
Dynamic Memory Usage Optimization using ILP

A. Allam1 and J. Ramanujam2

1Electrical Engineering Dept., Assiut University, Egypt
2Electrical and Computer Engineering Dept, Louisiana State University, USA

atef @aun.edu.eg, jxr@ece.lsu.edu

Abstract
In this paper, we address the problem of memory

usage optimization in the evaluation of data-dependent
program regions involving large data objects. We are
interested in situations where the data objects are so
large to fit in memory that they have to be dynamically
allocated and deallocated during expression evaluation.
This problem arises in the scientific computing field
such as electronic structure calculations, and in several
other contexts. We are considering three different
variations of the memory usage optimization problem.
The first problem is to find an evaluation order for the
dependent data objects to achieve the least amount of
memory required. The second problem is the
generalization of the evaluation order problem in which
the data objects have different processing times and the
least amount of memory is sought for a given total
execution time as a constraint. The third problem is
complement of the second problem in that the total
execution time needs to be minimized for a given
constraint in memory size. We develop an ILP
formulation to optimally solve the three problems.

I. Introduction
We address a general form of the memory usage

optimization problem in evaluating given computation
represented as a data-flow graph (DFG) G(V, E, M)
whose nodes V represent large data objects of different
sizes M like those arising in scientific computing such
as electronic structure calculations [1, 2, 3] (an
expression tree is a special case of the problem we are
addressing). Edges E in the DFG represent
dependencies between these data objects where the
evaluation of a data object cannot start until all its
children are evaluated. Each data object has to be
allocated a certain amount of memory before it can
start to be evaluated and it needs to be kept in memory
until all its parents are evaluated completely. It is also
assumed that each data object is an integral entity that
has to be allocated or deallocated as a whole in
memory. Reserving memory space for all data objects
at the same time requires huge amount of memory and
in most cases the available memory is inadequate. The
dynamic memory allocation model (in which a data
object is allocated memory when it is needed and
lasting until all its parents are evaluated and then it is
deallocated) is considered in solving this problem.

There are many different possibilities for the
evaluation order of the DFG nodes (the large data

objects) varying widely in the maximum memory
usage. The problem is to find an evaluation order for
these data objects to achieve the least memory usage.
Two variations of data objects evaluation order
problem in the case of multiple-processors using shared
memory are also considered. These problems are the
performance-constrained evaluation (PCE) and
memory-constrained evaluation (MCE) given below.
Performance-constrained evaluation addresses the
problem of finding an evaluation order for the input
DFG nodes that achieves the least amount of memory
space required to do the computations without violating
the input total execution time (assuming that the
execution time required by each node is given). While
the memory-constrained evaluation problem dealing
with the reverse scenario; where the evaluation order is
sought to achieve the minimum total execution time for
the DFG under the given memory constraint.

A related work is presented in [4, 5] but it deals
with the register allocation problem. The problem of
finding an evaluation order of nodes in a given
expression tree that uses the least amount of memory is
addressed by lam et al in [6].They developed an
efficient algorithm that solves the problem in O(n2)
time for n-nodes expression tree.

The problem addressed in this paper is a
generalization of the work presented in [6] in which the
processing time required by the data objects are not
necessarily the same. Moreover, our formulation is
extended to cover the case of evaluation data objects on
multiple processors with shared memory. In addition,
this paper considers the problem of memory-usage
optimization in case the given computation is
represented by a directed acyclic graph (DAG) not only
the simpler tree representation case. That turns the
problem to be NP-Complete [7].

We are proposing a mathematical formulation
solution for the memory usage optimization problem.
We present a mixed integer linear programming
(MILP) formulation for the two problems stated above
to obtain the exact solution.

Notations

M(i) = memory size needed for data object i.
D(i) = execution time (in number of time units) needed
for data object i.
ex-M(i) = extended memory size needed for data
object i and all of its children.

 1

λ = total number of time-steps.
memj = total memory usage by all active nodes at step
j.
R(i) = Time-frame of node i, which is the set of time-
steps that start at its earliest time, ASAP, and end at
its latest time, ALAP.
mem_constraint = maximum memory space allowed.

II. Preliminaries
In case the graph representation of the problem is a

DAG, transitive reduction is applied. For example if
there are edges (a,b), (b,c) and (a,c), then edges (a,b)
and (b,c) do not contribute to the memory usage
because they are dominated by the edge (a,c) which
defines the life-time for node a (times at which data
object a is still occupying a space in memory). The
edge (a,c) is called the live-range edge in this case.
After all the edges dominated by live-range edges are
eliminated, a dummy node, vd is introduced if there is
some node v with more than one outgoing edge. Edges
are classified according to their usage in the
formulation and they are given a type from the set {0,
1, 2, 3}. All the edges are initially classified as type-0
edges. For each node v with more than one outgoing
edge, we introduce a live-range edge between node v
and its dummy node vd. Such edges (v, vd) are classified
as type-3 edges. For each node w, a successor of node
v, edge (v, w) is called a reflexive edge and it is marked
type-1. Then for each reflexive edge (v, w), we
introduce a dummy edge (w, vd) and mark this edge as
a type-2 edge. In Figure 1-(a), node G has two
outgoing edges (G,E) and (G,H). Thus, a dummy node
Gd is added as well as two dummy edges (E,Gd) and
(H,Gd) for the reflexive edges (G,E) and (G,H),
respectively, as shown in Figure 1-(b).

Based on the definitions of edge sets given above,
edges of type-3 generate redundant inequalities if they
are considered in the precedence constraints; and edges
of type-1 and type-2 do not contribute in the memory
usage because their role is taken by type-3 edges. Thus,
type-3 edges are not to be considered in the precedence
constraints while type-1 and type-2 edges are not to be
considered in the memory constraints.

For mixed integer linear programming
formulation, we introduce a 0-1 (unknown) variable,
xij, that takes a value 1 if node i starts to be evaluated at
time-step j, and 0 otherwise. Equation (1) below is
developed to precisely define the memory usage at
time-step j, memj. It considers the contribution of node
i in memory usage during the set of time-steps starting
directly after it finishes its processing until its last
parent l is processed completely, which is captured by
the first term inside the summation over the DFG edges
E. In addition, the memory contribution of a node j to
the memory usage while it is being processed is
considered by the second term inside the summation
over the set V of the DFG nodes:

)1()(

)(

1)(

),(

)(

1

)(

1

∑ ∑

∑ ∑∑

∈ +−=

∈

−

=

−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Vi

j

iDjk
ik

Eli

lDj

k
lk

iDj

k
ikj

xiM

xxiMmem

III. Evaluation Order and Performance-

Constrained Evaluation (EOPCE)
Given a DFG representation of the evaluation

order problem G(V, E, M), the execution time needed
for each node D, and the total time allowed to finish
the computations (in number of time units) λ, the goal
is to find an evaluation order for these data objects that
achieves the least memory usage. The formulation is as
follows.

G: 25A: 20 C: 30
D: 9

B: 3 H: 5

E: 16 Objective Function

The objective is to minimize memory usage
required at any time during the DFG evaluation
process. This amount of memory space is expressed as
the maximum memory usage at any time-step. Thus,
the objective function is expressed as:

F: 15

(a) I: 16

Minimize: mem, (2)

where mem will be used as a variable to be evaluated.

 Uniqueness Constraints

Each node should start at exactly one time-step
within its time-frame. Inequality (3) is used to model
this constraint.

)3()(,1 iRjix
j

ij ∈∀=∑ Figure 1: Sample DFG for memory evaluation:
(a) original DFG, (b) the preprocessed DFG.

Gd 3/8

C 1/5 G 1/6A 1/6

D 2/6 B 2/7 H 2/8

E 3/7

F 4/8

I 5/9 (b)

 2

 Precedence Constraints

The fact that a data object can start to be evaluated
only after all its data inputs (children) are ready is
modeled as a precedence relation, one for each child-
parent pair as shown in inequality (4), where each
summation term in the left-hand side expresses the
time-step at which a data object starts execution. Note
that, in the case where the evaluation order is the
objective, the delay, D(i), is treated as one.

EliiDjxjx
lRj

lj
iRj

ij ∈∀−≤− ∑∑
∈∈

),()(
)()(

 (4)

 Memory Constraints

The maximum memory space required during
computation process is modeled by using a single
variable that constrains total memory usage of all
active nodes at each time-step as shown in inequality
(5) and then minimizing that variable as the objective
function.

],1[.0)(

)(

1)(

),(

)(

1

)(

1

λ∈∀≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∑ ∑

∑ ∑∑

∈ +−=

∈

−

=

−

=

jmemxiM

xxiM

Vi

j

iDjk
ik

Eli

lDj

k
lk

iDj

k
ik

 (5)

In case the objective is the evaluation order
without any constraint on the time needed, the
execution time for each node is treated as one. In
addition, another constraint is needed to force that at
each time-step exactly one node is evaluated. This can
be modeled as Equation (6).

],1[1 λ∈∀=∑
∈

jx
Vi

ij (6)

IV. Memory-Constrained Evaluation
Given a DFG representation of the evaluation

order problem G(V, E, M), the execution time needed
for each node D, and the maximum memory space
allowed, mem_constraint, the goal is to find an
evaluation order for these data objects that minimizes
the total execution time needed.

The mathematical formulation is similar to the
EOPCE problem described above. Uniqueness and
precedence constraints are as described in inequalities
(3) and (4), while the memory constraint is different
from the one in inequality (5) in which the maximum
memory is explicitly posed as a constraint by the input
mem_constraint value rather than by a variable as
shown in inequality (7). Note that λub used in inequality
(7) is an upper-bound estimation of the total execution
time. The total execution time, λ, is used twice as a
variable, one to pose a constraint over the start time-

step of the last node in the DFG (node without
successors) as shown in inequality (8) and the other as
the objective function to be minimized as shown in
Equation (9).

],1[.constrain_)(

)(

1)(

),(

)(

1

)(

1

ub
Vi

j

iDjk
ik

Eli

lDj

k
lk

iDj

k
ik

jtmemxiM

xxiM

λ∈∀≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∑ ∑

∑ ∑∑

∈ +−=

∈

−

=

−

= (7)

 Time Constraints

succesorswithoutinode

xiDj
j

ij

∀

≤−+∑ .)1)((λ
 (8)

 Objective function

Minimize: Total execution time, λ (9)

V. Design Space Exploration

For design space exploration (DSE), we have
adopted an efficient strategy in doing the experiments
that can precisely identify the pareto points in the
design space. A point in the design space that achieves
the least memory usage for a given time constraint,
while the time constraint is the minimum execution
time for that memory usage is called a pareto point.
This strategy is depicted in Figure 2.

time constraint L

 PCE

MCE

PCE

L2 = L?

M2 = M?

Store this pareto point

 M

L2

No

Yes

 M2

Yes

 No

 Try another time constraint

Figure 2: Flow chart for DSE strategy.

 3

(a) (b)

A

C

B

G

E

F

D

N

K

H

L J

M

I

C

E

D

A B First, for a given time constraint L, we solve the
PCE problem to find the least memory usage M. Then
this memory M is used as a constraint in solving the
MCE problem to find the minimum total execution
time L2. If that execution time L2 is the same as the
time constraint L, then this point (L, M) is a pareto
point, otherwise L2 is fed back to the PCE as a
constraint to find the least memory usage M2. Again, if
this resultant memory M2 is the same as M, then (L2,
M) is a pareto point.

In DSE, the execution time taken by the ILP solver
for each experiment as well as the total execution time
needed to fully explore the design space depends on
many factors. It depends on the DFG structure, how far
the time constraint is from the critical path length, the
number of nodes in the DFG, as well as the distribution
of memory costs of the DFG nodes. The first two
factors define the number of variables associated with
each node while the number of DFG nodes contributes
to the total number of variables. The memory cost
distribution of DFG nodes as well as the DFG structure
shape the search space in the ILP solver for optimal
objective function and hence the solution time.

VI. Experimental Results

We have used five diverse examples to work as
benchmarks in testing our presented ILP formulations
for memory evaluation problem. These test examples
are Exdag1 shown in Figure 1, Ex1 that is a tree
structure of Exdag1 after the edge (G, E) is removed,
Ex2 that is the same as Ex1 but with different memory
cost for each node, and Ex3 and Ex4 presented in
Figure 3-(a) and 3-(b), respectively. Ex3 and Ex4 have
the same number of nodes, memory costs, and
execution time, but are different in the graph structure.
The Experiments take place on the SUN ENTERPRISE
4500 workstation. This workstation has eight 333MHz
SPARC CPU’s and 2GB RAM, and it works with
SOLARIS 8 operating system.

Results for memory evaluation under timing
constraints when the computation elements (nodes) are
assumed to have unit time delays are shown in Table 3,
while the results for the general case in which the
computation elements can take different times to be
processed are shown in Table 4. The optimal ILP
solution (maximum memory usage in case of PCE
problem and the number of time units in case of the
MCE problem) is tabulated under the heading “ILP”. In
the result tables, “L” is the time constraint, “mem” is
the memory constraint, and “time” is the ILP solution
time in seconds. Experiments are done for different
time-constraints ranging from the critical path length to
twice the critical path length in the general case and for
a time-constraint equaling the number of nodes in the
case of a unit time delay.

 F

 G

 KH

 I

J
M

N

L

node A B C D E F G
M 2 20 12 9 11 7 9
d 3 2 1 1 2 1 1
node H I J K L M N
M 5 12 16

 11 13 5 8

d 2 1 2 2 1 2 1

(c)

 Figure 3: Sample examples for memory evaluation:

(a) Ex3, (b) Ex4, (c) memory size, M, and delay,
d, for each node in (a) and (b).

 Table 3: Performance constrained evaluation

with unit delay
 (b) Ex2

L ILP time
9 44 0.38
8 47 0.21
7 54 0.17
6 59 0.05
5 75 0.01

(a) Ex1

L ILP time
9 39 0.44
8 45 0.20
7 53 0.11
6 59 0.05
5 64 0.02

(d) Exdag1

L ILP time
9 50 0.38
8 53 0.22
7 58 0.11
6 59 0.04
5 84 0.01

(d) Ex3

L ILP time
14 43 16.2
10 46 1.03
8 54 0.19
7 61 0.01
6 79 0.02

 (d) Ex4

L ILP time
14 34 11.4
12 34 2.7
10 35 0.79
8 46 0.08
7 52 0.01

Optimal ILP results for memory-constrained
evaluation are presented in Table 5 for different values
of memory constraints for each test example. Results

 4

show that the ILP solution time is a fraction of second
and it is large only when the time constraint is far from
the length of the critical path and when the memory
constraints are very stringent.

VII. Conclusion
In this paper, we have addressed the problem of

memory usage optimization in the evaluation of
computations with large data objects. We are interested
in the situations where the data objects are so large to
fit in memory that they have to be dynamically
allocated and deallocated during expression evaluation.
We addressed the problem of finding an evaluation
order for these data objects to achieve the least memory
usage as well as its two variations in the case of
multiple-processors using shared memory. These
problems are the performance-constrained evaluation
(PCE) and memory-constrained evaluation (MCE). We
have developed an ILP formulation to optimally solve
the three problems. Solution results show that the ILP
solution time is small especially when the time
constraint is close to the critical path length or when
the memory constraint is less stringent.

Table 4: Performance constrained evaluation
(b) Ex2

L ILP time
20 44 8.35
18 47 2.2
15 57 1.0
12 59 0.12
10 84 0.06

(a) Ex1

L ILP time
20 39 5.53
15 53 0.75
12 64 0.08
11 67 0.03
10 78 0.03

(c) Exdag1

L ILP time
20 50 28.5
15 58 0.81
12 67 0.08
11 78 0.08
10 78 0.03

(d) Ex3

L ILP time
16 43 7.18
14 47 1.58
12 50 0.46
10 67 0.09
8 83 0.02

Acknowledgments
We gratefully acknowledge the support provided in
part by the US National Science Foundation through
awards CHE-0121676, CHE-0121706, CCF-0508245,
CNS-0509442, and CNS-0509467.

(e) Ex4

L ILP time
22 34 28.5
16 35 4.0
14 41 0.62
12 46 0.13
11 46 0.03

References
[1] W. Aulbur, Parallel Implementation of Quasi-
Particle Calculations of Semiconductors and
Insulators, Ph.D. Dissertation, Ohio State University,
Oct. 1996.

Table 5: Memory constrained evaluation [2] M. S. Hybertsen and S. G. Louie, “Electronic
Correlation in Semiconductors and Insulators: Band
Gaps and Quasi-particle Energies,” Phys. Rev. B, 34,
pp. 5390, 1986.

(b) Ex2

mem L time
44 20 5.0
47 17 2.3
57 15 1.56
60 12 0.13
84 10 0.03

(a) Ex1

mem L time
39 20 4.9
48 17 3.7
50 17

[3] H. N. Rojas, R. W. Godby, and R. J. Needs,
“Space-Time Method For Ab-Initio Calculations of
Self-Energies and Dielectric Response Functions of
Solids,” Phys. Rev. Lett., 74, pp. 1827, 1995.

3.7
64 12 0.11
78 10 0.04 [6] C. Lam, D. Cociorva, G. Baumgartner, and P.

Sadayappan, “Memory-Optimal Evaluation of
Expression Trees Involving Large Objects,” Technical
Report OSUCISRC-5/99-TR13, Dept. of Computer and
Information Science, The Ohio State University, May
1999.

(d) Ex3

mem L time

(c) Exdag1

mem L time
43 16 4.9
47 14 2.5
50 12 0.88
67 10 0.22
83 8 0.03

50 20 9.5
53 17 2.8

[4] I. Nakata, On compiling algorithms for arithmetic
expressions, Comm. ACM, Vol.10, pp. 492–494, 1967.

67 12 0.26
70 12 0.12

[5] R. Sethi, J. D. Ullman, The generation of optimal
code for arithmetic expressions, J. ACM, 17(1), pp.
715–728, October 1970.

78 10 0.04

(e) Ex4

mem L time [7] R. Sethi, Complete register allocation problems,
SIAMJ. Computing, 4(3), pp. 226–248, September
1975. 34 17 6.8

35 16 1.94
41 13 0.37
46 11 0.02

 5

