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Abstract 
In this paper, we address the problem of memory 

usage optimization in the evaluation of data-dependent 
program regions involving large data objects. We are 
interested in situations where the data objects are so 
large to fit in memory that they have to be dynamically 
allocated and deallocated during expression evaluation. 
This problem arises in the scientific computing field 
such as electronic structure calculations, and in several 
other contexts. We are considering three different 
variations of the memory usage optimization problem. 
The first problem is to find an evaluation order for the 
dependent data objects to achieve the least amount of 
memory required. The second problem is the 
generalization of the evaluation order problem in which 
the data objects have different processing times and the 
least amount of memory is sought for a given total 
execution time as a constraint. The third problem is 
complement of the second problem in that the total 
execution time needs to be minimized for a given 
constraint in memory size. We develop an ILP 
formulation to optimally solve the three problems.  

I.  Introduction 
We address a general form of the memory usage 

optimization problem in evaluating given computation 
represented as a data-flow graph (DFG) G(V, E, M) 
whose nodes V represent large data objects of different 
sizes M like those arising in scientific computing such 
as electronic structure calculations [1, 2, 3] (an 
expression tree is a special case of the problem we are 
addressing). Edges E in the DFG represent 
dependencies between these data objects where the 
evaluation of a data object cannot start until all its 
children are evaluated. Each data object has to be 
allocated a certain amount of memory before it can 
start to be evaluated and it needs to be kept in memory 
until all its parents are evaluated completely. It is also 
assumed that each data object is an integral entity that 
has to be allocated or deallocated as a whole in 
memory.  Reserving memory space for all data objects 
at the same time requires huge amount of memory and 
in most cases the available memory is inadequate. The 
dynamic memory allocation model (in which a data 
object is allocated memory when it is needed and 
lasting until all its parents are evaluated and then it is 
deallocated) is considered in solving this problem.  

There are many different possibilities for the 
evaluation order of the DFG nodes (the large data 

objects) varying widely in the maximum memory 
usage. The problem is to find an evaluation order for 
these data objects to achieve the least memory usage. 
Two variations of data objects evaluation order 
problem in the case of multiple-processors using shared 
memory are also considered. These problems are the 
performance-constrained evaluation (PCE) and 
memory-constrained evaluation (MCE) given below. 
Performance-constrained evaluation addresses the 
problem of finding an evaluation order for the input 
DFG nodes that achieves the least amount of memory 
space required to do the computations without violating 
the input total execution time (assuming that the 
execution time required by each node is given). While 
the memory-constrained evaluation problem dealing 
with the reverse scenario; where the evaluation order is 
sought to achieve the minimum total execution time for 
the DFG under the given memory constraint. 

A related work is presented in [4, 5] but it deals 
with the register allocation problem. The problem of 
finding an evaluation order of nodes in a given 
expression tree that uses the least amount of memory is 
addressed by lam et al in [6].They developed an 
efficient algorithm that solves the problem in O(n2) 
time for n-nodes expression tree. 

The problem addressed in this paper is a 
generalization of the work presented in [6] in which the 
processing time required by the data objects are not 
necessarily the same. Moreover, our formulation is 
extended to cover the case of evaluation data objects on 
multiple processors with shared memory. In addition, 
this paper considers the problem of memory-usage 
optimization in case the given computation is 
represented by a directed acyclic graph (DAG) not only 
the simpler tree representation case. That turns the 
problem to be NP-Complete [7]. 

We are proposing a mathematical formulation 
solution for the memory usage optimization problem. 
We present a mixed integer linear programming 
(MILP) formulation for the two problems stated above 
to obtain the exact solution. 

Notations 

M(i)  = memory size needed for data object i. 
D(i)  = execution time (in number of time units) needed 
for data object i. 
ex-M(i)  = extended memory size needed for data 
object i and all of its children. 
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λ              = total number of time-steps. 
memj = total memory usage by all active nodes at step 
j.  
R(i)    = Time-frame of node i, which is the set of time-
steps that start at its earliest    time, ASAP, and end at 
its latest time, ALAP. 
mem_constraint  = maximum memory space allowed. 
 

II.  Preliminaries 
In case the graph representation of the problem is a 

DAG, transitive reduction is applied. For example if 
there are edges (a,b), (b,c) and (a,c), then edges (a,b) 
and (b,c) do not contribute to the  memory usage 
because they are dominated by the edge (a,c) which 
defines the life-time for node a (times at which data 
object a is still occupying a space in memory). The 
edge (a,c) is called the live-range edge in this case. 
After all the edges dominated by live-range edges are 
eliminated, a dummy node, vd is introduced if there is 
some node v with more than one outgoing edge. Edges 
are classified according to their usage in the 
formulation and they are given a type from the set {0, 
1, 2, 3}. All the edges are initially classified as type-0 
edges. For each node v with more than one outgoing 
edge, we introduce a live-range edge between node v 
and its dummy node vd. Such edges (v, vd) are classified 
as type-3 edges. For each node w, a successor of node 
v, edge (v, w) is called a reflexive edge and it is marked 
type-1. Then for each reflexive edge (v, w), we 
introduce a dummy edge (w, vd) and mark this edge as 
a type-2 edge. In Figure 1-(a), node G has two 
outgoing edges (G,E) and (G,H). Thus, a dummy node 
Gd is added as well as two dummy edges (E,Gd) and 
(H,Gd) for the reflexive edges (G,E) and (G,H), 
respectively, as shown in Figure 1-(b). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the definitions of edge sets given above, 
edges of type-3 generate redundant inequalities if they 
are considered in the precedence constraints; and edges 
of type-1 and type-2 do not contribute in the memory 
usage because their role is taken by type-3 edges. Thus, 
type-3 edges are not to be considered in the precedence 
constraints while type-1 and type-2 edges are not to be 
considered in the memory constraints. 

For mixed integer linear programming 
formulation, we introduce a 0-1 (unknown) variable, 
xij, that takes a value 1 if node i starts to be evaluated at 
time-step j, and 0 otherwise. Equation (1) below is 
developed to precisely define the memory usage at 
time-step j, memj. It considers the contribution of node 
i in memory usage during the set of time-steps starting 
directly after it finishes its processing until its last 
parent l is processed completely, which is captured by 
the first term inside the summation over the DFG edges 
E. In addition, the memory contribution of a node j to 
the memory usage while it is being processed is 
considered by the second term inside the summation 
over the set V of the DFG nodes: 
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III.  Evaluation Order and Performance-

Constrained Evaluation (EOPCE) 
Given a DFG representation of the evaluation 

order problem G(V, E, M), the execution time needed 
for each node D, and the total time allowed to finish 
the computations (in  number of time units) λ, the goal 
is to find an evaluation order for these data objects that 
achieves the least memory usage. The formulation is as 
follows. 

G: 25A: 20 C: 30
D: 9 

B: 3 H: 5

E: 16  Objective Function 

The objective is to minimize memory usage 
required at any time during the DFG evaluation 
process. This amount of memory space is expressed as 
the maximum memory usage at any time-step. Thus, 
the objective function is expressed as: 

F: 15

(a) I: 16

Minimize:          mem,   (2) 

where mem  will be used as a variable to be evaluated. 

 Uniqueness Constraints 

Each node should start at exactly one time-step 
within its time-frame. Inequality (3) is used to model 
this constraint. 

)3()(,1 iRjix
j

ij ∈∀=∑  Figure 1: Sample DFG for memory evaluation: 
(a) original DFG, (b) the preprocessed DFG. 

Gd 3/8 

C 1/5 G 1/6A 1/6 

D 2/6 B 2/7 H 2/8 

E 3/7 

F 4/8 

I 5/9 (b) 
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 Precedence Constraints 

The fact that a data object can start to be evaluated 
only after all its data inputs (children) are ready is 
modeled as a precedence relation, one for each child-
parent pair as shown in inequality (4), where each 
summation term in the left-hand side expresses the 
time-step at which a data object starts execution. Note 
that, in the case where the evaluation order is the 
objective, the delay, D(i), is treated as one. 
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        (4) 

 Memory Constraints 

The maximum memory space required during 
computation process is modeled by using a single 
variable that constrains total memory usage of all 
active nodes at each time-step as shown in inequality 
(5) and then minimizing that variable as the objective 
function. 
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In case the objective is the evaluation order 
without any constraint on the time needed, the 
execution time for each node is treated as one. In 
addition, another constraint is needed to force that at 
each time-step exactly one node is evaluated. This can 
be modeled as Equation (6). 
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IV.  Memory-Constrained Evaluation  
Given a DFG representation of the evaluation 

order problem G(V, E, M), the execution time needed 
for each node D, and the maximum memory space 
allowed, mem_constraint, the goal is to find an 
evaluation order for these data objects that minimizes 
the total execution time needed.  

The mathematical formulation is similar to the 
EOPCE problem described above. Uniqueness and 
precedence constraints are as described in inequalities 
(3) and (4), while the memory constraint is different 
from the one in inequality (5) in which the maximum 
memory is explicitly posed as a constraint by the input 
mem_constraint value rather than by a variable as 
shown in inequality (7). Note that λub used in inequality 
(7) is an upper-bound estimation of the total execution 
time. The total execution time, λ, is used twice as a 
variable, one to pose a constraint over the start time-

step of the last node in the DFG (node without 
successors) as shown in inequality (8) and the other as 
the objective function to be minimized as shown in 
Equation (9). 
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 Time Constraints 
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 Objective function 

Minimize:    Total execution time, λ         (9) 

 
V.  Design Space Exploration 

For design space exploration (DSE), we have 
adopted an efficient strategy in doing the experiments 
that can precisely identify the pareto points in the 
design space. A point in the design space that achieves 
the least memory usage for a given time constraint, 
while the time constraint is the minimum execution 
time for that memory usage is called a pareto point. 
This strategy is depicted in Figure 2.  

 
time constraint L  

 
 PCE

MCE

PCE 

L2 = L? 

M2 = M?

Store this pareto point 

 M 
 

 
L2 

 
No 

 

 
Yes

 M2 
 

 
Yes 

 No 
 

 Try another time constraint 
 

Figure 2: Flow chart for DSE strategy.  

 3



(a) (b) 

A

C

B

G

E 

F

D

N 

K 

H

L J

M 

I

C 

E 

D 

A B First, for a given time constraint L, we solve the 
PCE problem to find the least memory usage M. Then 
this memory M is used as a constraint in solving the 
MCE problem to find the minimum total execution 
time L2. If that execution time L2 is the same as the 
time constraint L, then this point (L, M) is a pareto 
point, otherwise L2 is fed back to the PCE as a 
constraint to find the least memory usage M2. Again, if 
this resultant memory M2 is the same as M, then (L2, 
M) is a pareto point. 

In DSE, the execution time taken by the ILP solver 
for each experiment as well as the total execution time 
needed to fully explore the design space depends on 
many factors. It depends on the DFG structure, how far 
the time constraint is from the critical path length, the 
number of nodes in the DFG, as well as the distribution 
of memory costs of the DFG nodes. The first two 
factors define the number of variables associated with 
each node while the number of DFG nodes contributes 
to the total number of variables. The memory cost 
distribution of DFG nodes as well as the DFG structure 
shape the search space in the ILP solver for optimal 
objective function and hence the solution time. 

 
VI.  Experimental Results 

We have used five diverse examples to work as 
benchmarks in testing our presented ILP formulations 
for memory evaluation problem. These test examples 
are Exdag1 shown in Figure 1, Ex1 that is a tree 
structure of Exdag1 after the edge (G, E) is removed, 
Ex2 that is the same as Ex1 but with different memory 
cost for each node, and Ex3 and Ex4 presented in 
Figure 3-(a) and 3-(b), respectively. Ex3 and Ex4 have 
the same number of nodes, memory costs, and 
execution time, but are different in the graph structure. 
The Experiments take place on the SUN ENTERPRISE 
4500 workstation. This workstation has eight 333MHz 
SPARC CPU’s and 2GB RAM, and it works with 
SOLARIS 8 operating system. 

Results for memory evaluation under timing 
constraints when the computation elements (nodes) are 
assumed to have unit time delays are shown in Table 3, 
while the results for the general case in which the 
computation elements can take different times to be 
processed are shown in Table 4. The optimal ILP 
solution (maximum memory usage in case of PCE 
problem and the number of time units in case of the 
MCE problem) is tabulated under the heading “ILP”. In 
the result tables, “L” is the time constraint, “mem” is 
the memory constraint, and “time” is the ILP solution 
time in seconds. Experiments are done for different 
time-constraints ranging from the critical path length to 
twice the critical path length in the general case and for 
a time-constraint equaling the number of nodes in the 
case of a unit time delay. 
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L
 
 
 
 
 
 

node A B C D E F G 
M 2 20 12 9 11 7 9 
d 3 2 1 1 2 1 1 
node H I J K L M N 
M 5 12 16 

 
 
 
 
 11 13 5 8 

d 2 1 2 2 1 2 1 

(c) 

 
 
 
 Figure 3: Sample examples for memory evaluation: 

(a) Ex3,  (b) Ex4, (c) memory size, M, and delay, 
d, for each node in (a) and (b).

 
 
 
 Table 3: Performance constrained evaluation 

with unit delay  
 (b) Ex2 

L ILP time
9 44 0.38
8 47 0.21
7 54 0.17
6 59 0.05
5 75 0.01

(a) Ex1 

L ILP time
9 39 0.44
8 45 0.20
7 53 0.11
6 59 0.05
5 64 0.02

 
 
 
 
 
 
 
 

(d) Exdag1 

L ILP time
9 50 0.38
8 53 0.22
7 58 0.11
6 59 0.04
5 84 0.01

(d) Ex3 

L ILP time
14 43 16.2
10 46 1.03
8 54 0.19
7 61 0.01
6 79 0.02

 
 
 
 
 
 
 
 
  (d) Ex4 

L ILP time 
14 34 11.4 
12 34 2.7 
10 35 0.79 
8 46 0.08 
7 52 0.01 

 
 
 
 
 
 
 
 

Optimal ILP results for memory-constrained 
evaluation are presented in Table 5 for different values 
of memory constraints for each test example. Results 
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show that the ILP solution time is a fraction of second 
and it is large only when the time constraint is far from 
the length of the critical path and when the memory 
constraints are very stringent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VII. Conclusion 
In this paper, we have addressed the problem of 

memory usage optimization in the evaluation of 
computations with large data objects. We are interested 
in the situations where the data objects are so large to 
fit in memory that they have to be dynamically 
allocated and deallocated during expression evaluation. 
We addressed the problem of finding an evaluation 
order for these data objects to achieve the least memory 
usage as well as its two variations in the case of 
multiple-processors using shared memory. These 
problems are the performance-constrained evaluation 
(PCE) and memory-constrained evaluation (MCE). We 
have developed an ILP formulation to optimally solve 
the three problems. Solution results show that the ILP 
solution time is small especially when the time 
constraint is close to the critical path length or when 
the memory constraint is less stringent. 

Table 4: Performance constrained evaluation 
(b) Ex2 

L ILP time
20 44 8.35
18 47 2.2 
15 57 1.0 
12 59 0.12
10 84 0.06

(a) Ex1 

L ILP time 
20 39 5.53 
15 53 0.75 
12 64 0.08 
11 67 0.03 
10 78 0.03 

(c) Exdag1 

L ILP time 
20 50 28.5 
15 58 0.81 
12 67 0.08 
11 78 0.08 
10 78 0.03 

(d) Ex3 

L ILP time
16 43 7.18
14 47 1.58
12 50 0.46
10 67 0.09
8 83 0.02
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(e) Ex4 

L ILP time 
22 34 28.5 
16 35 4.0 
14 41 0.62 
12 46 0.13 
11 46 0.03 
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