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SUMMARY

Compile-time optimizations involve a number of transformations such as loop permutation, fusion, tiling,
array contraction, etc. Determination of the choice of these transformations that minimizes the execution
time is a challenging task. We address this problem in the context of tensor contraction expressions involving
arrays too large to fit in main memory. Domain-specific features of the computation are exploited to develop
an integrated framework that facilitates the exploration of the entire search space of optimizations. In
this paper, we discuss the exploration of the space of loop fusion and tiling transformations in order to
minimize the disk I/O cost. These two transformations are integrated and pruning strategies are presented
that significantly reduce the number of loop structures to be evaluated for subsequent transformations. The
evaluation of the framework using representative contraction expressions from quantum chemistry shows
a dramatic reduction in the size of the search space using the strategies presented.

KEY WORDS: loop fusion, loop tiling, integrated loop transformations, out-of-core computations, pruning the
search-space of optimizations, tensor contractions

1. Introduction

Optimizing compilers incorporate a number of loop transformations such as permutation, tiling, fusion,
etc. Considerable work has addressed loop tiling for enhancement of data locality [4, 5, 13, 18, 19, 22,
23, 24, 25]. Much work has also been done on improving locality and/or parallelism by loop fusion
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[7, 8, 9, 10, 21]. Fusion can create imperfectly nested loops, which are more complex to tile effectively
than perfectly nested loops. Several works have addressed the tiling of imperfectly nested loops [2, 22].
Although there has been much progress in developing unified frameworks for modeling a variety of
loop transformations [1, 2, 15, 16, 25], their use has so far been restricted to optimization of indirect
performance metrics such as reuse distance, degree of parallelism, etc.

The development of model-driven optimization strategies that target direct performance metrics
remains a difficult task; in particular, the size of the search space of possible transformations is a
major factor in this. In this paper, we consider the specific domain of tensor contractions (generalized
matrix products) involving tensors too large to fit into physical memory. We use special properties
of the computations in this domain to integrate the various transformations and investigate pruning
strategies to reduce the search space to be explored.

The large sizes of the tensors involved require the development of out-of-core implementations
that orchestrate the movement of data between disk and main memory. In this paper, we discuss the
integration of loop fusion and tiling transformations with the objective of minimizing disk I/O cost.
Loop fusion is used here in the context of fusing the loops involved in a set of tensor contractions.
We first evaluate the set of all fusions to be explored. For each fusion structure, all loop permutations
and I/O placements would be evaluated. A generalized tiling approach is presented that significantly
reduces the number of loop structures to be explored. It also enables subsequent optimizations of I/O
placements and loop permutations. This approach enables an exploration of the entire search space
using a realistic performance model, without the need to resort to heuristics and search of a limited
subspace of the search space to limit search time.

The rest of this paper is organized as follows. In the next section, we elaborate on the computational
context of interest and introduce some preliminary concepts. Section 3 describes a tree partitioning
algorithm. In Section 4, we propose a loop structure enumeration algorithm and prove its completeness.
An overview of the program synthesis system, of which the presented framework is a part, is given in
Section 5. The reductions in the space of loop structures to be explored is shown for representative
computations in Section 6. Conclusions are provided in Section 7.

2. Computational Context

The work presented in this paper is being developed in the context of the Tensor Contraction Engine
(TCE) program synthesis tool [3]. The TCE targets a class of electronic structure calculations involving
many computationally intensive components expressed as tensor contraction expressions. In the context
of optimizing tensor contraction expressions, loop permutation, tiling and fusion are the most important
transformations for enhancing performance. There has been a considerable amount of published
research on loop tiling [4, 5, 13, 18, 19, 22, 23, 24, 25] and loop fusion [7, 8, 9, 10, 21] as optimizing
transformations. While earlier work focused on perfectly nested loops or sequences of perfectly nested
loops [13, 23, 24], several frameworks have recently been proposed to transform imperfectly nested
loops [1, 2, 15, 16, 25]. However, none of the prior work has addressed the use of realistic and
concrete performance models along with an integrated handling of loop fusion and loop tiling. The
loop transformation framework being developed for the TCE uses realistic cost models for disk I/O,
along with a pruning search strategy to explore a large space of alternative loop structures obtainable
through application of loop fusion, tiling and permutation. In the rest of this section, we explain the
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computational form of tensor contraction expressions through an example, and place the work of this
paper in the larger TCE context. The TCE takes as input a high-level specification of a computation
expressed as a set of tensor contraction expressions, and transforms it into efficient parallel code.
The current prototype of the TCE incorporates several compile-time optimizations which are treated
in a decoupled manner, with the transformations being performed in a pre-determined sequence. In
[11], we presented an integrated approach to determine the tile sizes and I/O placements for a fixed
structure of the computational loops after fusion and permutation. Techniques to prune the search
space of possible I/O placements, orderings, loop permutations and tiling for given a choice of fusion
of tensor contractions were presented in [20]. In this paper, we present a technique to enumerate the
various fusion structures and develop an algorithm to significantly reduce the number of loop nests to
be evaluated for each fusion structure.

In the class of computations considered, the final result to be computed can be expressed using a
collection of multi-dimensional summations of the product of several input arrays. As an example, we
consider a transformation often used in quantum chemistry codes to transform a set of two-electron
integrals from an atomic orbital (AO) basis to a molecular orbital (MO) basis:

B(a,b,c,d) = ∑
p,q,r,s

C1(d,s)×C2(c,r)×C3(b,q)×C4(a, p)×A(p,q,r,s)

Here, all arrays would be initially stored on disk. The indices p, q, r and s have the same range N. The
indices a, b, c and d have the same range V. Typical values for N range from 60 to 1300; the value for
V is usually between 50 and 1000.

The calculation of B is done in four steps to reduce the number of floating point operations:
T 1(a,q,r,s) = ∑p C4(a, p) × A(p,q,r,s); T 2(a,b,r,s) = ∑q C3(b,q) × T 1(a,q,r,s); T 3(a,b,c,s) =

∑r C2(c,r)×T 2(a,b,r,s); and B(a,b,c,d) = ∑s C1(d,s)×T 3(a,b,c,s).
The sequence of contractions in this form can be represented by an operation tree as shown in

Fig. 1(a). The leaves of the operation tree correspond to the input arrays and the root to the output
array. The interior nodes, which could be intermediate or output arrays, are produced by the tensor
contraction of their immediate children. The edges in the operation tree represent the producer-
consumer relationship between the different tensor contraction expressions. Note that an operation
tree is a binary tree in which each node has either zero or two children.

Assuming that the available memory limit on the machine running this calculation is less than V 4

(which is 3TB for V = 800), any of the logical arrays A, T 1, T 2, T 3 and B is too large to entirely fit
in memory. Therefore, if the computation is implemented as a succession of four independent steps,
the intermediates T 1, T 2 and T 3 have to be written to disk after they are produced, and read from
disk before they are used in the next step. Furthermore, the amount of disk access volume could be
much larger than the total volume of the data on disk. Since none of these arrays can be fully stored in
memory, it may not be possible to read each element only once from disk.

Suitable fusion of the common loops involved in the contractions that produce and consume an
intermediate can reduce the size of the intermediate array, making it feasible to retain it in memory.
An intermediate node is said to be fused if the loops involved in its production are fused with those
involved in its consumption. Henceforth, the term intermediate node will be used to refer to both the
intermediate array produced in the corresponding interior node of the operation tree, as well as the
contraction that produces it. The reference shall be clear from the context.

There are many different ways to fuse the loops and they could result in different memory usage.
Based on the computation context, there are no fusion-preventing dependences in tensor contraction
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C3 T1 = SUM(A*C4) 
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T2 = SUM(T1*C3) 

T3 = SUM(T2*C2) 

B = SUM(T3*C1) 

(a) Operation tree for the four-index transform

for a,r,q,s,p
[

t1a,q,r,s += Ap,q,r,s ∗C4a,p

for a,b,r,s,q
[

t2a,b,r,s += t1a,q,r,s ∗C3b,q

for a,b,c,r,s
[

t3a,b,c,s += t2a,b,r,s ∗C2c,r

for a,b,c,d,s
[

Ba,b,c,d += t3a,b,c,s ∗C1d,s

(b) Corresponding unfused code structure

Figure 1. Operation tree and unfused code structure for the four-index transform.

expressions [3, 12]. Given a choice of fusion, an intermediate node not fused with its parent divides the
operation tree into two parts, both of which can be evaluated independently. Such an intermediate node
that is not fused, is said to be a cut-point in the operation tree. A cut-point node is assumed to be written
to disk on production and read back during its consumption. A connected operation tree without any
interior cut-points is called a fused sub-tree. The divided operation tree for the four-index transform
corresponding to T 1 being a cut-point is shown in Fig. 2(a). The cut-point divides the operation tree
into two fused sub-trees, one of which produces T 1, and the other consumes it.

The loop nesting tree (LNT) represents the loop structure corresponding to a fused sub-tree. Each
node in an LNT is labeled by the indices of a set of fully permutable loops that appear together at
some level in the resulting overall imperfectly nested loop structure after applying loop fusion to the
contraction computations in the sub-tree. The leaves represent the innermost loops, while the root
represents the outermost loops. Fig. 2(b) shows possible LNTs corresponding to the two fused subtrees
in Fig. 2(a). The corresponding code structure is shown in Fig. 2(c).

3. Top Sub-tree Enumeration

In this section, we discuss the procedure to enumerate the set of top sub-trees. An arbitrary operation
tree with M intermediate nodes has at most O(2M) possible top sub-trees, but not all of the top sub-
trees can be a fully fused operation tree. We can prune the set of possible top sub-trees by using the
following two rules: (i) the fused intermediate array must be fit into memory; and (ii) the parent of two
fused nodes can not be fused above.

The first rule is used to prune ineffective fusions. In general, fusing a loop between the producer
of an intermediate array and its consumer eliminates the corresponding dimension of the array and
reduces the array size. If the array fits in memory after fusion, no disk I/O is required for that array. On
the other hand, if the array does not fit in the physical memory even after fusion, the disk I/O cost is
not reduced and thus fusion does not result in any improvement. Therefore, we force the fusion of any
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(a) Divided operation trees
 

a , b 

r , s  

  q (T2) c (T3) 

c,d,s (B) 

a,r,q,s,t (T1) 

(b) Loop nesting trees

loopNest1 :
for a,r,q,s,p
[

t1a,q,r,s += Ap,q,r,s ∗C4a,p

loopNest2 :
for a,b


















for r,s






for q
[

t2r,s += t1a,q,r,s ∗C3b,q
for c
[

t3c,s += t2r,s ∗C2c,r
for c,d,s
[

Ba,b,c,d += t3c,s ∗C1d,s

(c) Corresponding code structure

Figure 2. Representations involved in generation of a fused code structure.

loops corresponding to an intermediate node to cause the resulting intermediate to reside in memory.
We also assume that an intermediate array resides in disk if its producer is not fused with its consumer.

The second rule is derived from the characteristics of an operation tree. Consider an intermediate
node t. If both its children are fused with it, then the loops corresponding to the summation indices
in the given node must be the outermost loops; and it can not be fused with its parent anymore. Thus
either t or one of its children must be a cut-point. Based on this rule, we can restrict the number of top
sub-trees to O(M2).

From the first rule, it follows that contraction nodes form a chain. The second rule implies that two
contraction chains may join at a root node, i.e., cut-point.

The function to enumerate the fused sub-trees rooted at a given node is shown in Algorithm 1. It
is executed at each node of the operation tree in bottom-up manner and constructs the fused sub-trees
rooted at a given node from those of its children. Given a node t, at first, we create a new sub-tree
including only t and its direct children. Then we extend existing sub-trees from one of its children to
include itself. These sub-trees can be further extended to include the parent of t; so we call them the
promising sub-trees, which would be in a single chain form (each node has at most one fused child).
We can also create sub-trees by merging two existing sub-trees from both its children. In this case, t
must be a cut-point and this sub-tree cannot be extended anymore. In the algorithm, a top sub-tree Tr
is identified by its Cut pointSet, which includes cut-points in its leaves; note that input nodes are not
cut-points. The field t.PTreeSet represents the set of promising sub-trees and will be used to construct
the fused sub-tree rooted at the parent of t. Note that we do not know whether a fused node can fit into
memory at this step. This is ensured by the choice of loop structures.

4. Loop Structure Enumeration

In this section, we first present an algorithm that can generate the set of loop structures corresponding
to a fused subtree. We then prove that for any loop structure S of the fused subtree, we can find
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a corresponding loop structure S′ in the generated set, such that S′ can be transformed to S by an
appropriate multi-level tiling strategy.

4.1. Enumeration Algorithm

In the previous section, we showed that a fused subtree must be in one of these two forms:

• The contraction nodes form a chain. We call it a contraction chain. For instance, Fig. 1(a) is such
an operation tree in which the contraction chain is T 1,T 2,T 3,B.

t1 = the left child of t
t2 = the right child of t
if t1 is an input node, b1 = null, else b1 = t1
if t2 is an input node, b2 = null, else b2 = t2
TreeSet = empty
//Create a new sub-tree
Create a new Tree Tr with Tr.Cut pointSet = {b1,b2}
Insert Tr into TreeSet
//Extending promising sub-trees from its left child
if b1 is not null then

for each sub-tree st in t1.PTreeSet do
Create a new Tree Tr with Tr.Cut pointSet = st.Cut pointSet +b2
Insert Tr into TreeSet

end for
end if
//Extending promising sub-trees from its right child
if b2 is not null then

for each sub-tree st in t2.PTreeSet do
Create a new Tree Tr with Tr.Cut pointSet = st.Cut pointSet +b1
Insert Tr into TreeSet

end for
end if
t.PTreeSet = TreeSet
//Merging sub-trees from both children, and extending the result
if both b1 and b2 are not null then

for each pair of sub-trees st1 in childSet1 and st2 in childSet2 do
Create a new Tree Tr
Tr.Cut pointSet = {st1.Cut pointSet,st2.Cut pointSet}
Insert Tr into TreeSet

end for
end if
return TreeSet

Algorithm 1: EnumerateTopSubtrees(t: the root of a sub-tree) returns TreeSet
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• The contraction nodes form two chains joining at the root node. In this case, the contraction
chain is connected by these two chains. An example of such an operation tree is shown in Fig. 3,
in which the contraction chain is T 1,T 2,B,T 3,T 4.

An operation tree with n contraction nodes t1, ..., tn can be translated into a sequence of perfectly nested
loops, one for each contraction. Each of the perfectly nested loops can be considered an independent
loop nesting tree. The fusion of sub-trees producing and consuming an intermediate node creates an
imperfectly nested loop nest, in which some of the common loops are merged. Many different choices
exist in the ordering of the fusions within this sequence of perfectly nested loop nests. Choosing the
best loop structure for a given fusion structure requires the determination of the tile sizes and disk
I/O costs for each of the numerous possibilities, which is a very expensive operation. We tackle this
problem by enumerating maximally fused loop structures from which all possible fusion structures can
be derived by appropriate choice of tiling.

The process of enumeration of the fusion structure set corresponding to a fully fused operation tree
can be modeled as a paranthesization problem. Consider the contraction chain T 1,T 2,T 3,B of the
operation tree shown in Fig. 1(a), and one of its parenthesizations (((T 1 T 2)T 3)B). According to the
nesting of parentheses, the contraction producing T1 and consuming T1 are fused first, and the resulting
loop nest is fused with the contractions producing T3 and B, in that order.

For each parenthesization, a maximally fused loop structure represented in a loop nesting tree is
created by a recursive construction procedure. We call it maximally fused since, in the construction
procedure, each intermediate node will have its indices fused as much as possible with its parent. The
construction procedure is shown in Algorithm 2. It takes a parenthesization P as input, and generate
the corresponding LNT. Note that, in Algorithm 2, ti.indices denotes all loop indices surrounding
the contraction node ti. A parenthesization of a contraction chain with n nodes has n − 1 pairs of
parentheses. Each pair of parentheses includes two elements, a left and a right element. Each element
is either a single contraction node or a parenthesization of a sub-chain within a pair of parentheses.

Consider a parenthesization ((T 1(T 2 T 3))B) of the four-index transform. Fig. 4 shows the setp-by-
step construction of the corresponding LNT. The final loop structure is shown in Fig. 6(b).

 

T3 

C3 T1 = SUM(A*C4) 

A C4 

T3 = SUM(C2*T4) T2 = SUM(T1*C3) 

B = SUM(T2*T3) 

T4 = SUM(D*C1) 

D C1 

C2 

Figure 3. An operation tree with two chains
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//Given a parenthesization, the algorithm map it to a maximally fused loop structure in LNT
l = P.le f t
r = P.right
if l is a parenthesization then

lt = Construction(le f t)
else if l is a contraction then

lt = Create a new LNT node
lt.indices = l.indices
lt.children = null
lt.contraction = l {lt is a leaf, which includes a contraction node in it}

end if
if r is a parenthesization then

rt = Construction(right)
else if r is a contraction then

rt = Create a new LNT node
rt.indices = r.indices
rt.children = null
rt.contraction = r {rt is a leaf, which includes a contraction node in it}

end if
comindices = lt.indices∩ rt.indices
lt.indices = lt.indices− comindices
rt.indices = rt.indices− comindices
lnt = Create a new LNT node
lnt.indices = comindices
lnt.children = {lt,rt}
return lnt

Algorithm 2: Construction(P)

4.2. Completeness

In this section, we prove that the set of maximally fused loop structures generated by the enumeration
algorithm (shown in Algorithm 2) can represent all loop structures of a fused subtree. The following
definitions are provided to clarify the terms used in the proof.

Definition 1. Each leaf in an LNT includes a contraction node. The set of contraction nodes from all
the leaves in an LNT is called the leafcontractions of the LNT.

Definition 2. Each node t in an LNT has exactly one path to the root. Let t.upperindices denotes the
union of all indices belonging to nodes on the path from t to the root. If a subtree slnt is rooted at t, we
also define slnt.upperindices to equal to t.upperindices.

Definition 3. Consider two leaves ti and t j in an LNT that belong to one subtree slnt. If there is no
other subtree that contains both ti and t j and is a subtree of slnt, we say that slnt is the minimal common
subtree of ti and t j, denoted as MCS(ti, t j).
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Parenthesization                LNT 
(T2 T3) 

(T1 (T2 T3))  

((T1 ( T2 T3)) B) 

 

  b 

q (T2) c (T3) 

 a,r,s 

p,q (T1) 

  r 

  a,s 

b,c,d (B) 

  b 

q (T2) c (T3) 

 a,r,s 

p,q (T1) 

a,b,r,s 

q (T2) c (T3) 

Figure 4. Construction of a maximally fused loop structure for a particular parenthesization of the four-index
transform.

Given an arbitrary loop nesting tree lnt, we can map it to a maximal fused loop nesting tree lnt ′ that
belongs to the set of maximally fused loop structures generated by the enumeration algorithm above,
and can be translated to lnt with appropriate multi-level tiling. The mapping algorithm consists of two
steps: (1) generate a parenthesization P of the contraction chain corresponding to the given lnt using
Algorithm 3; and (2) apply the construction procedure in Algorithm 2 on P to generate a maximally
fused loop structure lnt ′. Clearly, lnt ′ belongs to the set of maximally fused loop structures generated
by the enumeration algorithm. We now show that lnt ′ can be translated to lnt by sinking indices at
upper levels down.

Lemma 1. For any pair of contraction nodes ti and t j, let common(lnt, ti, t j) be the loops shared by ti
and t j in lnt. We have common(lnt, ti, t j) ⊆ common(lnt ′, ti, t j).

Proof: Given a subtree slnt, slnt.upperindices represents all common loops shared by
slnt.leafcontractions. There is an interesting property of maximally fused loop structures in the
way they are constructed. For any subtree slnt in the LNT of a maximally fused loop structure,
slnt.upperindices includes all common loops among slnt.lea f contractions. In other words, it includes
all possibly shared loops among slnt.lea f contractions. In addition, we can see from the mapping
method that if lnt has a subtree slnt, then there exists a twin subtree slnt ′ in lnt ′ that satisfies the
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//Given an LNT, the algorithm map it to a corresponding parenthesization
if lnt.children 6= null then

P = null
for each child c in lnt.children do

P′ = Parenthesize(c)
if P is null then

P = P′

else
P = new Parenthesization(P, P′)

end if
end for

else
P = c.contraction {c is a leaf and includes a contraction node}

end if
return P

Algorithm 3: Parenthesize(lnt)

following conditions:

slnt.lea f contractions = slnt ′.lea f contractions

slnt.upperindices ⊆ slnt ′.upperindices

Given any pair of leaf nodes ti and t j, we define mlnt = MCS(ti, t j) in lnt, where mlnt. upperindices =
common(lnt, ti, t j). Hence, we can find the corresponding subtree mlnt ′ in lnt ′, where

mlnt.upperindices ⊆ mlnt ′.upperindices ⊆ common(lnt, ti, t j)

Thus, we have common(lnt, ti, t j) ⊆ common(lnt ′, ti, t j). 2

Lemma 2. If common(lnt, ti, t j) ⊂ common(lnt ′, ti, t j), then we can transform lnt ′ to form lnt ′′ by
sinking indices down, so that common(lnt, ti, t j) = common(lnt ′′, ti, t j).

Proof: We define mlnt and mlnt ′ as MCS(ti, t j) in lnt and lnt ′ respectively. Any loop in
common(lnt ′, ti, t j) belongs to the root or an ancestor of mlnt ′. Assuming loop l is in the difference
of common(lnt, ti, t j) and common(lnt ′, ti, t j). We remove l from the original node r, and insert it to
all children of r. After that, if l still belongs to the root or an ancestor of mlnt ′, we repeat the sinking
operation described above, until l is not in mlnt ′.upperIndices any more. The same method is applied
for all indices in the difference of common(lnt, ti, t j) and common(lnt ′, ti, t j). The new LNT is denoted
as lnt ′′. Then, we have common(lnt, ti, t j) = common(lnt ′′, ti, t j). 2

Applying the sinking operation in Lemma 2 for each pair of contraction nodes (ti, t j), we can
transform lnt ′ to lnt ′′, which satisfies the condition: ∀(ti, t j),common(lnt, ti, t j) = common(lnt ′′, ti, t j).
After that, if a node r has no indices in r.indices, we remove r from lnt ′′, and put all children of r to its
parent. Then, lnt ′′ is same as lnt.

Using multi-level tiling strategy, a maximally fused loop structure can be transformed into an
arbitrarily fused loop structure by appropriate choice of tile sizes. Multi-level tiling can transform
the LNT of a loop structure as follows. Each loop present in the root is split into two components, an
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  aT3,b 

aI3,q (T2) aI3,c (T3) 

 a,r,s 

aI2, p,q (T1) 

  aT2, r 

  aT1,s 

aI1, b,c,d (B) 

(a) Multi-level tiling loop a

aT1.range×aI1.range = a.range

aT2.range×aI2.range = aI1.range

aT3.range×aI3.range = aI2.range

(b) Range of different level tiles

Figure 5. An example of multi-level tiling in LNT.

inter-tile loop and an intra-tile loop. The intra-tile loop is placed on the child nodes of the root. Then
the loops present in each of the child nodes including the intra-tile loops from the root are again split
and intra-tile loops are placed on their respective child nodes. This process is performed recursively till
the leaf nodes are encountered. The loop structure corresponding to the LNT can also be transformed
accordingly. Fig. 5 shows the way to tile loop a in the LNT in Fig. 4 and the relationship between
different tiles, where a.range represents the range of loop a.

The sinking operation in an LNT can be modeled as multi-level tiling of the loop structure. Tiling a
given fused loop structure with a tile size equal to its loop range leads to the same result as sinking the
loop index from the original node to all its children. Let S and S′ be loop structures represented by lnt
and lnt ′ respectively. Since we can transform lnt ′ to lnt by sinking operations, we can also transform
S′ to S.

We illustrate the transformation procedure using an example. An arbitrary fully fused loop structure
S of four-index transform is shown in Fig. 6(a), and the corresponding maximally fused loop structure
S′ is in Fig. 6(b). After we apply multi-level tiling, S′ is translated to the format shown in Fig. 7(a). In
addition, we set ranges of inter-tile loops according to the following formulas: aT2 = aT3 = sT1 = sT2 =
sT3 = rT2 = qT1 = 1; aT1 = a.range; and rI1 = r.range. Now, if we remove all loops with range = 1,
then S′ can be rewritten in the format shown in Fig. 7(b), which is exactly the same as S. It should be
noted that the indexing of the intermediate arrays has been shown in a more generic way.

4.3. Complexity

The total number of loop structures generated by the enumeration algorithm is the same as the number
of parenthesizations of the contraction chain. For a contraction chain with n nodes, the number of
all possible parenthesizations is given by the nth Catalan number. It is exponential in the number of
intermediate nodes n with an upper bound of O(4n/n3/2). In contrast, the number of possible loop
structures is potentially exponential in the total number of distinct loop indices in the n intermediate
nodes, a considerably larger number. The fused operation tree is not very long for most representative
computations. In most practical applications, a fused subtree usually has no more than five contractions
in a single chain. Note that the nth Catalan number is not very large when n is small. The first six Catalan
numbers are listed here: 1,1,2,5,14,42, ....
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for a


























for r






for q,s,p
[

t1s,q += Ap,q,r,s ∗C4a,p
for b,s,q
[

t2b,r,s += t1s,q ∗C3b,q
for b,c,r,s
[

t3b,c,s += t2b,r,s ∗C2c,r
for b,c,d,s
[

Ba,b,c,d += t3b,c,s ∗C1d,s

(a) Arbitrary fused loop structure: S

for a,s






























for r


















for q






for p
[

t1 += Ap,q,r,s ∗C4a,p
for b
[

t2b += t1∗C3b,q
for b,c
[

t3b,c += t2b ∗C2c,r
for b,c,d
[

Ba,b,c,d += t3b,c ∗C1d,s

(b) Maximally fused loop structure: S’

Figure 6. An arbitrary loop structure and the corresponding maximally fused structure.

for aT1,sT1






























for rT1,aT2,sT2


















for qT1,rT2,aT3,sT3






‘for p,qI1,rI2,aI3,sI3
[

t1aI,qI,rI,sI+ = Ap,q,r,s ∗C4a,p
for b,qI1,rI2,aI3,sI3
[

t2aI,b,rI,sI+ = t1aI,qI,rI,sI ∗C3b,q
for b,c,rI1,aI2,sI2
[

t3aI,b,c,sI+ = t2aI,b,rI,sI ∗C2c,r
for aI1,b,c,d,sI1
[

Ba,b,c,d+ = t3aI,b,c,sI ∗C1d,s

(a) After inserting intra-tile loops

for aT1


























for rT1






for p,qI1,sI3
[

t1aI,qI,rI,sI+ = Ap,q,r,s ∗C4a,p
for b,qI1,sI3
[

t2aI,b,rI,sI+ = t1aI,qI,rI,sI ∗C3b,q
for b,c,rI1,aI2,sI2
[

t3aI,b,c,sI+ = t2aI,b,rI,sI ∗C2c,r
for b,c,d,sI1
[

Ba,b,c,d+ = t3aI,b,c,sI ∗C1d,s

(b) After selecting proper tile counts

Figure 7. Translating S’ to S by using a multi-level tiling strategy.

5. Integrated Framework

In this section, we describe the overall program synthesis system that incorporates the steps
described earlier in the paper. The program synthesis system takes an operation tree representing a
set of tensor contractions as input, and generates an efficient loop structure with explicit disk I/O
statements to implement the computation. The loop structure of an operation tree can be defined by
two factors: (1) the partitioning method to divide the operation tree into a set of fused sub-trees; and
(2) the internal loop structure (fusion and tiling) of each fused sub-tree. The process to find the optimal
loop structure may be viewed in terms of the following steps:

1. Operation Tree Partitioning: In this step, we enumerate all tree partitioning methods. A tree
partitioning method divides the original operation tree into several fused sub-trees by identifying
a set of cut-points. The optimal fusion structures for the sub-trees are independent of each other,
and are determined separately.

2. Loop Structures Enumeration: For each fused sub-tree, we find a set of candidate fusion
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//Given a sub-tree rooted at t, the algorithm finds the optimal loop structure with minimal disk I/O
TopTree = EnumerateTopSubrees(t)
for each sub-tree tsi in TopTree do

tcs = tsi.Cut pointSet
lea fCost = 0
for each cut-point ct in tcs do

lea fCost = lea f cost + ct.FS.Cost
end for
//Enumearte all fusion structures of fused sub-tree tsi

LoopSet = EnumerateLoop(tsi)
OptCost = ∞
//Compute the minimal disk I/O cost of sub-tree tsi

for each loop structure ffs in LoopSet do
mtfs = multiTiling(ffs)
Cost = dataLocality(mtfs)
if Cost < OptCost then

OptCost = Cost
OptFfs = ffs

end if
end for
Cost = OptCost + lea fCost
if Cost < t.FS.Cost or t.FS = null then

t.FS.Cost = Cost
t.FS.TCS = TCS
t.FS.FFS = OptFfs

end if
end for

Algorithm 4: OptimalLoopStructure(t: the root of a sub-tree)

structures to be evaluated, as a set of LNTs. The optimal fusion structure would be included
in the candidate set.

3. Intra-Tile Loop Placements: For a given LNT, we tile all loops at each node and propagate intra-
tile loops to all the nodes below it.

4. Disk I/O Placements and Orderings: We then explore various possible placements and orderings
of disk I/O statements for each disk array in a tiled loop structure with a pruning strategy to
determine the best placement and ordering.

5. Tile Size Selection: For each combination of loop transformations and I/O placements, the I/O
cost is formulated as a non-linear optimization problem in terms of the tile sizes. The tile sizes
that minimize the disk I/O cost are determined using a non-linear optimization solver.

6. Code Generation: We calculate the disk access cost for each solution obtained, and generate code
for the one with the minimal disk I/O cost.
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C4

T1

Cost = 100

t11: InterCost = 100

A

(a) T1.FS = t11;  T1.FS.Cost = 100; T1.FS.TCS = {} 

(b) T2.FS = t22;  T2.FS.Cost = 200; T2.FS.TCS = {}

(c) T3.FS = t33;  T3.FS.Cost = 300; T1.FS.TCS = {}

T2

Cost = 250

T1

t21: InterCost = 150 t22: InterCost = 200

C3T1

Cost = 100

T2

Cost = 250

C3

C4A

(d) B.FS = tB3;  B.FS.Cost = 450; B.FS.TCS = {T1}

B

Cost = 550

C1T3

Cost = 300

T3

B

Cost = 500

C1

C2T2

Cost = 200

T3

B

Cost = 450

C1

C2

T1

Cost = 100

T2

C3

T3

B

Cost = 500

C1

C2T2

C3T1

C4A

tB1: InterCost = 250 tB2: InterCost = 300 tB3: InterCost = 350 tB4: InterCost = 500

t31: InterCost = 200 t32: InterCost = 250

T3

Cost = 400

C2T2

Cost = 200

T2

T3

Cost = 350

C2

C3T1

Cost = 100

T2

T3

Cost = 300

C2

C3T1

C4A

t33: InterCost = 300

Figure 8. How to find the optimal loop structure of an operation tree by Algorithm 4

5.1. Dynamic Programming Algorithm

A dynamic programming algorithm is employed to find the optimal loop structure of an operation tree.
The algorithm calculates the minimal disk I/O cost and corresponding loop structure of each possible
sub-tree of the original tree in bottom-up fashion. At a contraction node t, all sub-trees rooted at its
interior nodes are evaluated before, whose minimal disk I/O cost and optimal loop structure stored
in their roots. Thus, we will only evaluate these new fused sub-trees, which are rooted at t and will
be referred as top sub-trees of t in later description. The optimal top sub-tree would be the one that
minimizes the sum of the disk cost occurred in itself and other sub-trees rooted at its leaves. After
traversing the entire operation tree, the optimal loop structure can be obtained by tracking back the
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optimal top sub-trees from root to leaves.
Algorithm 4 is employed to find the optimal loop structure for the operation tree rooted at a given

node t. It will be executed at each node of the operation tree from bottom-up. For an arbitrary node t,
let t.FS denote its optimal top sub-tree, which includes three fields: TCS, FFS and Cost. TCS includes
cut-points in its leaves; FFS represents its loop structure; and Cost represents the disk I/O cost occurred
in it.

In the algorithm, the function EnumerateTopSubtree(t) returns the set of all possible top sub-trees of
t. After that, each of these sub-trees is evaluated in turn to determine the optimal loop structure. The
initial cost of a sub-tree is the sum of the costs of its leaves. Then, for a fused sub-tree ts, the function
EnumerateLoop(ts) will return the set of candidate fusion structures represented by loop nesting trees.
Given a fully fused loop structure ffs, the function multiTiling(ffs) will insert multi-level intra-tile loops
in it and return a tiled loop structure. For a tiled loop structure mtfs, the search space of disk I/O
placements and orderings, loop permutations and tile sizes is modeled and pruned as a non-linear
optimization problem, which is then solved to determine the minimal disk I/O cost. This process is
encapsulated in the procedure dataLocality(mtfs). The implementation details can be found in [20].

5.2. Example

For the operation tree in Fig. 1(a), we start at the lowest contraction node T 1, which has only one
top sub-tree t11 as showed in Fig. 8(a). Then we have T 1.FS = t11. The optimal loop structure
and minimal cost of t11 is calculated using the functions EnumerateLoop(t11), multiTiling(t11),
and dataLocality(t11). For simplicity, we do ignore the specifics of this function and assume that
t11.Cost = 100.

The second node T 2 has two top sub-trees t21 and t22 as shown in Fig. 8(b). Assuming the internal
disk cost of t21 is 150 and of t22 is 200. But, since the leaf T 1 of sub-tree t21 is the root of another
sub-tree t11, the total disk cost of t21 would be 250, higher than t22. So, we have T 2.FS = t22,
T 2.FS.TCS = and T 2.FS.Cost = 200.

Fig. 8(c) represents three top sub-trees of node T 3, where we assume their internal disk cost are 200,
250, and 300 respectively. Since t22 is rooted at a leaf of t31 and t11 is rooted at a leaf of t32, we
get the total cost of these sub-tree as t31.Cost = 400, t32.Cost = 350, and t33.Cost = 300. t33 has the
minimal total cost, then the optimal top sub-tree of T 3 would be t33 with Cost = 300.

The four sub-trees identified at the root of the operation B, are shown in Fig. 8(d). The internal cost of
these sub-trees are assumed to be 250, 300, 350, and 500. The optimal top sub-tree of B is determined
to be tB3 with Cost = 450, which is also the minimal disk cost of the given operation tree in Fig. 1(a).
The optimal tree partitioning method of the operation tree can be obtained by tracking back from the
cut-points set of the root. B.FS.TCS has one cut-point T 1 and T 1.FS.TCS is empty. Hence the optimal
tree partitioning method will divide the operation tree into two sub-trees at node T 1. The optimal loop
structures of these sub-trees can be found in B.FS.FFS and T 1.FS.FFS.

6. Results

The enumeration algorithm discussed in Section 4.1 leads to a set of candidates loop structures to be
considered for data locality optimization. Without this algorithm and generalized tiling, the set of loop
structures to be evaluated might be too large, precluding their complete evaluation and necessitating the
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Table I. Effectiveness of pruning of loop structures.

#Contractions #Loop structures Reduction
Total Pruned

4index 4 241 5 98%
CCSD 3 69 2 97%

CCSDT 4 182 5 98%

use of heuristics. We are in the process of implementing the algorithms presented in the paper. Next,
we show results that were generated manually. We evaluate the effectiveness of our approach using the
following tensor contractions from representative computations from the quantum chemistry domain.

1. Four-index transform (4index): This is the sequence of contractions introduced in Section 2.
2. CCSD: The second and the third computations are from the class of Coupled Cluster (CC)

equations [6, 14, 17] for ab initio electronic structure modeling. The sequence of tensor
contraction expressions extracted from this computation is shown as follows:

S( j, i,b,a) = ∑
l,k

(A(l,k,b,a)× (∑
d

(∑
c

(B(d,c, l,k)×C(i,c))×D( j,d)))

3. CCSDT: This is a more accurate CC model. A sub-expression from the CCSDT theory is:

S(h3,h4, p1, p2) = ∑p9,h6,h8 (y ooovvv(h8,h6,h4, p9, p1, p2)×

∑h10
(

t vo(p9,h10)×∑p7 (t vo(p7,h8)×

∑p5 (t vo(p5,h6)× v oovv(h10,h3, p7, p5))
)))

We evaluated the fused subtree corresponding to the entire operation tree without any cut-points. The
number of all possible loop structures and the number of candidate loop structures enumerated by our
approach are shown in Table I. It can be seen that a very large fraction of the set of possible loop
structures, up to 98%, is pruned away using the approach developed in this paper.

7. Conclusions

In this paper, we discussed the exploration of the space of loop fusion and tiling transformations in
order to minimize the disk access cost of tensor contraction evaluation. These two transformations were
integrated and pruning strategies are presented that significantly reduce the number of loop structures to
be evaluated for subsequent transformations. We discussed approaches to partitioning the operation tree
into fused sub-trees and generating a small set of “maximally-fused” loop structures that “cover” all
possible imperfectly nested fused loop structures. The approach was evaluated on a set of computations
representative of the targeted quantum chemistry domain and a significant reduction was demonstrated
in the number of loop structures to be evaluated.
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