of putting n processors along one degree of
parallelism may not be the same as that of putting the same
number along another degree. This is mainly due to overhead
involved in providing control signals. Pipelined parallelism
always incurs more control overhead than communication-
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Figure 1. The Cray XD1 and an FPGA

free parallelism, as all processors along a dimension that
has no communication often share control signals. This is
explained more rigorously in Section 6.

4. Overview of solution approach
We find a non-singular transformation of the iteration space
to a basis that can be readily inferred as processor dimen-
sions (space) and time dimensions. The space loops are to be
parallel, with at most near-neighbor communication. Multi-
dimensional time schedules are allowed. To find the transfor-
mation, we present an algorithm that is a particular way of
completing a non-singular transformation matrix, a general
framework for which was proposed by Li and Pingali [18].
The algorithm systematically finds rows of the transforma-
tion matrix in a step-by-step manner, inferring necessary de-
grees of parallelism.

Consider a perfectly-nested loop nest with n levels of
nesting. The iteration space polytope defines an n-dimensio-
nal set of points, characterized by a set of bounding hy-
perplanes. Each point in the iteration space is represented
by a vector comprising indices of all loops from outermost
to innermost. The dependences in the computation are rep-
resented by a matrix D, where each column defines a de-

pendence vector. Let D =
(

~d1 ~d2 . . . , ~dm

)

. D includes flow,
anti, and input/read dependences. Let R be the set of read
dependences.

In the rest of this section, for convenience, we also treat
D, R as sets of vectors instead of matrices wherever neces-
sary to apply operations – set union (∪) and set minus (\)
that convey dependence vectors being added to or removed
from them. Let D′ = D\R.

Let T be a non-singular nxn square matrix. T is of rank
n and can map the source iteration space one-to-one to the
target iteration space. The goal is to find suitable coefficients,
ci j, for T .

T =











c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
...

...
cn1 cn2 . . . cnn











~t = T~s

Let row vector ri = (ci1 ci2 . . . cin)

4.1 Communication-free parallelism

T extracts communication free parallelism through row ri

iff ri~d j = 0, for each ~d j ∈ D, i.e., ri is orthogonal to all
dependence vectors. The corresponding target loop in the
transformed iteration space is thus an outer parallel loop and
can be distributed across a dimension of processors without
any communication along that dimension.

There exists communication-free parallelism iff the rank
of the dependence matrix, D, is less than the dimensionality
of the iteration space. Let c be the number of degrees of
communication-free parallelism.

c = n− rank(D)

Processors along a degree of communication-free paral-
lelism can all start in parallel. Hence, the I/O bandwidth
required is proportionate to the number of processors. All
processors on the FPGA share a fixed I/O bandwidth avail-
able from the system. The aggregate bandwidth is the same
even if we use more processors, unlike a general-purpose
shared-memory or distributed memory parallel system. Ex-
tracting more than one degree of communication-free paral-
lelism is thus not useful. Hence, placing enough processors
along one degree of communication-free parallelism will be
sufficient to utilize the entire I/O bandwidth available to the
FPGA. Also, the number of processors that can be practi-
cally put along this dimension, being constrained by band-
width, is generally small and not comparable to the loop
bounds. Read dependences can thus be relaxed while find-



ing communication-free parallelism: the resulting fan-out is
small.

4.2 Pipelined parallelism

Any nested loop code with constant dependences has
n− c− 1 degrees of pipelined parallelism. Apart from the
c loops that have communication-free parallelism, the rest
of the n− c loops can be made fully-permutable (by skew-
ing), and have n− c independent time partitioning solu-
tions [20, 19]; the code can thus be mapped to n− c− 1 di-
mensions of space with near-neighbor communication, with
a one dimensional time schedule. Hence, a linear sched-
ule with n− c− 1 degrees of pipelined parallelism with
near-neighbor communication can always be found. Alterna-
tively, when c≥ 1, n− c degrees of pipelined parallel space
can be found with one of the dimensions of comm-free par-
allelism being used as time (serialized). Hence, as long as
n > c, pipelined parallelism can be found. Pipelined paral-
lelism does not use as much off-chip bandwidth as comm-
free parallelism, and is thus preferable after one degree of
comm-free parallelism has been found. The algorithm we
propose in the next section extracts suitable number and
kinds of these two forms of parallelism.

Interconnect communication. We use systolic techniques
developed by Moldovan [21] in providing constraints con-
cerning interconnection while completing the transforma-
tion matrix. Let L be an sxl matrix with its columns rep-
resenting interconnection links of the processor array we are
mapping to. As stated in Sec. 3, s = 1 or s = 2. The unit
vectors represent communication links in the corresponding
directions. For example, for a 2-D processor array:

L =

(

0 1
1 0

)

5. Algorithm
From the discussion in the last section, we find that one and
only one degree of communication free parallelism is prefer-
able over pipelined parallelism. Hence, the order in which
we extract these degrees is as follows: First, we search for a
degree of communication-free parallelism, followed by a de-
gree of pipelined parallelism, and the rest of the rows repre-
sent a multi-dimensional time schedule. If there is no comm-
free parallelism, we extract two degrees of pipelined paral-
lelism. In all cases, we extract two degrees of parallelism
from loop nests with depth three or more, and one degree of
parallelism from a 2-d loop nest.

1. Communication-free parallelism. If c > 0, there exists
at least one degree of communication-free parallelism.
We need to find a row vector that is orthogonal to all de-
pendence vectors. As mentioned in Sec. 4.1, we suppress
read dependences while finding comm-free parallelism.
We thus have the following integer linear programming

problem:

D′ ← D\R (1)

r1.~d j = 0 for each ~d j ∈ D′ (2)

minimize
n

∑
i=1

c1i (3)

D′ is used so that read dependences are ignored. To avoid
the zero vector which is a trivial solution to the above,
a polyhedral difference to remove the space where all
vector elements are simultaneously zero can be used.
This can be done by polyhedral libraries like PolyLib [1]
or PPL (Parma PolyLib) [3]. Doing so leads to a union of
many polyhedra and (3) is computed for each element of
the union and the best is kept.

Once we find r1, any components of read dependences
along r1 are to be ignored for communication or schedul-
ing purposes. We project all read dependences in the
space orthogonal to r1, say U . We replace the read depen-
dences in D by their projections in U . Any dependences
that are parallel to r1 are completely removed.

U = I− rT
1

(

r1rT
1

)−1
r1

R′ = U.R

D′′ = D\R∪R′ = D′∪R′

Note that r1.R′ = (r1.U).R =~0T . Therefore, we have

r1.D
′′ =~0T (4)

2. Pipelined parallelism. If c = n, there exist no degrees of
pipelined parallelism: hence, after extracting one degree
of communication-free parallelism, skip this step and go
to Step 3 to find the rest of the rows that would be time
dimensions.

If c = 0, we extract two degrees of pipelined parallelism
(one in case of a 2-d loop nest). If 1 ≤ c < n, we extract
exactly one degree of pipelined parallelism.

We ensure the following in the formulation: (1) all com-
munication is done by links in the forward direction, (2)
no more communication-free parallelism is found, and
(3) the sum of the length of the communication paths that
move data corresponding to dependences is minimized.

r2D≥~0T (5)

∑
~d j∈D′′

r2.~d j > 0 (6)

minimize ∑
~d j∈D′′

r2.~d j (7)

r2D ≥~0 makes sure that communication occurs only in
the forward or upward direction. For r2 to be indepen-
dent of the first row, at least one of the dependences in



D′′ should have a component along r2. Since the first
condition already enforces r2D ≥ ~0T , condition (6) is
sufficient. This condition automatically also avoids the
zero vector. This formulation holds even if no degrees of
comm-free parallelism were found, and r2 was the first
degree of pipelined parallelism. Once a time dimension
is found in the next step, it would be evident that r2 rep-
resents pipelined parallel space.

After steps 1 and 2 above, all space partitions have been
found. Let these rows be Π. Let m′′ be the number of
columns (dependences) in D′′. Let K be an lxm′′ matrix
such that its element ki j(≥ 0) is the number of times link
i is used to move data corresponding to dependence ~d j.
To compute K, all dependences in D′′ need to be made
use of. The non-negative constants in K can be obtained
by solving:

ΠD′′ = LK (8)

minimize
l

∑
i=1

ki j, 1≤ j ≤ m′′ (9)

Bound on the number of links required between neigh-
boring PEs along dimension r: ∑m′′

j=1 kr j

3. Finding time dimensions. We need to find n−2 dimen-
sions of time, one represented by each of the rows yet to
be completed (n−1 in case of a 2-d loop nest). This step
is repeated till all of those dimensions are found. Let this
be the ith one, say ti.

Let P be the matrix comprising rows of T found so far.
Let E be the set of dependences that have not yet been
carried by the time mappings so far. Initially, E = D′′,
since a valid multidimensional time schedule needs to
carry all dependences in D′′.

For the source values due to the dependences to arrive
from other PEs:

ti.~d j ≥
l

∑
i=1

ki j, for each ~d j ∈ E

To find the rest of the time dimensions that are indepen-
dent of rows of P, we find vectors that have a strictly pos-
itive component in the sub-space orthogonal to the rows
in P. Also, all dependences not carried so far should be
lexicographically positive in the time dimensions being
found henceforth. We solve the following:

Q ← I−PT (PPT )−1P

ti.~d j ≥
l

∑
i=1

ki j for each ~d j ∈ E (10)

ti.~d j ≥ 0 for each ~d j ∈ D′′ (11)

Q.tT
i >~0 (12)

minimize
n

∑
j=1

ci j (13)

Q represents the sub-space orthogonal to the rows of P.
Note that QPT = 0. In (11), for a valid time schedule, E
on the R.H.S would have sufficed; however, to achieve
full permutability, we use D′′: this would allow us to
readily tile and execute the transformed code under the
LPGS scheme as explained later.

Find all dependences carried by the time dimension just
found, and remove them from E.

C = {~d j | ~d j ∈ E, ti.~d j > 0} (14)

E ← E \C (15)

Repeat step 3 until all dimensions of time are found.

Application of this algorithm stepwise to 1-D Jacobi and
matrix-matrix multiplication can be found in Appendix A.1
and A.2 respectively.

5.1 Correctness of multi-dimensional schedule

We now prove that the time schedule obtained by the algo-
rithm above is valid. Let t1, t2, . . . , tk be the time transforma-
tion rows obtained, in that order. Let τT =

(

tT
1 tT

2 . . . tT
k

)

so
that

T =

(

Π
τ

)

We prove that τ.~di �~0 for each ~di ∈ D′′.

Proof. At each of the repetitions of step 3, the algorithm
finds a time row that maps all dependences to non-negative
values (from (11)). Therefore, τ.~di ≥~0 for each ~di ∈ D′′. We
now need to show that τ.~di �~0 strictly, i.e., all dependences
in D′′ have been carried by the schedule.

Let us assume to the contrary that there exists a ~d j such
that τ.~d j =~0. Since T is of full rank, T.~d j 6=~0. This implies
that Π.~d j 6=~0, and since Π.D′′ ≥ 0 (from (4), (5)), there
exists a row ri in Π such that ri.~d j > 0.

ri.~d j >~0 ⇒ ∃ kq j such that kq j ≥ 1 (from (8))

⇒ t1~d j ≥ 1 (from (10) since any ki j ≥ 0)

⇒ τ.~d j �~0

This is a contradiction to our earlier assumption. 2

5.2 Summary

The non-singular transformation captures loop permutation,
reversal, skewing, and scaling. Loop skewing captured in in-
equalities (5) and (11) makes sure that all components of
the dependence vectors are positive in the transformed it-
eration space. Communication only along (0,1) and (1,0) is
sufficient, and no backward links are required. The new it-
eration space is fully permutable and allows straightforward
tiling under the LPGS scheme. For perfectly nested loops
with constant dependences, such a transformation is always
possible.



6. Control signals and optimizations
In this section, we discuss generation of control signals for
processor arrays obtained from the algorithm described in
the previous section.

If the space rows of T are Π, and the time rows τ, it-
eration ~i is to be executed at processor Π.~i at time τ.~i. Li
and Pingali’s code generation technique [18] generates code
for nested loops under a non-singular transformation. Ap-
plying this to the transformation obtained by our algorithm
would lead to code similar to shown in Fig. 6. The space
loops (p1, p2) are either parallel or pipelined parallel with
near-neighbor communication. The vector (t1, t2, . . . , tk) rep-
resents the global time, and (p1, p2) is the processor’s co-
ordinate in the array. All access functions are in terms of
t ′i s and p′is. When T is unimodular, the transformed iteration
space is dense. When T in not unimodular, loop bounds may
involve floor or ceil operations, and points in the iteration
space need to be skipped. However, to generate HDL code
and control for the processor array, we view code generation
in a different way.

for t1 = 1,N,1 do
for t2 = 1,N,1 do

...
for tk = 1,N,1 do

for p1 = 1,N,1 do
for p2 = t1, t1 +N,1 do

. . .

Figure 2. Transformed code with space and time loops

Each processing element (PE) in the array has to be pro-
vided a signal that it uses to decide whether an iteration has
to be executed. The corresponding iteration vector to com-
pute access functions is also required. Since T is full-ranked,
its inverse exists. From the transformation found in Sec. 4, a
processor ~p executes an iteration at time~t iff T−1[ ~pT ~tT ]T

is a valid iteration vector in the original iteration space poly-
tope. Let A~i ≤~b describe the polytope of the original itera-
tion space. Then, for processor ~p to be active at time~t:

A
(

T−1 (~pT ~tT )T
)

≤~b (16)

Standard code generation techniques [2, 18] employing
Fourier-Motzkin elimination [24] on the above set of in-
equalities, in which the time loops are eliminated first, would
give bounds for each time component ti as a function of p′is
and t j’s where 1 ≤ j ≤ i− 1. A very naive approach would
be for each PE to have a multi-dimensional time counter and
logic to check these inequalities to determine whether it has
to be active. The overhead is very high in this case, and in-
feasible if the core computation involves simple operations
(for eg. non- floating-point). We provide a much more ef-
ficient scheme to distribute control signals to the PEs in an
optimized fashion.

6.1 Control distribution

Let the k time loops of the transformed iteration space be t1,
t2, . . . , tk. After Fourier elimination, the bounds for the ith

time dimension, ti, can be written as:

max

(

. . . , αi p1 +βi p2 +
i−1

∑
j=1

γ jt j + ci, . . .

)

≤ ti

≤ min

(

. . . , α′i p1 +β′i p2 +
i−1

∑
j=1

γ′jt j + c′i, . . .

)

(17)

α’s, β’s, γ’s and c’s are constants. Let us assume for now
that there is a single expression instead of a max of many
expressions for the lower bound, and likewise for the upper
bound. We remove this restriction later.

We associate each of the k time dimensions with two
global PE controllers, one for the lower bound and the other
for the upper bound, so that there are 2k controllers. Each of
the controllers maintains a k-dimensional time counter and
streams signals from a particular corner of the processor ar-
ray. Since the lower and upper bounds of the time compo-
nents are linear in pi, control signals can be propagated from
a PE with a specific delay to its neighbors without each PE
having to test for time vectors it has to be active at. Note
that since we can tile all loops (including time loops) in the
transformed iteration space, each time dimension has to step
through the same number of time points irrespective of ar-
bitrary polyhedral bounds (the boundary tiles can be exe-
cuted on the host). The signals for this tile are propagated to
neighbors in the following way: The propagation delay any
PE adds for the lower (or upper) bound signal of ti is αi (or
α′i) in the p1 dimension, and βi (or β′i) in the p2 dimension.
The coefficients of pi’s in Eqn. 17 are thus the propagation
delay factors in the corresponding dimensions. The signs of
the co-efficients give the direction of propagation. The cor-
ner of the 2-D array where propagation starts (or the location
of ti’s controller) also depends on the signs of αi and βi. For
example, if both αi and βi are positive, the lower bound sig-
nal for ti is propagated from the lower right corner, i.e., from
PE(0,0). If αi > 0 and βi < 0, it is propagated from the top
left corner, i.e., PE(0,B2-1), and so on. Note that higher di-
mensions of time have corresponding higher delay factors
based on the product of the tile sizes of the lower dimen-
sions.

Each PE has a 2k-bit wide signal coming in from its
neighbors that it propagates to neighbors on the opposite
side of it in the corresponding dimension. The signs and
magnitudes of αi’s and βi’s specify the direction and delay
of propagation. The lower and upper bound signal registers
at each PE are initialized to low and high respectively. A PE
executes an iteration if and only if each of the 2k signals
from its neighbors is high. Let (p0

1, p0
2) be the coordinates of

the corner from where ti’s lower bound controller streams its
signal, and (p0

1’, p0
2’) for the upper bound controller. Let Li

and Ui represent the lower and upper bounds for ti in Eqn. 17.
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Figure 3. Control propagation

The signal streamed to the corner PEs by ti’s lower and upper
bound controllers are respectively given by the booleans:

Si =
(

Li
(

p1 = p0
1, p2 = p0

2

)

≤ ti
)

S′i =
(

ti ≤ Ui
(

p1 = p0
1’, p2 = p0

2’
))

The propagation delays capture the redundant computation
that would have been done at each PE to test for valid time
vectors had the naive approach been followed. In the general
case, the lower bound would be a max of several expressions,
and the upper bound a min. Hence, multiple propagation
delays are selected from, depending on the expression that
is the maximum or minimum at that instant.

6.2 Common cases

A very common case is when αi = α′i, and βi = β′i. This
implies that both the lower and upper bound controllers for ti

can be replaced by a single controller that propagates Si∧S′i.
If αi or βi is zero, all processors along the correspond-

ing dimension need to be simultaneously given the same
control signal, equivalent to a propagation delay of zero.
Since p2 is a degree of pipelined parallelism, βi 6= 0. If p1

is a degree of communication-free parallelism, α1 is always
zero, as all processors start concurrently along that dimen-
sion. Hence, the fan-out in sending control signals is no
more than the number of processing elements along this di-
mension, which is very small (Sec. 4.1). As a result, pro-
cessors along this dimension often end up sharing control
that is automatically identified by synthesis tools (as re-
source sharing) and optimized. This justifies our initial ex-
planation of communication-free parallelism providing more
parallelism per slice utilized. Therefore, while determining
tile sizes, we first determine the tile size for the degree
of communication-free parallelism using the off-chip band-
width constraint. Next, the number of processors that can
fit based on slice or block RAM constraints determine the
tile size associated with pipelined parallelism. Fig. 3 shows
an example for a 2-D processor array with one degree of
communication-free parallelism along (1,0), and a degree of
pipelined parallelism along (0,1).

When T is non-unimodular, there is more overhead in
generating control signals as the loop bounds may involve
floor and ceiling operations, and processor activity may be
periodic.

The proposed scheme moves as much control as possible
from the PEs to the global controllers. All tile sizes along
the time dimensions are set only to powers of two so that
the global controllers can efficiently step through the entire
time space. The computation of access functions required to
execute an iteration can also be optimized in the same man-
ner as described for control signals above. We skip details
on this due to space constraints.

6.3 Example

Consider the following code as an example:

for i = 1,N,1 do
for j = 1,N,1 do

a[i, j] = a[i, j−1]+a[i−1, j];

One degree of pipelined parallelism is found with a linear
schedule.

T =

(

0 1
1 1

)

T−1 =

(

−1 1
1 0

)

(

1
1

)

≤

(

−1 1
1 0

)(

p
t

)

≤

(

N
N

)

After Fourier-Motzkin elimination, we have:

p+1≤ t ≤ p+N

The access functions are: (t− p, p), (t− p, p− 1), and (t−
p− 1, p). Note that β1 = β′1 = 1 here. Hence, we have a
single controller located at the leftmost PE that streams a
high signal during 1 ≤ t1 ≤ N that is propagated across the
linear array with a single cycle delay.

7. Experiments
We conduct all experiments on the Cray XD1. The FPGA
on the XD1 is a Xilinx Virtex-II Pro XC2VP50 [29]. Cur-
rent peak floating-point performance of FPGAs is only com-
parable to that of general-purpose microprocessors. Using
limited precision exposes the importance of other aspects
like overhead of control. We use limited precision (16-bit)
matrix-matrix multiplication to measure and compare the
performance of the FPGA design with that of the CPU.

Measurements for the general-purpose processor case
were taken on a 2.2 GHz 64-bit AMD Opteron (as found
on the XD1) with a 64 KB L1 data cache and a 1 MB L2
cache with a cache block size of 64 bytes. GCC 3.3 with
“-O3” was used for compilation. The Cray User FPGA API
provides functions to program the FPGA, write values and
addresses to registers on the FPGA, taking care of virtual to



Module Slices
B=16 B=32

Operator 8
Control 104 105

PE 112 113
Global control 57 60

All PEs 7168 14464
Total (available) 23,316

Table 1. Slice utilization: FPGA-MM

Size CPU-MM FPGA-MM Speedup FPGA-MM Speedup
B=16 B=32

256 32.8ms 7.77ms 4.22 4.35ms 7.54
512 253ms 58.9ms 4.3 29.8ms 8.5

1024 2.01s 465ms 4.32 226ms 8.9
2048 16.1s 3.74s 4.3 1.8s 9.0
4096 128.6s 29.63s 4.34 14.2s 9.1
8192 1035.7s 237.33s 4.36 116.2s 8.91

Table 2. Measured performance comparison: CPU-MM vs FPGA-MM

physical address translation in the latter case. The general-
purpose processor implementation for matrix-multiplication
was tiled for the L2 cache. Copying to a contiguous buffer is
done to avoid conflict misses. In the rest of this section, the
CPU and FPGA implementations are referred to as CPU-
MM and FPGA-MM respectively.

Applying the algorithm in Sec. 5, we find one degree
of communication-free parallelism (p1), and one degree of
pipelined parallelism (p2). Detailed derivation can be found
in Appendix A.2.

for t1T = 1,N,B do
for p2T = 1,N,B do

for p1T = 1,N,4 do
for t1 = t1T, t1T +B,1 do

for p2 = p2T, p2T +B,1 do
for p1 = p1T, p1T +4,1 do
〈control + memory access〉
c[p1, t1-p2]

+= a[p1, p2]*b[p2, t1− p2]
〈control + memory access〉

Figure 4. Parallel matrix multiplication for FPGA

Fig. 5 depicts the FPGA design. The processor array is
similar to that in Fig. 3. Elements of matrix c are updated
B times in the pipeline, once by each of the B PEs. The ith

column of PEs in Fig. 3 has the ith column of a and the ith

row of b in local storage. The control signals in this case are
simple: α1 = 0, β1 = 1, corresponding to a pipelined start-
up and stop in the p2 dimension. The pipeline filling and
draining was overlapped for successive tiles (Fig. 5).

Tile size determination. Four 16-bit elements can be read
at a theoretical peak rate of 1.6 GB/s when the FPGA design
is clocked at 200 MHz. We thus first set the tile size (or

B

j

B

b c

X
ii

a jk

k =

Figure 5. FPGA-MM

the number of processors) along p1 to four. Then, based on
the number of PEs that can fit on the FPGA, the tile size
(or the number of processors) along the degree of pipelined
parallelism is set. Note that a synthesis estimate for a single
PE is required before the tile sizes are fixed. In our case,
we find that the 4x32 processor array was the largest that
could fit on the XC2VP50. The design thus uses the entire
I/O bandwidth and slices even as larger amounts of both are
available (with larger FPGAs).

Resource utilization. Table 1 shows the slice utilization
of the designs. Note that the multiply operation is mapped
to the embedded dedicated multipliers available on the
XC2VP50, and hence the low slice count of 8 for the oper-
ator. The scheme proposed in Sec. 6 moves as much control
as possible from the PEs to the global controller. However,
other housekeeping computations for scheduling local mem-
ory access (read and write) in PEs still incur a significant
number of slices.

Results with the 4x16 processor array are also presented
to observe scalability. The 4x16 processor array could be
clocked at the full 200 MHz, while the 4x32 at 190 MHz.
Layout transformation and compute-copy overlap, described
in [5], are performed while integrating FPGA-MM with its
software counterpart on the system. The outer loops t1T ,
p2T, p1T are run in software. The FPGA design corresponds
to loops t1, p2, and p1 that can perform 4 ∗B operations in
parallel.

As shown in Table 2, a speedup of 4.3 is measured using
the 4x16 processor array, and speedup by a factor of 9 is ob-
tained with the 4x32 array. Fig. 6 shows the GigaOps perfor-
mance of the implementations. Though the CPU implemen-
tation we are comparing against incorporates blocking and
copying, it is still not fully optimized. With a range of other
optimizations [30] like register tiling, pipeline scheduling,
and controlled unrolling, we estimate that a performance of
up to 4.0 GigaOps can be obtained from the Opteron. This
would still be less than the 9 GigaOps of the 4x32 array on
the FPGA. Note that the largest FPGAs available currently
are more than twice as large as the XC2VP50.
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Figure 6. Performance: 16-bit matrix multiplication

8. Related work
A large body of literature exists on systolic synthesis from
uniform recurrence equations [22, 21, 16]. Many studies also
deal with mapping nested loops to multi-dimensional sys-
tolic arrays. Our work differs from them in that we develop
space-time mappings considering resource constraints and
control costs when implementing them on high-performance
systems with FPGA accelerators.

Darte et al. [10, 9] address the problem of finding a tight
linear schedule after tiling and clustering (LSGP) the virtual
processor space. However, the problem of finding a good
cluster shape is not addressed, i.e., the number of dimen-
sions to cluster, and the choice of those dimensions. Cluster-
ing allows processing of larger tiles with the same number
of processors, or perhaps fewer processors because of the
added control complexity due to the juggling problem [10].
Our solution does not cluster the iteration space after tiling;
instead, the tile size is determined by the number of proces-
sors that can fit on the FPGA.

Several projects address regular processor array synthe-
sis within the polytope model. Among these are PICO-
NPA [23], PARO [26, 4], MMAlpha [16] and Compaan [17].
At a high-level, many of these approaches (including ours)
involve finding linear space and time mappings onto regu-
lar processor arrays. However, our approach to finding these
mappings differs significantly from these works - both in
how we find them, and the solution obtained. We use a step-
by-step completion procedure using an LP formulation, and
the mappings found are such that we have the right num-
ber and degrees of processor space, and a multi-dimensional
time schedule, after which tile sizes are selected based on
resource constraints. PICO [23] uses Darte’s approach [10]
for scheduling (compared earlier), after an orthogonal pro-
jection of the iteration space to the processor space. MMAl-
pha [16] takes a system of affine recurrence equations as
input and derives systolic arrays for it. Both PARO [4] and
MMAlpha use a more traditional approach of mapping to an
n− 1 dimensional processor space with a one-dimensional

linear schedule when an n-dimensional iteration space is
given. This has drawbacks mentioned in Sec. 3. PICO and
PARO deal with VHDL code generation and hardware syn-
thesis in much more detail than we do, and several of those
ideas are applicable to our work. Finally, to the best of our
knowledge, we are not aware of any of the above studies pro-
viding experimental results for an FPGA-accelerated system
or resource utilization numbers on an FPGA that we can
compare with. We are also not aware of any work that con-
siders read dependences to fully address data access con-
flicts.

Lim and Lam [20] perform affine space-partitioning
to find communication-free parallelism. If no degrees of
communication-free parallelism are found, time-partitioning
is done to find pipelined-parallelism. Our approach inte-
grates space and time partitioning. Consider the following
code. Lim’s space partitioning would find two degrees of
communication-free parallelism and terminate, which would
lead to a design that can compute only at a rate that data
can be fetched at. However, our approach would find one
degree of communication-free parallelism, and one degree
of pipelined parallelism which does not use any additional
bandwidth but allows full use of resources on an FPGA
(p1 = i, t1 = j + k).

for i = 1,N,1 do
for j = 1,N,1 do

for k = 1,N,1 do
a[i, j] = a[i, j]+w[k]∗b[i, j + k];

Li and Pingali present a general completion procedure
for non-singular transformations on iteration spaces[18]. We
have adapted the procedure for use in the context of mapping
loops onto FPGAs.

Feautrier[12] derives multi-dimensional time schedules
for problems that do not admit an affine schedule. The
code we consider always admits linear schedules, but multi-
dimensional schedules are preferred in practice. Guillou
et al. [14] address the control signal problem for multi-
dimensional time schedules. However, there is significant
cost per processing element associated with the solution.
Our approach was motivated by the solution we manually
developed in our earlier work [6].

So et al. [25] propose an automated hardware design
space exploration approach (DEFACTO) that evaluates the
effect of applying several loop transformations using syn-
thesis estimation techniques. Our algorithm captures the ef-
fect different transformations would have on performance
and is thus near-optimal without the need for further design
space exploration. In situations where our algorithm gener-
ates multiple possible solutions, a design space exploration
approach can be used to choose the best among these candi-
date designs.

Many projects have focused on translating high-level lan-
guages to hardware using various approaches. These include



SA-C, ROCCC [15], Streams-C [13], Impulse-C, Mitrion-
C, Handel-C among others. Many of these tools either use a
“soft instruction processor” approach or a “sea of gates” ap-
proach or employ intermediate formats for hardware compi-
lation. Some of these tools do perform a limited set of loop
transformations that are subsumed by our approach.

9. Conclusions and Future work
This paper has presented a framework to map nested loops
with constant dependences to linear or 2-D processor ar-
rays on FPGAs. The algorithm finds suitable degrees of
communication-free and pipelined parallelism with a multi-
dimensional time schedule. Parallelism is maximized under
resource constraints by proper selection of tile sizes under
the LPGS scheme. We also addressed the problem of effi-
ciently providing control signals to the processor array. Ex-
perimental results with limited precision matrix multiplica-
tion on the XD1’s FPGA show a speedup of 9x over execu-
tion on XD1’s Opteron CPU.

We plan to extend this work to multiple statement itera-
tions spaces including imperfectly nested loops and affine
dependences. Existing work on affine per-statement map-
ping and scheduling can be used to obtain the affine coun-
terpart of the procedure described here to solve a more gen-
eral set of problems. We also plan to address hardware code
(HDL) generation in detail.
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A. Appendix
A.1 1-D Jacobi

for t = 1,N,1 do
for i = 2,N−1,1 do

a(t, i) = a(t−1,i−1)+a(t−1,i)+a(t−1,i+1)
3 ;

D =

(

1 1 1
1 −1 0

)

Step 1 We have no communication-free parallelism here.
The algorithm extracts one degree of pipelined parallelism
with a linear schedule.

Step 2 Pipelined parallelism

c11 + c12 ≥ 0; c11− c12 ≥ 0; c11 ≥ 0; 2c11 > 0

minimize c11

c11 = 1, c12 = 0

L = (1), Π = (1 0) ⇒ K = (1 1 1)

Number of links required between adjacent PEs:
3

∑
j=1

k1 j = 3

c12 = 1 or c12 =−1 are also valid solutions.

Step 3 Time dimension(s)

Q =

(

0 0
0 1

)

c22 > 0; c21 + c22 ≥ 1; c21− c22 ≥ 1; c21 ≥ 1

minimize ∑c2i

c21 = 2, c22 = 1

T =

(

1 0
2 1

)

p1 = t; t1 = 2t + i

All iterations along 2t + i are executed in parallel.

T−1 =

(

1 0
−2 1

)

⇒ 2p1 +1≤ t1 ≤ 2p1 +B

A controller located near the leftmost PE streams a signal
during 1≤ t1 ≤ 3B that is shifted across the linear array with
a propagation delay of 2 clock cycles.

A.2 Matrix-matrix multiplication

for i = 1,N,1 do
for j = 1,N,1 do

for k = 1,N,1 do

c[i, j] += a[i,k]*b[k, j];

Applying algorithm in Sec. 5, we find one degree of comm-
free and one degree of pipelined parallelism.

D =





0 0 1
0 1 0
1 0 0



 R =





0 1
1 0
0 0



 D′ =





0
0
1





Step 1 Communication-free parallelism

r1D′ =~0T ⇒ c13 = 0

minimize c11 + c12 + c13

r1 : c11 = 1, c12 = 0, c13 = 0

U =





0 0 0
0 1 0
0 0 1



 R′ = UR =





0 0
1 0
0 0





D′′ = D\R∪R′ =





0 0
0 1
1 0





Step 2 Pipelined parallelism

c21 ≥ 0; c22 ≥ 0; c23 ≥ 0; c23 + c22 > 0

minimize c21 + c22 + c23

r2 : c21 = c22 = 0, c23 = 1

Π =

(

1 0 0
0 0 1

)

L =

(

0 1
1 0

)

∴ K =

(

1 0
0 0

)

Step 3 Time dimension(s)

P = Π; Q = I−PT (PPT )−1P =





0 0 0
0 1 0
0 0 0





c32 > 0; c32 ≥ 1; c33 ≥ 1

minimize c31 + c32 + c33

c31 = 0, c32 = c33 = 1

T =





1 0 0
0 0 1
0 1 1



 ⇒





p1

p2

t1



=





i
k

j + k





T−1
(

~p
~t

)

=





1 0 0
0 −1 1
0 1 0





(

~p
~t

)

=





p1

t− p2

p2





⇒ p2 +1≤ t ≤ p2 +B

A single controller located at the left edge streams a signal
during 1 ≤ t ≤ N that is propagated along (0,1) with a
single cycle delay. All processors along (1,0) share the same
control signal.


