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Abstract. Performance optimization of stencil computations has been
widely studied in the literature, since they occur in many computation-
ally intensive scientific and engineering applications. Compiler frame-
works have also been developed that can transform sequential stencil
codes for optimization of data locality and parallelism. However, loop
skewing is typically required in order to tile stencil codes along the time
dimension, resulting in load imbalance in pipelined parallel execution of
the tiles. In this paper, we develop an approach for automatic paralleliza-
tion of stencil codes, that explicitly addresses the issue of load-balanced
execution of tiles. Experimental results are provided that demonstrate
the effectiveness of the approach.

1 Introduction

Stencil computations represent a practically important class of computations
that arise in many scientific/engineering codes. Computational domains that
involve stencils include those that use explicit time-integration methods for nu-
merical solution of partial differential equations (e.g., climate/weather/ocean
modeling [23], computational electromagnetics codes using the Finite Difference
Time Domain method [27]), and multimedia/image-processing applications that
perform smoothing and other neighbor pixel based computations [13]. There
has been some prior work from the computer science community that has ad-
dressed performance optimization of stencil computations (e.g., [24, 19, 18, 10]).
Since stencil computations are characterized by a regular computational struc-
ture, they are amenable to automatic compile-time analysis and transformation
for exploitation of parallelism and data locality optimization. However, as elab-
orated later through an example, existing compiler frameworks have limitations
in generating efficient code optimized for parallelism and data locality.

Loop tiling is the key transformation to enable parallelization and data-
locality optimization of stencil codes. Much research has been published on
tiling of iteration spaces [17, 29, 28, 26, 8, 25, 21, 22, 14, 7, 15, 9, 16, 3]. With few



exceptions (e.g. work of Griebl [11, 12]), research on performance optimization
with tiling has generally focused on one or the other of the two complementary
aspects: (a) data locality optimization [2, 3, 28, 26, 8]; or (b) tile size/shape opti-
mization for parallel execution [25, 21, 6, 14, 7, 15, 9, 16]. Tiling for data locality
optimization involves maximization of data reuse, i.e., tiling along directions of
the data dependence vectors. But such tiling may result in inter-tile dependences
that inhibit concurrent execution of tiles on different processors. To the best of
our knowledge, no prior work has addressed in an integrated fashion, the issues
of tiling for data locality optimization and load balancing for parallel execution.
We first use the simple example of a 1-D Jacobi code to illustrate the problem
and introduce two approaches we propose to avoid the problem: overlapped tiles
and split tiles. As an example of a stencil computation, let us consider the 1-D
Jacobi code shown in Figure 1. Optimizing this stencil computation for reduc-
tion of cache misses requires loop fusion and tiling; in order to fuse the two
inner loops, loop skewing is needed. Frameworks have been previously proposed
for data locality optimization of imperfectly nested loops. Using an approach
proposed by Ahmed et. al. [3, 4] the loop nest can be transformed into the one
shown in Figure 2 by first embedding the iterations in the imperfectly-nested
loops into a perfectly-nested iteration space. Loop transformations and tiling
can then be applied in the transformed perfectly-nested iteration space. The
transformed iteration space can be subsequently translated into efficient code
by reducing/eliminating the control overhead [20]. In this paper, we focus on
load-balanced parallel execution of tiled iteration spaces that have already been
embedded into a perfectly-nested iteration space using a technique such as that
developed in [4].

Figure 3 shows a single-statement form of the 1-D Jacobi code obtained by
adding an additional dimension to array A. The flow dependences in this code
are the same as that of the previously shown version, but there are no anti-
dependences. Hence a single statement is sufficient in the loop body instead of a
sequence of two statements, for update and copy, respectively, as seen in Figures 1
and 2. Although such a memory-inefficient code would not be used in practice,
it is more convenient to use a single-statement iteration space in explaining the
main ideas in this paper. However, the developed approach is not restricted to
such single-statement loops, but is applicable to general multi-statement stencil
codes such as the one in Figure 1. The generalization of the approach for the more
memory-efficient multi-statement versions of code is explained in the Appendix.
The experimental results presented later also use the memory-efficient multi-
statement versions.

The perfect loop nest of Figure 3 has constant dependences (1, 0), (1, 1), and
(1,−1). Tiling for data reuse optimization (e.g. using the approach presented
in [2]) results in tiles of shape as shown in Figure 4. The horizontal axis corre-
sponds to the spatial dimension, with time along the vertical dimension. Using
a sufficiently large tile size along the time dimension facilitates significant data
reuse within caches/registers. However, there are inter-tile dependences in the
horizontal direction, inhibiting concurrent execution of tiles by different proces-



for t = 0 to T-1

for i = 1 to N-1

(S1) B[i] = (A[i-1]+A[i]+A[i+1])/3;

for i = 1 to N-1

(S2) A[i] = B[i];

Fig. 1. Example: 1-D Jacobi code

for t = 0 to T-1

for i = 1 to N

if(i>=1 and i<=N-1)

(S1) B[i] = (A[i-1]+A[i]+A[i+1])/3);

if(i>=2 and i<=N)

(S2) A[i-1] = B[i-1];

Fig. 2. Fused 1-D Jacobi code

sors. However, if the vertical tile size is reduced to one (i.e., tiling is eliminated
along the time dimension), all tiles along the spatial dimension (adjoining the
x-axis) can be executed concurrently. Thus there is a trade-off between achieving
good data reuse and load balancing of parallel execution.

Instead of the standard tiling described above, consider the tiling shown in
Figure 5. Starting with the tiles formed by the same hyperplanes, an additional
triangular region is added to the left of the tile, overlapping with the points
at the right end of the neighboring tile. With this tiling, the iteration points
processed by the tiles are no longer disjoint. Some of the iterations are executed
redundantly by two neighboring tiles. This results in an increase in the com-
putation cost. But doing so eliminates the dependence between tiles along the
horizontal direction. All processors can start executing in parallel, eliminating
the initial processor idling that results with the pipelined parallel execution of
tiles in Figure 4.

While standard tiling can enhance data locality in this context, overlapped
tiling can both improve data locality and eliminate the overhead of pipelined
parallelism, at the cost of slightly increased computation time. However, the
increased computational cost is independent of tile size. Therefore the fractional
computation overhead is inversely proportional to the tile size in the direction
of overlapped tiling, and can be made insignificant if a sufficiently large tile size
is chosen along the time dimension.

An alternate approach, shown in Figure 6, splits the interior of each tile into
two sub-tiles, where the points in only one of the two sub-tiles (shaded) are
dependent on points in the neighbor tile, while the points in the other sub-tile
are not dependent on any neighboring tile’s points, and therefore executable
concurrently. With this approach, each standard tile is split into two sub-tiles,
and load-balanced concurrent execution is possible as a sequence of two steps:
first all non-dependent sub-tiles are concurrently executed and communicate



with the neighbor tiles, and then the dependent sub-tiles are all concurrently
executed.

for t = 0 to T-1

for i = 1 to N-1

A[t,i] = (A[t-1,i-1] + A[t-1,i] + A[t-1,i+1])/3;

Fig. 3. Single-statement form of 1-D Jacobi code

The paper is organized as follows. Section 2 defines the problem addressed in
this paper. In Section 3, we characterize the conditions under which tiled itera-
tion spaces can benefit from overlapped/split tiling. In Section 4, we show how to
transform a given tiled iteration space in order for overlapped/split tiling to be
applicable. Section 5 discusses code generation. Section 6 provides experimental
results that demonstrate the benefits of overlapped/split tiling. In Section 7, we
discuss related work and conclude in Section 8 with a summary.

2 Background and Problem Statement

This section introduces some standard background on the polyhedral model of
computation, and defines the problem addressed. Consider a perfectly-nested
loop nest with n levels of nesting. The iteration space polyhedron defines an n-
dimensional set of points, characterized by a set of bounding hyperplanes and
modeled as B.I ≥ b where I is the iteration vector. The rows bi of B define the
normals to the corresponding bounding hyperplanes. For example, the iteration
space for the 1-D Jacobi example is
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The dependences in the computation can be represented by a matrix D where
each column defines a dependence vector. The dependences in the 1-D Jacobi
example are

D =
(

d1 d2 d3

)

=

(

1 1 1
−1 0 1

)

Assume that we are given a set of tiling hyperplanes that tile the iteration space.
These hyperplanes are represented by a matrix H, where each row represents
the normal vector of a tiling hyperplane. For example, the tiling hyperplanes
corresponding to Figure 4 are represented as

H =

(

h1

h2

)

=

(

1 0
1 1

)



Fig. 4. Standard tiling for 1-D Jacobi code. s1 and s2 denote the inter-tile dependences.

Fig. 5. Overlapped tiling for 1-D Jacobi.

A tiling defined by a set of tiling hyperplanes is legal if each tile can be executed
atomically and there exists a valid total ordering of the tiles. Intuitively, a tiling
is legal if no two tiles mutually depend on each other. It can be shown [17] that
this validity condition is given by

H.D ≥ 0

A schedule has a concurrent start property if all processors can start execution
in parallel, without any pipeline start-up delay. Such a schedule is referred to as
a concurrent-start schedule.

Problem Statement. Consider a given (non-tiled) iteration space in which a
concurrent-start schedule is possible. However, for a given tiling of this space
defined by a set of tiling hyperplanes, it is possible that the tile dependencies in
the corresponding tiled iteration space inhibit concurrent start. We consider the
following question: How can concurrent start be achieved in the tiled iteration
space? Our first goal is to characterize analytically the situations in which tiling
inhibits concurrent start. Next, we develop two approaches, overlapped tiling
and split tiling, that enable concurrent start in the tiled space and recover the
load-balancing properties lost due to tiling.

3 Inhibition of Concurrent Start

If the original non-tiled iteration space does not have a concurrent start schedule,
tiling cannot enable such a schedule. However, if concurrent start is possible in
the absence of tiling, the introduction of tiling can potentially inhibit this con-
current start. This section characterizes the conditions under which a non-tiled



Fig. 6. Split tiling for 1-D Jacobi.

Fig. 7. Iteration spaces with (1, 0) and (0, 1) dependencies: (a) concurrent start is not
possible (b) concurrent start is possible from the gray boundary.

space supports a concurrent start schedule, and then derives a concurrent start
inhibition condition for the tiled space. For simplicity of presentation, the dis-
cussion assumes an iteration space with a single statement, but we have defined
a general version of the technique for multi-statement iteration spaces (outlined
in the appendix).

3.1 Concurrent Start in the Non-Tiled Space

First, we describe the condition for the existence of concurrent start in the orig-
inal non-tiled iteration space. Consider, for example, dependence vectors (1, 0)
and (0, 1). Two iteration spaces with these dependences are shown in Figure 7.
In Figure 7(a), the parallel computation has to begin from the origin (0, 0) and
suffers from pipeline start-up overhead. On the other hand, the iteration space
in Figure 7(b) can be traversed by all processors in parallel starting from the
boundary shown in gray.

In general, the presence of concurrent start in an iteration space depends on
the boundaries that define the iteration space polyhedron. An iteration space
supports concurrent start if there exists a bounding hyperplane that does not
contain a dependence, i.e. carries all dependences. A hyperplane contains a de-
pendence if both the source and destination iteration points of the dependence
are contained in the hyperplane. Since the rows bi of B define the normal vectors



of the bounding hyperplanes, this property is represented by the condition

∃bi ∈ B : ∀dj ∈ D : bi.dj > 0

Note that this condition is independent of the tiling hyperplanes. We will refer
to this property as the point-wise concurrent start condition. When this condition
does not hold, no tiled iteration space can have concurrent start. For the 1-D
Jacobi example, the condition holds because the normal vector b1 = (1 0) for
one of the bounding hyperplanes satisfies b1.dj > 0 for all dependence vectors
dj .

3.2 Inhibition of Concurrent Start in the Tiled Space

Next, we consider the condition for the inhibition of the concurrent start condi-
tion in the tiled iteration space. Given the tiling hyperplanes and their normal
vectors hi ∈ H, we define the shift vector si for the hyperplane with hi as normal
to be a vector connecting two instances of the same hyperplane, while traveling
parallel to all other hyperplanes. Clearly, the following holds for the set S of
shift vectors:

∀si ∈ S : ∀j 6= i : hj .si = 0

For the 1-D Jacobi example, we will use shift vectors (as illustrated in Figure 4):

S =
(

s1 s2

)

=

(

0 1
1 −1

)

.

The execution of two adjacent tiles should be ordered if there is a dependence
vector dj such that for some iteration points i1 and i2 related by dj , point i1 is
in one of the tiles and point i2 is in the other one. Note that this is possible only
if there is a dependence that passes through the hyperplane that separates the
two tiles — in other words, if the following condition holds

∃dk ∈ D : hi.dk 6= 0.

When this condition is satisfied for a given hyperplane with hi ∈ H, the shift
direction si along that dimension carries the inter-tile dependence. For the 1-
D Jacobi example, both s1 and s2 carry inter-tile dependencies (for example,
h1.d1 > 0 and h2.d1 > 0).

The inter-tile dependences can introduce dependence directions that do not
exist in the original iteration space. The concurrent start condition is inhibited in

the tiled iteration space, if for some boundary bi, the concurrent start condition
is satisfied by the dependences in the original iteration space, but not by the
inter-tile dependences in the tiled iteration space. A tiling inhibits concurrent
start if

∃bi ∈ B, hj ∈ H, dk ∈ D : bi.D > 0 ∧ bi.sj = 0 ∧ hj .dk 6= 0.

When the above condition is true, there exists an inter-tile dependence within
a hyperplane parallel to the boundary bi, precluding concurrent execution of



all the tiles in the boundary. Thus, concurrent start is inhibited even though
the original iteration space supports it. This situation occurs for the 1-D Jacobi
example due to bounding plane normal b1 = (1 0), tiling hyperplane normal
h1 = (1 0), and any dependence dk for k = 1 . . . 3.

4 Hyperplanes for Overlapped/Split Tiling

4.1 Overlapped Tiling

The basic idea behind overlapped tiling is to eliminate certain inter-tile depen-
dencies by “duplicating” points in the original iteration space. As a result, the
same iteration point can be a member of two neighboring tiles (i.e., the tiles can
overlap). This section outlines a constructive procedure to determine overlapping
tiles that eliminate the inter-tile dependences, which removes the inhibition on
concurrent start. The key step is the construction of a companion hyperplane

that eliminates the dependence along a desired direction. The new tile will not
have any incoming dependence along the direction in which the dependence was
eliminated.

In standard tiling, a hyperplane with a normal vector hi defines two faces of
the tile. We will denote these faces as hi(l) (the back face) and hi(l+1) (the front
face). The front face is shared with the subsequent tile along the shift direction
defined by shift vector si. The back face hi(l) has no incoming dependences if
hi.D ≥ 0. On the other hand, the front face hi(l + 1), by the tiling validity
condition, does not have any incoming dependences. All dependences between
the hyperplanes can be eliminated if the back face of the tile is replaced by an
overlapped hyperplane with a normal vector h′

i such that

∀dj ∈ D : h′
i.dj ≤ 0.

Note that the hyperplanes span the iteration space and any vector in the
iteration space; hence, the companion hyperplane can be defined as a linear
combination of the existing hyperplanes. Scaling a given hyperplane vector hi

does not eliminate any additional dependences. In addition, we are interested
in the companion hyperplane that forms the back face of the tile. Thus, it is
constructed by going “backwards” on the other hyperplanes, represented by a
negative linear combination of the hyperplanes, and is given by:

hi.D ≥ 0 ⇒ h′
i = hi −

∑

j 6=i

kj .hj ∧ h′
i.D ≤ 0 ∧ kj > 0.

Such a companion hyperplane eliminates dependences along a shift vector. This
procedure is repeated for every hyperplane/shift vector that inhibits concurrent
start.

4.2 Split Tiling

Overlapped tiling eliminates inter-tile dependences by redundantly computing
portions of a tile. While eliminating dependences, this approach increases the



overall amount of computation. In this section we leverage the idea of dependence
inhibition to develop an alternative approach, referred to as split tiling, in order
to enable concurrent start without the computation overhead. In split tiling,
rather than redundantly computing a portion of the predecessor tile along a di-
mension, the processor executing the predecessor tile first computes that portion
and sends the results to its successor along that dimension.

We show that for stencil computations, a tile sub-region can be identified
such that this sub-region can be executed in parallel in all tiles. This enables
concurrent start. We outline an algorithm that divides a tile into sub-regions
and schedules the computation and communication to achieve concurrent start
and load-balanced execution in which all processors execute the same amount of
work in all the steps in the schedule.

Tile Regions A tile in a stencil computation is bounded by the hyperplane
instances:

∀I,B.I ≥ b, hj ∈ H : hj .I ≥ loj , hj .I ≤ hij ,

where two parallel instances of each hyperplane are defined, one bounding the
tile below along that dimension and another bounding the tile from above.

Along a dimension j, dependence inhibition identifies a partner hyperplane
such that the region enclosed by the partner hyperplane (h′

j) in the positive
direction (h′

j .I ≥ lo′i can be computed independently of the rest of the tile. This
region was redundantly computed in the overlapped tiling approach.

Definition 1 The independent region along a dimension j is denoted by ¬j.
The rest of the tile along that region will be denoted by j.

In the subsequent discussion, it should be clear from the context whether j
refers to the dimension or to the complement of the independent region along
that dimension.

The region ¬j is defined by making the partner hyperplane to be bounded
from below along that dimension:

∀I,B.I ≥ b, hk ∈ H, k 6= j : hk.I ≥ lok, hk.I ≤ hik

∀I,B.I ≥ b : h′
j .I ≥ lo′k, hj .I ≤ hij

Note that the hyperplanes along all the other dimensions remain unchanged.
A tile can be divided into these two regions along each of the dimensions. The

various intersections of these regions divides the tile into 2k tile components for k
such dimensions. We only consider dimensions along which there is potential for
dependence inhibition, which would eliminate the time dimension. For example,
a tile in the 2-D Jacobi code with x and y as the dimensions can be divided into
the components ¬x ∩ ¬y, ¬x ∩ y, x ∩ ¬y, and x ∩ y.

From the definition of independent region, a tile component ¬i ∩ . . . is not
dependent on its predecessor along dimension i. Thus, the tile component that
is the intersection of the independent tile region along all the processors can be



computed in parallel, without any communication — that is, all processors can
start executing this in parallel, resulting in concurrent start.

Consider the tile component i∩ . . ., where all other tile regions are indepen-
dent. This tile component does not carry any dependence along any dimension
other than i. The region in the predecessor tile that it depends on is derived as
the tile-component with the same hyperplanes along all other dimensions as the
tile component, with the hyperplanes along dimension i replaced by the lower-
bounding hyperplane for this tile becoming the upper-bounding hyperplane, and
the partner hyperplane for dependent inhibition becoming the lower-bounding
hyperplane. This is the tile component ¬i∩ . . .. Thus, the tile component i∩ . . .
can be computed once the boundary along i computed by ¬i ∩ . . . in the prede-
cessor tile.

In general, for each dimension i along which a tile component is dependent,
the inter-tile boundary is computed by the tile component in the predecessor
tile obtained by replacing i by ¬i For example, the tile component x ∩ y in the
2-D Jacobi code can be computed after the shared boundary with ¬x ∩ y is
received from the predecessor along x, and the one with x∩¬y is received from
the predecessor along y.

1. If (n==1), say a dimension x. Compute ¬x, send and receive the result

along the x dimension, compute x and return.

2. Execute algorithm for (n-1)-dimensional stencil computation for

all dimensions except one, say z. Thus all values computed will be

for those independent along z (all tile sections have ¬z as the z

dimension component).

3. Send all computed values along the z dimension.

4. Execute algorithm for n-dimensional stencil computation for all

dimensions except z. But this time, all values computed will be

dependent for dependent regions along z.

Fig. 8. Computation/communication scheduling algorithm for split-tiling

Figure 8 presents a scheduling algorithm with 2n−1 communication steps for
an n-dimensional stencil computation. In this recursive formulation, the number
of communication steps is given by: L(n) = 2 ∗ L(n − 1) + 1 with L(1)=1; that
is, L(n) = 2n − 1. Note that this approach does not incur any addition compu-
tation cost. In addition, only inter-tile boundaries in the spatial dimensions are
communicated, thus incurring the same communication volume cost as standard
tiling.

5 Code Generation

In this section, we discuss the generation of the code for the iteration space
with the overlapped and split tiles. We describe the derivation of the parameters



necessary to utilize the code generation framework described by Ancourt and
Irigoin [5].

Each tile in the tiled iteration space is identified by a tile origin. The execution
of the tiled iteration space is defined as the traversal of the tiles in terms of their
origins, together with the execution of the iterations mapped to each tile as it is
traversed.

The origin of the tiled iteration space defined to be the origin of the original
iteration space. Given the origin, all the tile origins can be enumerated as linear
combinations of the shift vectors. The tile size is defined as the distances between
the tile origins along the shift vector, and is embedded in the specification of the
shift vector itself.

The matrix of shift vectors specifies the traversal order of the tile origins.
The shift vectors are ordered to enable an outer loop along the direction bi so
that there is parallelism-inner synchronization-outer.

Given the tile origin x0, defined equivalently in terms of the shift vectors
or as iteration points in the original iteration space, each of the hyperplanes
bounding the tiles can be identified by a point in it. For hyperplanes hi along
which no overlap is identified as necessary, the iteration points x in the iteration
space that form this tile satisfy the following conditions:

hi.x ≥ hi.x0 ∧ hi.x < hi.(x0 + si).

Note that x0 is a vertex on all the non-overlapped hyperplanes that form the
back face of the tile; and x0 + si is a point on the front face of the tile for all
hyperplanes hi. Since overlapping does not change the front face, this is also true
for hyperplanes that utilize overlap.

When an overlapped hyperplane is identified along a dimension, we replace
the back face of the original hyperplane hi by an overlapped hyperplane h′

i. Since
h′

i is constructed from hi by only shifting it along the other hyperplanes, the
point x0 +

∑

j 6=i sj is a valid point on it irrespective of the choice of h′
i. Thus

the boundary conditions for the tile for these hyperplanes is given by:

hi.x ≥ hi.(x0 +
∑

j 6=i

sj) ∧ hi.x < hi.(x0 + si).

Given the tile origins and their traversals, and the shape of the overlapped tile,
the code generation procedure of Ancourt and Irigoin [5] can be used to generate
code. The generated code would have n outer tile space loops, each correspond-
ing to a tiling hyperplane, and inner loops enumerating all iterations belonging
to a tile. Let us assume that k of the n hyperplanes have been identified for
overlapped tiling. Overlapped tiling enables concurrent start along a hyperplane
by eliminating any inter-tile dependence along that hyperplane. Hence, the tile
space loops corresponding to the remaining n−k hyperplanes carry all inter-tile
dependences, and can be run sequentially as the outer loops, and the k tile space
loops corresponding to overlapped tiling hyperplanes can all be run in parallel
by mapping to a k-dimensional or lower dimensional processor space.



The traversal of tile origins for split tiling is the same as that for standard
tiling. The intra-tile code is generated for the various tile components by scan-
ning the polytopes derived by specifying the appropriate hyperplane instances
that bound the tile component, as defined earlier. The appropriate hyperplane
boundaries between sub-tiles define the data to be communicated between pro-
cessors for the communication phases, as discussed earlier.

6 Experimental Evaluation

Both the proposed tiling schemes—overlapped tiling and split tiling—enable
load-balanced tiled execution of stencil codes that inherently satisfy the concurrent-
start criterion. The degree of exploited concurrency is the same with both
schemes; they differ in the computation/communication overheads relative to
standard tiling. With overlapped tiling, there is a small amount of computa-
tional overhead and also a small increase in the total communication volume.
Split tiling requires no additional redundant computations and requires exactly
the same total communication volume as standard tiling, but requires additional
messages, i.e., incurs a higher message-startup-cost overhead.

Below, we report experimental results comparing overlapped/split tiling with
standard (pipelined) tiling for the 1-D Jacobi code. The experiments were con-
ducted on a cluster consisting of 32 compute nodes each of which is a 2.8 GHz
dual-processor Opteron 254 (single core) with 4GB of RAM and 1MB L2 cache,
running Linux kernel 2.6.9. We used one processor per node in our experiments.
The code was compiled using the Intel C Compiler with -O3 optimization flag.

The iteration space of 1-D Jacobi has a space dimension and a time dimen-
sion. Two versions of pipelined schedule were implemented: (i) one in which the
processor space was mapped along the time dimension and time along the space,
and (ii) the other one in which the processors were distributed in a block-cyclic
fashion to execute tiles along time dimension.

First we conducted experiments to determine the optimal time tile size and
space tile size for the two pipelined schedules. The experiments were conducted
for 1000 time steps on 32 processors for a total problem size of 64000 elements.
The execution times are shown in Figures 9(a) and 9(b). The number of commu-
nication startups decreases with an increase in the spatial tile size. This typically
results in a decrease in the execution time with an increase in the space tile size.
But for larger space tile sizes, the pipeline startup costs increase thus dominat-
ing and increasing the execution time. Increase in the time tile size reduces the
number of time tiles and hence the number of synchronizations. But larger time
tile sizes as in the case of larger space tile sizes increase the pipeline startup
costs. Hence an increase in the time tile size decreases the execution time until
the pipeline startup costs begin to dominate. The execution times for both the
pipelined schedules, as inferred from the experiments, are minimum for a time
tile size of 16 and space tile size of 1000. Hence a time tile size of 16 and space
tile size of 1000 were used for subsequent evaluation of the schemes.
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Fig. 9. Space and time tile size for pipelined tile schedules

For overlapped and split tiling, the space tile size is fixed to be N/nproc,
where N is the space dimension size and nproc is the number of processors used
for parallel execution. The time tile size is chosen to be 16 to match the choice
for the pipelined schedules.

Given these choices of space and time tile sizes, the performance of the four
schemes for various problem sizes is shown in Figure 10(a). The split and over-
lapped tiling schemes result in a linear increase in execution time with problem
size, unlike the pipelined tiling solutions. The improvement in execution time
achieved by split and overlapped tiling schemes with increase in problem size is
due to the better exploitation of data locality. In addition, unlike the pipelined
schedules, the communication cost is independent of the problem size.

The improved scalability of the overlapped and split tiling schemes, due to
an absence of the pipeline startup cost, is shown in Figure 10(b). The problem
size was fixed at 20000 elements per processor. The number of processors was
varied to measure the weak scaling capability of the various schemes. A straight
line parallel to the x-axis corresponds to linear scaling. The split tiling solution
performs best, followed by the overlapped tiling solution. The pipelined schedules
suffer from performance degradation with increase in the number of processors.

6.1 Multi-statement stencils

We now consider multi-statement stencil codes that are representative of mul-
timedia applications. The code is a sequence of loop nests with a producer-
consumer relationship between adjacent ones as shown in Figure 11. The ‘par-
allel’ implementation exploits do-all parallelism in each loop nest with synchro-
nization after each of the loop nests. The finite number of statements limits solu-
tions exploiting pipelined parallelism to five processors. Figures 12(a) and 12(b)
show the performance measured with overlapped and split tiling for this code.
As can be seen from Figure 12(b), split and overlapped tiling perform better
than the straightforward parallel implementation. The speedup with overlapped
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Fig. 10. Performance improvement with Split and Overlapped tiling for 1-D Jacobi

for i=2 to N-2

a1[i] = 0.33*(in[i-1] + in[i] + in[i+1]);

for i=3 to N-3

a2[i] = 0.33*(a1[i-1] + a1[i] + a1[i+1]);

for i=4 to N-4

a3[i] = 0.33*(a2[i-1] + a2[i] + a2[i+1]);

for i=5 to N-5

a4[i] = 0.33*(a3[i-1] + a3[i] + a3[i+1]);

for i=6 to N-6

a5[i] = 0.33*(a4[i-1] + a4[i] + a4[i+1]);

Fig. 11. Example multi-statement stencil code.

and split tiling is super-linear due to exploitation of data locality and enabling
of concurrent start.

7 Related Work

Several recent works have presented manual optimizations and experimental
studies on stencil computations [19, 18, 10]. Iteration space tiling [17, 29] is a
method of aggregating a number of loop iterations into tiles where the tiles exe-
cute atomically; communication (or synchronization) with other processors takes
place before or after the tile but not during the execution of the iterations of
a tile. Several works have used tiling for exploiting data locality [2, 3, 28, 26, 8].
Others have addressed the selection of tile shape and size to minimize overall
execution time [25, 21, 6, 22, 14, 7]. The size of tiles has an impact on the amount
of parallelism and communication: smaller tiles increase parallelism by reduc-
ing pipelined startup cost, while larger tiles reduce frequency of communication
among processors. This has been studied by a number of researchers [6, 22, 14,
15, 9, 16]. Griebl [11, 12] presents an integrated framework for optimizing data
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locality and parallelism in the use of tiling; however, pipelining issues are not
considered.

Sawdey and O’Keefe [24] describe TOPAZ the tool that explores the repli-
cated computation of boundary values in the context of SPMD execution of
stencil codes, in which the user marks regions of code to be replicated; the tool
then analyzes and generates the correct code. This approach helps with reduc-
ing communication costs and improving load balance. Adve et al. [1] describe
computation partitioning strategies used in the dHPF compiler that exploit repli-
cated computation using the LOCALIZE directive that is available in dHPF. Both
these approaches rely on user-specification of replicated computation, unlike our
approach to automatic parallelization.

8 Conclusions

Iteration space tiling has received considerable attention motivated by optimiz-
ing for data locality as well as by exploiting parallelism for nested loops. The
choice of the shape of iteration space tiles may result in inter-tile dependences
that inhibit concurrent execution of tiles on different processors, leading to a
pipelined start overhead. This paper has addressed the issue of enhancing con-
currency with tiled execution of loop computations with constant dependences.
Two approaches, namely overlapped tiling and split tiling were presented, that
enabled the removal of inter-tile dependences, thereby enabling additional con-
currency. Experimental results demonstrated the effectiveness of the proposed
schemes.
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