
Integer Lattice Based Methods for Local

Address Generation for Block-Cyclic

Distributions

J. Ramanujam

Department of Electrical and Computer Engineering
Louisiana State University, Baton Rouge, Louisiana, USA

Summary. In data-parallel languages such as High Performance Fortran and For-
tran D, arrays are mapped to processors through a two-step process involving align-
ment followed by distribution. A compiler that generates code for each processor has
to compute the sequence of local memory addresses accessed by each processor and
the sequence of sends and receives for a given processor to access non-local data.
In this chapter, we present a novel approach to the address sequence generation
problem based on integer lattices. When the alignment stride is one, the mapping
is called a one-level mapping. In the case of one-level mapping, the set of elements
referenced can be generated by integer linear combinations of basis vectors. Using
the basis vectors we derive a loop nest that enumerates the addresses, which are
points in the lattice generated by the basis vectors. The basis determination and lat-
tice enumeration algorithms are linear time algorithms. For the two-level mapping
(non-unit alignment stride) problem, we present a fast novel solution that incurs
zero memory wastage and little overhead, and relies on two applications of the so-
lution of the one-level mapping problem followed by a fix-up phase. Experimental
results demonstrate that our solutions to the address generation problem are signif-
icantly faster than other solutions to this problem. In addition, we present a brief
overview of our work on related problems such as communication generation, basis
vector derivation, code generation for complex subscripts and array redistribution.

1. Introduction

Distributed memory multiprocessors are attractive for high performance com-
puting in that they offer potentially high levels of flexibility, scalability and
performance. However, programming these machines to realize their promised
performance—which requires a full orchestration of the execution through
careful partitioning of computation and data, and placement of message
passing—remains a difficult task. The extreme difficulty of writing correct
and efficient programs is a major obstacle to the widespread use of paral-
lel high-performance computing. The main objective behind efforts such as
High Performance Fortran (HPF) [13, 20], Fortran D [10], and Vienna For-
tran (which grew out of the earlier SUPERB effort) [4] is to raise the level
of programming on distributed memory machines while retaining the object
code efficiency derived for example from message passing.

These languages include directives—such as align and distribute—that de-
scribe how data is distributed among the processors in a distributed-memory
multiprocessor. For example, arrays in HPF are mapped to processors in two

2 J. Ramanujam

steps: in the first step, arrays are aligned to an abstract discrete Cartesian
grid called a template; the template is then distributed onto the processors.
The effect of this two-level mapping onto p processors is to create p disjoint
pieces of the array, with each processor being able to address only data items
in its locally allocated piece. Thus, an HPF compiler must generate code for
each processor (called node code) that accesses only the locally owned pieces
directly, and inserts communication for non-local accesses.

In order to generate node code for each processor, we need to know the
sequence of local memory addresses accessed by each processor and the se-
quence of sends and receives for a given processor to access non-local data.
A regular access pattern in terms of the global data structure can appear
to be irregular within each locally allocated piece. For example, an array
section A(ℓ : h : s) exhibits a regular access sequence of stride s; but with an
HPF-style data mapping, the access sequence can become irregular. In this
chapter we present efficient algorithms for generating local memory access
patterns for the various processors given the alignment of arrays to a tem-
plate and the distribution of the template onto the processors. For the case
where the arrays are aligned identically to the template (also called one-level
mapping), our solution [39] is based on viewing the access sequence as an
integer lattice and involves the derivation of a suitable set of basis vectors for
the lattice. Given the lattice basis, we enumerate the lattice by using loop
nests; this allows us to generate efficient code that incurs negligible runtime
overhead in determining the access pattern. Chatterjee et al. [5] presented an
O(k log k+log min(s, pk)) algorithm (where k is the block size – see Section 2
for definition) for this problem; ours is an O(k + log min(s, pk)) algorithm.
Recently, Kennedy et al. [16] have also presented an O(k + log min(s, pk))
algorithm. Note that all these algorithms require computing the gcd(s, pk)
which is the reason for the log min(s, pk) term in the complexity. Experiments
demonstrate that our algorithm is 2 to 9 times faster than the algorithm of
Kennedy at al. and 13 to 60 times faster than the algorithm in Chatterjee
et al. Independently, Wang et al. conclude based on extensive experiments
that “The LSU algorithm consistently outperforms the RIACS and Rice algo-
rithm ...” [45]. Our solution to the address generation problem for alignment
followed by distribution (i.e., two-level mapping) uses two applications of our
solution to the one-level mapping problem followed by an efficient and novel
fix-up phase. This second phase is up to 10 times faster than other current
solutions that do not waste local memory.

This chapter is organized as follows. In Section 2, we present the problem
setting and discuss related work. Section 3 thru 7 discuss one-level mapping in
detail, while Sections 8 thru 10 address two-level mapping. Section 3 outlines
our approach using lattices and presents key mathematical results which are
used later in the chapter. In Section 4, we present our linear algorithm for de-
termining basis vectors, and contrast it with the algorithm of Kennedy et al.
In Section 5 we show how to determine address sequences by lattice enumer-

Integer Lattice Based Methods for Local Address Generation 3

Processor 0 Processor 1 · · · Processor p-1
0 · · · k-1 k · · · 2k-1 · · · (p-1)k · · · pk-1
pk · · · (p+1)k-1 (p+1)k · · · (p+2)k-1 · · · (2p-1)k · · · 2pk-1
...

...
...

...
...

...
...

...
...

...

(a): Layout of an array distributed CYCLIC(k) onto p processors.

Global index mk · · · mk+k-1 (p+m)k · · · (p+m+1)k-1 · · ·
Local index 0 · · · k-1 k · · · 2k-1 · · ·

(b): Local layout of array shown in Fig. 1.1(a) in Processor m.

Fig. 1.1. Global and local addresses for data mappings

ation using loop nests. We show how to use the lattice basis vectors derived
in Section 4 to generate a loop nest that determines the address sequence.
Section 6 discusses optimizations applied to the loop enumeration strategy
presented in Section 5, specifically the GO-LEFT and GO-RIGHT schemes. Sec-
tion 7 demonstrates the efficacy of our approach using experimental results
comparing our solution to those of Chatterjee et al. and Kennedy et al. In
Section 8 we introduce the two-level mapping problem in detail; we several
new solutions to the two-level mapping problem in Section 9 and provide
experimental results for this case in Section 10. In addition to these prob-
lems, our research group has addressed several additional problems in code
generation and optimization such as communication generation, code gen-
eration for complex subscripts, runtime data structures, and runtime array
redistribution; a brief outline of these is presented in Section 11. Section 12
concludes with a summary.

2. Background and Related Work

We consider an array A identically aligned to the template T ; this means that
if A(i) is aligned with the template cell T (ai + b), then the alignment stride
a is 1 and the alignment offset b is 0. Further let template T be distributed
in a block-cyclic fashion with a block size of k across p processors; this is also
known as a CYCLIC(k) distribution [13]. If k = 1 the distribution is called
CYCLIC, and if k = N

p
(where N is the size of the template) the distribution

is called a BLOCK distribution. We assume that arrays have a lower limit of
zero, and processors and local addresses are numbered from zero onward.
This mapping of the elements of A to the processor memories is shown in the
Figure 1.1(a). Though the elements of A are stored in the processor memories
in a linear fashion as shown in Figure 1.1(b), we adopt a two-dimensional view
of the storage allocated for the array as shown in Figure 1.1(a). We view the
global addresses as being organized in terms of courses, each course consisting

4 J. Ramanujam

Table 2.1. Symbols used in this chapter.

A a distributed array
T the template to which array A is aligned
a stride of alignment of A to the template T

b offset of alignment of A to the template T

k block size of distribution of the template
p number of processors to which the template is distributed
ℓ lower bound of regular section of A

h upper bound of regular section of A

s stride of regular section of A

A(ℓ : h : s) a regular section of array A (array section)
A2D two-dimensional view of an array A

Aloc local portion of array A allocated on a processor
m processor number (0 ≤ m ≤ p− 1)
Γ array section lattice

Γm part of Γ incident on processor m

of pk elements. In other words, we assign a block of k cells of the template
to each of the p processors and then wrap around and assign the rest of the
cells in a similar fashion. In the two-dimensional view we adopt, the first
dimension denotes the course number (starting from zero), and the second
dimension denotes the offset from the beginning of the course. We refer to the
two-dimensional view of an array A as A2D; and the element A(i) has a 2-D
address of the form (x, y) = (idiv pk, i mod pk) in this space. Similarly the
local address of an element A(i) (denoted using Aloc) mapped to a processor
m is k ∗ (idiv pk) + i mod k.

An array section in HPF is of the form A(ℓ : h : s), where s is the access
stride, and ℓ and h are the lower and upper bounds, respectively. Table 2.1
summarizes the notation. Given an array statement with HPF-style data
mappings, it is our aim to generate the address sequence for the different
processors.

Consider the case of an array aligned identically to a template that is
distributed CYCLIC(4) onto 3 processors, which is accessed with a stride of 7
(p = 3, k = 4 and s = 7). Figure 2.1 shows the allocation of the array elements
along with the corresponding global addresses. The array elements accessed
are marked and the corresponding local addresses are shown in Figure 2.1.
While the global access stride is constant (7 in this case), the local access
sequence does not have a constant stride on any processor. For example, the
local addresses of elements accessed in processor 1 are 3, 8, 14, 25, 31, The
address generation problem is to efficiently enumerate this sequence.

Integer Lattice Based Methods for Local Address Generation 5

30

6

17

23

28

8

14

25

31

5

11

16

22

0 1 2 3 4 5 6 7 8 9 10 11

Proc. 0 Proc. 1 Proc. 2

24 25 26 27

232221201918171612 13 14 15

36 37 38 39 40

28 29 30 31

41 42 43

32 33 34 35

44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 70 7169

72 73 74 75 76 77 78 79 80 81 82 83

84 85 86 87 88 89 90 91 92 93 94 95

Fig. 2.1. Layout of array A for p = 3 and k = 4 along with the global and
local addresses of the accessed elements in A(0 : 95 : 7) (s = 7); Superscripts
denote local addresses.

2.1 Related work on one-level mapping

Several papers have addressed this code generation problem. Koelbel [19] de-
rived techniques for compile-time address and communication generation for
BLOCK and CYCLIC distribution for non-unit stride accesses containing a sin-
gle loop index variable. MacDonald et al. [21] provided a simple solution for
restricted case where the block sizes and the number of processors are powers
of two. Chatterjee et al. [5] derived a purely runtime technique that identifies
a repeating access pattern, which is characterized as a finite-state machine.
Their O(k log k+log min(s, pk)) algorithm involves a solution of k linear Dio-
phantine equations to determine the pattern of addresses accessed, followed
by sorting these addresses to derive the accesses in linear order. Gupta et
al. [12] derived the virtual-block and the virtual-cyclic schemes. The virtual
block (cyclic) scheme views the global array as a union of several cyclically
(block) distributed arrays. The virtual cyclic scheme does not preserve the
access order in the case of DO loops; this is not a problem for parallel array
assignments. For large block sizes, this approach may suffer from cache misses
[5]. They present a strategy for choosing a virtualization scheme for each array
involved in array statement, based on indexing overheads and not on cache
effects. In an exhaustive study of this problem, Stichnoth [33, 34] presented
a framework (that bears similarities to the approach of Gupta et al. [12]) to
enumerate local addresses and generation of communication sets. Banerjee et
al. [2] discuss code generation for regular and irregular applications. Coelho
et al. [6] present a survey of approaches to compiling HPF.

6 J. Ramanujam

Ancourt et al. [1] use a linear algebra framework to generate code for fully
parallel loops in HPF; their technique does not work for DO loops. Midkiff [22]
presented a technique that uses a linear algebra approach to enumerate local
accesses on a processor; this technique is similar to the virtual block approach
presented by Gupta et al. [12]. van Reeuwijk et al. [32] presented a technique
which requires the solution of linear Diophantine equations. Benkner [3] pre-
sented a solution for code generation for block-cyclic distributions in Vienna
Fortran 90.

Kennedy, Nedeljkovic, and Sethi [16] derived an O(k + log min(s, pk)) al-
gorithm for address generation. The improvement over Chatterjee et al.’s
algorithm comes from avoiding the sorting step at the expense of solving an
additional set of k − 1 linear Diophantine equations. In Sections 3 thru 7,
we present our improved solution to the one-level mapping problem. Unlike
Kennedy et al. [16] who solve k−1 linear Diophantine equations, our approach
requires the solution of just two linear Diophantine equations. In addition,
we present an efficient loop-nest based approach to enumerate the array ad-
dresses in order to derive the address pattern. Wijshoff [46] describes access
sequences for periodic skewing schemes (used in providing efficient data or-
ganization in parallel machines) using lattices and derived closed forms for
the lattices. He does not discuss code generation. Wang et al. [45] discuss
experiments with several address generation solutions and conclude that the
strategy described by us in this chapter (and in [39]) is the best strategy
overall.

Other work on one-level mapping from our group: In [36, 37, 38, 41],
we presented closed form expressions for basis vectors for several cases. Using
the closed form expressions for the basis vectors, we derived a non-unimodular
linear transformation; the matrix associated with this transformation has
a determinant equal to the inverse of the access stride. In an experiment
with a large set of values for the parameters p (the number of processors),
k (block size) and s (the access stride), we derived the best pair of basis
vectors using the closed form expressions for 82% of the problem instances.
In later sections, we show that basis vector generation dominates address
generation. Recently, we [25] have derived a runtime solution for the basis
vector generation problem whose complexity is O(log min(s, pk)), which is
simply the complexity of computing the required gcd. In contrast, all the
other algorithms known to date for basis generation have a complexity of
O(k + log min(s, pk)) or worse.

2.2 Related work on two-level mapping

A few methods have been proposed to address the code generation problem
for two-level mapping. The solution by Chatterjee et al. [5] involves two
applications of the one-level algorithm, where the input strides are a for the
first and a ∗ s for the second. They build two finite state machines which

Integer Lattice Based Methods for Local Address Generation 7

will generate the access sequence for the allocated and the accessed elements.
The next step involves using the finite state machines for the template space
to rebuild a new finite state machine for the local address space. This fix-
up step involves computing expensive integer divide and mod operations to
determine the addresses of accessed elements in the local memory space. An
added drawback of their technique when compared to our technique is the
fact that their one-level pattern tables contain local memory gaps and not
actual addresses. However their execution preserves lexicographic ordering
and they do not incur any memory wastage.

Ancourt et al. [1] presented a solution for the two-level mapping problem;
it involves a change of basis which leads to compression of holes but still
incur some memory wastage. The node-code generated by this framework
has complicated loops and incurs high execution overhead; their execution
order does not preserve lexicographic ordering.

Kaushik [15] uses processor virtualization to handle two-level mapping
with block-cyclic distributions. His method involves the generation of ad-
dresses for both hole-compression and for the one without hole-compression.
First, the amount of memory that must be allocated is determined using a
regular section characterization for block and cyclic distributions. Then, this
regular section characterization is extended to the virtual processor approach
for handling block-cyclic distributions. His technique does not ensure lexico-
graphic execution in the case of virtual cyclic approach. In addition, memory
wastage that grows with the amount of allocated storage is incurred.

3. A Lattice Based Approach for Address Generation

In the next few sections, we present a novel technique based on integer lat-
tices for the address generation problem presented in the previous section.
We first show that the accessed array elements of an array section belong
to an integer lattice. We then provide a linear time algorithm to obtain the
basis vectors of the integer lattice. We then go on to use these basis vectors
to generate a loop nest that determines the access sequence. The problem of
basis determination forms the core of code generation for HPF array state-
ments; thus, a fast solution for this problem improves the performance of
several facets of an HPF compiler. Also, we also provide a few optimizations
of our basis determination algorithm.

3.1 Assumptions

In the next several sections, we present our approach to address generation
for an alignment stride, a = 1. For a > 1, we use an approach similar to the
one developed in [5], which involves two applications of our algorithm; this
approach is discussed in Section 8 thru 10.

8 J. Ramanujam

We assume that A is identically aligned to the template T. As it is evident
from Figure 1.1(a), we assign a block of k cells of the template to each of
the p processors and then wrap around and assign the rest of the cells in a
similar fashion. As mentioned earlier, we treat the global address space as
a two dimensional space and every element of an array A(i) has an address
of the form (x, y) = (idiv pk, i mod pk) in this space. Here x is the course
number to which this element belongs and y is the offset of the element in
that course. We refer to the two-dimensional view of an array A as A2D; this
notation is used throughout this chapter. Similarly, Aloc refers to the locally
allocated piece of array A on a processor.

3.2 Lattices

We use the following definitions of a lattice and its basis [11].

Definition 3.1. A set of points x1,x2, · · · ,xk in ℜn is said to be indepen-
dent if these points do not belong to a linear subspace of ℜn of dimension
less than k.

For k = n, this is equivalent to the condition that the determinant
of the matrix X whose columns are xi (1 ≤ i ≤ n) is non-zero, i.e.,
det ([x1x2 · · ·xn]) 6= 0. Now we state the following definition from the theory
of lattices [11]; see [11] for a proof.

Definition 3.2. Let b1,b2, · · · ,bn be n independent points. Then the set Λ

of points q such that

q = u1b1 + u2b2 + · · ·+ unbn

(where u1, . . . , un are integers) is called a lattice. The set of vectors b1, · · · ,bn

is called a basis of Λ. The matrix B = [b1b2 · · ·bn] is called a basis matrix.

Definition 3.3. Let Λ be a discrete subspace of ℜn which is not contained
in an (n− 1)-dimensional linear subspace of ℜn. Then Λ is a lattice.

We refer to the set of global addresses (elements) over all processors accessed
by A(ℓ : h : s) with distribution parameters (p, k) as Γ = 〈A(ℓ : h : s), p, k〉. We
refer to the set of local addresses accessed by processor m in executing its
portion of A(ℓ : h : s) with distribution parameters (p, k) as Γm. By construc-
tion, Γ is a discrete subgroup of ℜ2 and in general, is not contained in a
1-dimensional linear subspace of ℜ2; if a single vector can be used to gener-
ate the elements accessed, our algorithm handles this as a special case. Thus,
without loss of generality, Γ = 〈A(ℓ : h : s), p, k〉 is a lattice. Similarly Γm is
also a lattice.

In order to find the sequence of local addresses accessed on processor m,
one needs to:

Integer Lattice Based Methods for Local Address Generation 9

This region contains

all elements accessed

before z

This region contains
all elements accessed
after z

l
_

Z

r
_

Last element accessed

before z

First element accessed

after z

Fig. 3.1. Explanation of basis determination

1. find a set of basis vectors of the lattice Γm; and
2. enumerate the points in Γm using integer linear combinations of the basis

vectors.

Our solution to Step 1 (presented in Section 4) uses the fact that a basis
for the lattice can be computed from a knowledge of some of the points in
the lattice. Our solution to Step 2 (presented in Section 5) uses the fact that
if (with a given origin) every point in the lattice can be generated as non-
negative integer linear combinations of a suitable pair of basis vectors, then
these points can be enumerated by a two-level loop (each level with a step
size of 1); in addition, this two-level nest can be derived by applying the
linear transformation B−1 where B is the basis of the lattice.

Definition 3.4. A basis B of the lattice Λ is called an extremal basis if the
set of points q that belong to Λ can be written as

q = u1b1 + u2b2 + · · ·+ unbn

where u1, . . . , un are non-negative integers.

This chapter presents an algorithm for determining an extremal basis of the
array section lattice 〈A(ℓ : h : s), p, k〉 and shows how to use the extremal basis
to generate the address sequence efficiently.

4. Determination of Basis Vectors

In this section, we show how to derive a pair of extremal basis vectors for the
lattice Γm. In order to do that, we state a key result that allows us to find a
basis for the lattice given a set of points in the lattice.

10 J. Ramanujam

Result 4.1. Let b1,b2, · · · ,bn be independent points of a lattice Λ in ℜn.
Then Λ has a basis {a1,a2, · · · ,an} such that

bi =

i
∑

k=1

ukiak (i = 1, . . . , n)

where uii > 0 and 0 ≤ uki < uii (k < i; i = 1, . . . , n). In addition, the set of
points {b1,b2, · · · ,bn} is a basis of the lattice Λ if and only if uii = 1.

While this result allows us to decide if a given set of independent points form
a basis of the lattice, it is not constructive. But for n = 2, we derive the
following theorem which allows us to construct a basis for the array section
lattice on processor m. We use the vector o to refer to the origin of the lattice.

Theorem 4.1. Let b1 and b2 be independent points of a lattice Λ in ℜ2

such that the closed triangle formed by the vertices o,b1 and b2 contains no
other points of Λ. Then {b1,b2} is a basis of Λ.

Proof. Let {a1,a2} be any basis of Λ. From Result 4.1, we can write

b1 = u11a1

b2 = u12a1 + u22a2

where u11 > 0, u22 > 0 and 0 ≤ u12 < u22. Based on the hypothesis, the side
of the triangle connecting vertices o and b1 does not contain other points of
Λ. Therefore, u11 = 1.

Let us assume that u22 > 1. If u12 = 0, the triangle formed by o,b1 and
b2 contains the point a2 ∈ Λ; similarly, if u12 ≥ 1, the triangle formed by
o,b1 and b2 contains the point a1+a2 ∈ Λ. This contradicts our hypothesis.
Hence, u22 = 1. Since, u11 = u22 = 1, it follows from Result 1 that the vectors
b1 and b2 form a basis of Λ. ⊓⊔

Thus, in order to determine a basis of the array section lattice on processor
m, we need to find three points (one of which can be considered as the origin
without loss of generality) not on a straight line such that the triangle formed
by them contains no other points belonging to the lattice. Let x1, x2, and
x3 be three consecutively accessed elements of the array section lattice on
processor m. If x1, x2, and x3 are independent points (do not lie on a straight
line), then the vectors x2 − x1 and x3 − x2 form a basis for Γm. Recall that
we view the array layout as consisting of several courses on each processor
with each course consisting of k elements; this allows us to refer to each of
the k columns on a processor. For the array section A(ℓ : h : s), let cf be the
first column in which an element is accessed and let cl be the last column in
which an element is accessed. Let zf be some element accessed in column cf

and let zl be some element accessed in column cl by a processor. Let xprev

denote the element accessed immediately before x in lexicographic order on

Integer Lattice Based Methods for Local Address Generation 11

-l
_

-r
_

l
_ r

_

k

s/d

start

Fig. 4.1. No lattice point is a non-positive linear combination of basis vectors

a processor, and xnext denote the element accessed immediately after x in
linear order on a processor. We do not discuss the case where zf and znext

f

(or z
prev

f) are in the same column. This case is handled separately and is
easily detected by our technique.

Theorem 4.2. The set of points {zprev

f , zf , z
next
f } generate a basis of Γm.

Proof. From Theorem 4.1, the set of points {zprev

f , zf , z
next
f } generate a basis

of Γm if there are no lattice points in the triangle enclosing them and if they
are independent. By construction, these are consecutive points in the lattice
Γm and therefore, there no lattice points in the triangle (if any) enclosing
them. Suppose these are not independent, i.e., they lie on a straight line.
This implies one of the following two cases:

Case (a): Column(zprev
f) < Column(zf) < Column(znext

f).
Case (b): Column(znext

f) < Column(zf) < Column(zprev

f).

Neither of these cases hold, since Column(zf) = cf is the first column on
processor m in which any element is accessed. Therefore, the three points are
independent. Hence the result. ⊓⊔

Similarly, the set of points {zprev

l , zl, znext
l } also generate a basis of Γm. We

use the set {zprev
f , zf , z

next
f }. We refer to the vector zf − z

prev
f as l = (l1, l2)

and the vector znext
f −z as r = (r1, r2). Again by construction, l1 > 0, r2 > 0,

l2 < 0 and r1 ≥ 0. This is illustrated in Figure 3.1 on p. 9.

4.1 Basis Determination Algorithm

In order to obtain a basis for the lattice, we need to find three points be-
longing to the lattice not on a straight line such that the triangle formed by

12 J. Ramanujam

k

s/d

r

-r

_

_
l

_

Fig. 4.2. No lattice points in region spanned by vectors l and -r

l

-l
_

_

r
_

Fig. 4.3. No lattice points in region spanned by vectors -l and r

them contains no other lattice point. Chatterjee et al. [5] suggested a way to
locate lattice points by solving linear Diophantine equation for each column
with accessed elements. For details on their derivation refer [5]. The smallest
solution of each of these solvable equations gives the smallest array element
accessed in the corresponding column on a processor. Using this we show that
we can obtain a basis for an array section lattice which generates the small-
est element in each column that belongs to Γm by solving only two linear
Diophantine equations.

The first two consecutive points accessed on a given column and the first
point accessed on the next solvable column form a triangle that contains no
other points. Again, let cf be the first column in which an element is accessed
on a processor. Let zf be the first element accessed in column cf . Since the

access pattern on a given processor repeats after pks
gcd(s,pk) elements, the point

Integer Lattice Based Methods for Local Address Generation 13

Zf

Z s

Zf

Z s

0

s/d()
0

s/d()

Pattern repeats
here

Fig. 4.4. Starting points in the columns generated by the vectors
(

s
d
, 0

)

and
zs−zf .

accessed immediately after zf in column cf is zf + pks
gcd(s,pk) . Now if cs is the

second column in which an element is accessed on the processor, and zs is the
first element accessed in it, then without loss of generality zf , zf + pks

gcd(s,pk)

and zs form a basis for the array section lattice. Hence the vectors
(

s
d
, 0

)

and
zs − zf form a pair of basis vectors of the array section lattice.

The elements zf and zs can be obtained by solving the first two solvable
Diophantine equations in the algorithm (Lines 4 and 6) shown in Figure 4.5.
Figure 4.4 shows the basis vectors generated as explained above whereas Fig-
ure 4.5 gives an outline of how the new basis vectors could be used to access
the smallest array element accessed in each column for the case where zs lies
on a course above or below zf . Our basis determination algorithm works as
follows. First we use the new basis to walk through the lattice to enumerate
all the points on the lattice before the pattern starts to repeat. Then we use
these points to locate the three independent points z

prev

f , zf , z
next
f that form

a triangle that contains no other lattice point. Using these three points we
obtain the new basis of the lattice which we use to walk through the lattice
in lexicographic order. Thus, we now need to solve only two Diophantine
equations to generate the basis of the array section lattice that enumerates
the points accessed in lexicographic order. This new basis determination algo-
rithm performs substantially better than that proposed by Kennedy et al. for
large values of k.

14 J. Ramanujam

Input: Layout parameters (p, k), regular section (ℓ : h : s), processor number m.
Output: start address, end address, length, basis vectors r = (r1, r2) and l = (l1, l2)

for m.
Method:

1 (d, x, y) ← Extended-Euclid(s, pk); length ← 2; start ← h + 1
2 last ← ℓ + pks

d
− 1; first ← ℓ; bmin ← last + 1; amax ← first − 1

3 i ← d⌈ km−ℓ
d

⌉; i end ← km − ℓ + k − 1

4 if i > i end then return ⊥, ⊥, 0, ⊥, ⊥, ⊥, ⊥ /̀* No element */
5 amin ← bmax ← zf ← ℓ + s

d
(ix + pk⌈−ix

pk
⌉); i ← i + d

6 if i > i end then return zf , zf , 1, ⊥, ⊥, ⊥, ⊥ /̀* One element */
7 loc ← zs ← ℓ + s

d
(ix + pk⌈−ix

pk
⌉); length← 2

8 if zs < zf then
9 amin ← amax ← zs; vec2 ← zs − zf ; vec1 ← pks

d
+ vec2

10 else
11 bmin ← bmax ← zs; vec1 ← zs − zf ; vec2 ← vec1 − pks

d

12 endif
13 if vec1 ≤ vec2 then
14 loc ← loc + vec1; i ← i + d
15 while i ≤ i end do
16 if loc > last then
17 loc ← loc − pks

d

18 endif
19 if loc < zf then /* loc is accessed before zf */
20 amax ← max(amax, loc); amin

← min(amin, loc)
21 else /* loc is accessed after zf */
22 bmax ← max(bmax, loc); bmin

← min(bmin, loc)
23 endif
24 loc ← loc + vec1; i ← i + d; length ← length + 1
25 enddo
26 else
27 loc ← loc + vec2; i ← i + d
28 while i ≤ i end do
29 if loc < first then
30 loc ← loc + pks

d

31 endif
32 if loc < zf then /* loc is accessed before zf */
33 amax ← max(amax, loc); amin

← min(amin, loc)
34 else /* loc is accessed after zf */
35 bmax ← max(bmax, loc); bmin

← min(bmin, loc)
36 endif
37 loc ← loc + vec2; i ← i + d; length

← length + 1
38 enddo
39 endif
40 (start, end, l1, l2, r1, r2) ← COMPUTE-VECTORS (zf ,

p, k, s, d, amin, amax , bmin, bmax)
41 return start, end, length − 1, l1, l2, r1, r2

Fig. 4.5. Algorithm for determining basis vectors

Integer Lattice Based Methods for Local Address Generation 15

Input: zf , p, k, s, d, amin, amax , bmin, bmax.
Output: The start memory location, end memory location and the basis

vectors r = (r1, r2) and l = (l1, l2) for processor m.
Method:

1 if amin = zf and amax = −1 then /* above is empty */
2 l1 ← ⌊

zf

pk
⌋ + s

d
− ⌊ bmax

pk
⌋

3 l2 ← zf mod k − bmax mod k

4 r1 ← ⌊ bmin
pk

⌋ −⌊
zf

pk
⌋

5 r2 ← bmin mod k − zf mod k

6 else if bmin = pks

d
and bmax = zf then /* below is empty */

7 l1 ← ⌊
zf

pk
⌋ − ⌊amax

pk
⌋

8 l2 ← zf mod k − amax mod k

9 r1 ← ⌊amin
pk

⌋ + s
d
− ⌊

zf

pk
⌋

10 r2 ← amin mod k − zf mod k
11 else /* neither above nor below is empty */
12 l1 ← ⌊

zf

pk
⌋ − ⌊amax

pk
⌋

13 l2 ← zf mod k − amax mod k

14 r1 ← ⌊ bmin
pk

⌋ − ⌊
zf

pk
⌋

15 r2 ← bmin mod k − zf mod k
16 endif
17 start ← amin
18 end ← bmax
19 return start, end, l1, l2, r1, r2

Fig. 4.6. COMPUTE-VECTORS procedure for basis vectors determination algorithm

4.2 Extremal Basis Vectors

In this section, we show that the basis vectors generated by our algorithm in
Figure 4.5 form an extremal set of basis vectors.

Theorem 4.3. The lattice Γm (the projection of the array section lattice on
processor m) contains only those points which are non-negative integer linear
combinations of the basis vectors l and r.

Proof. Let z be the lexicographically first (starting) point of the lattice Γm.
As r and l are the basis vectors of the lattice, any point q belonging to the
lattice can be written as

q = z + v1l + v2r

where r = (r1, r2) and l = (l1, l2). Also, l1 > 0, l2 < 0, r1 ≥ 0 and r2 > 0 by
construction. Suppose q ∈ Γm and that either one or both of v1 and v2 are
negative integers. There are two cases to consider:

Case (1): (v1 < 0 and v2 < 0) v1l1 + v2r1 < 0
As both v1 and v2 are negative, it is clear from Figure 4.1 that q lies in the
region above the start element z. This contradicts our earlier assumption
that z is the start element on processor m. Hence, v1 < 0 and v2 < 0
cannot be true.

16 J. Ramanujam

Case (2): (v1 < 0 or v2 < 0)
Without loss of generality we assume that the start element z on a pro-
cessor lies in the first non-empty column.

Let v1 ≥ 0 and v2 < 0. As shown in Figure 4.2, q lies in the region to the
left of z since v1l2 + v2r2 < 0. This contradicts our assumption that q ∈ Γm.
Hence v1 ≥ 0 and v2 < 0 cannot be true.

If v1 < 0 and v2 ≥ 0, then the next element accessed after the origin is
either z + r or z + r − l. If the next accessed element of Γm is z + r − l,
then this point should be located on a course above z or on a course below
z. If this element is located on a course above z, it would not be a point
in the lattice Γm. If this element is located on a course below z, then this
element is lexicographically closer to z than the point z+r which is impossible
(due to the construction of r). By the above arguments (as can be seen in
Figure 4.3), we have shown that the next element accessed after z can only
be z+r. A repeated application of the above argument rules out the presence
of a lattice point in the shaded regions in Figure 4.3. If z is not in the first
accessed column on processor m, similar reasoning can be used for the vector
l. Hence, the result. ⊓⊔

4.3 Improvements to the algorithm for s < k

If s < k, it is sufficient to find only s+1 lattice points instead of k lattice points
(as in [16]) in order to derive the basis vectors. Our implementation uses this
idea which is explained next. Figure 4.7 shows that the access pattern repeats
after s columns. A close inspection of the algorithm for determining the basis
of the lattice for the case where s < k reveals that the basis vector r will
always be (0, s). We also notice that since we access at least one element on
every row, the first component of the basis vector l, i.e., l1 must always be
1. Hence, if s < k, all we need to solve for is the second component of l i.e.,
l2. This results in a reduced number of comparisons for the s < k case; in
addition, there is no need to compute bmin, since it is not needed for the
computation of l2.

Consider the case where where l = 36, p = 4, k = 16 and s = 5 which is
shown in Figure 4.7; We illustrate this case for processor number 2. Running
through lines 1–38 of the algorithm in Figure 4.5 for this case, we get zf = 96,
amin = 36, amax = 46, bmin = 101 and bmax = 301 for processor 2. Since
the pattern of the smallest element accessed in a column repeats after every
s columns, it is sufficient to enumerate the elements accessed in the last s

columns to obtain amax and bmax. amin can be obtained by subtracting a
suitable multiple of s from the smallest element in the last s columns lying
above zf . By making these changes to the algorithm in Figure 4.5 for the
case where s < k, we can obtain the required input for the COMPUTE-VECTORS
procedure.

Integer Lattice Based Methods for Local Address Generation 17

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

Last s columns

Fig. 4.7. Addresses of elements of array A accessed on processor 2 for the
case p = 4, k = 16, s = 5 and offset l = 36

The improved algorithm to determine the basis vectors for each processor is
as follows.

1. Solve the Diophantine equation corresponding to the first solvable column
to obtain zf .

2. Solve the Diophantine equations corresponding to the last and last but
one solvable columns to obtain zl and zl−1 respectively. Use these two
solutions in a similar way as shown in Figure 4.5 to generate a pair of
basis vectors for the lattice vec1 and vec2 in terms of offsets.

3. Using the above basis vectors enumerate all the points in the last s

columns starting from the last solvable column. By comparing these ele-
ments to zf , we get the smallest and the largest element accessed in these
s columns that lie below zf , namely bmin′ and bmax′. Similarly, we find
the smallest and the largest elements that lie above zf , namely amin′

and amax′.
4. If the region above zf is not empty then, amax = amax′ and amin =

amin′− is (where is is a suitable multiple of s). If l lies on the processor
then amin = l.

5. If both l and l− s lie on the processor then bmax = l + pks
d

. If the region
below zf is not empty then, bmin = bmin′ − is (where is is a suitable
multiple of s) and bmax = bmax′.

6. Generate the lattice basis using the COMPUTE-VECTORS procedure.

4.4 Complexity

Line 1 of the algorithm in Figure 4.5 is the extended Euclid step which
requires O(log min(s, pk)) time. Lines 2 thru 40 require O(min(s, k)) time.

18 J. Ramanujam

Thus, the basis generation part of our algorithm is O(log min(s, pk) +
min(s, k)); the basis generation portion of the algorithm in Kennedy et al. [16]
is O(k + log min(s, pk)). We note that the address enumeration part of both
the algorithms is O(k). Experiments have shown that the basis determina-
tion part dominates the total time in practice. See Section 7 for a discussion.
Thus, our algorithm is superior to that of Kennedy et al. [16].

5. Address Sequence Generation by Lattice

Enumeration

As mentioned earlier, we will treat the global address space as a two dimen-
sional space, and each element of an array A(i) has an address of the form
(x, y) = (idiv pk, i mod pk) in this space. We refer to the two-dimensional
view of an array A as A2D. The sequence of the array elements accessed
(course by course) in a processor can be obtained by strip mining the loop
corresponding to A(ℓ : h : s) with a strip length of pk and appropriately re-
stricting the inner loop limits. In the following analysis we assume that ℓ = 0
and h = N − 1. At the end of this section we will show how the code gen-
erated for A(0 : N − 1 : s) can be used to generate the code for A(ℓ : h : s).
The code for the HPF array section A(0 : N − 1 : s) that iterates over all the
points in the two dimensional space shown in Figure 1.1(a) could be written
as follows:

DO i = 0, ⌊N−1
pk
⌋

DO j = 0, pk − 1
A2D(i, j) = · · · · · ·

ENDDO

ENDDO

We apply a non-unimodular loop transformation [23, 24] to the above loop
nest to obtain the points of the lattice. Since the access pattern repeats after
the first

(

s
d

)

courses, we limit the outer loop in the above loop nest to iterate
over the first

(

s
d

)

courses only. In this case the global address of the first
element allocated to the processor memory is mk, where m is the processor
number. So in order to obtain the sequence of local addresses on processor
m, we need to apply the loop transformation to the following modified code:

DO i = 0,
(

s
d
− 1

)

DO j = mk,mk + k − 1
A2D[i, j] = · · ·

ENDDO

ENDDO

The basis matrix for the lattice as derived in the last section is B =
[

l1 r1

l2 r2

]

. Hence the transformation matrix T is of the form

Integer Lattice Based Methods for Local Address Generation 19

T = B−1 =
1

∆

[

r2 −r1

−l2 l1

]

,

where ∆ = l1r2− l2r1 = s (since l1 > 0, r1 ≥ 0, l2 ≤ 0, and r2 > 0). The loop
bounds can be written as follows:

−1 0
1 0
0 −1
0 1

[

i

j

]

≤

0
s
d
− 1
−mk

mk + k − 1

−1 0
1 0
0 −1
0 1

BB−1

[

i

j

]

≤

0
s
d
− 1
−mk

mk + k − 1

−1 0
1 0
0 −1
0 1

[

l1 r1

l2 r2

] [

u

v

]

≤

0
s
d
− 1
−mk

mk + k − 1

where

[

u

v

]

= B−1

[

i

j

]

and u and v are integers. Therefore,

[

i

j

]

=

[

l1u + r1v

l2u + r2v

]

.

We now use Fourier-Motzkin elimination [7] on the following system of in-
equalities to solve for integral u and v:

−l1u− r1v ≤ 0

l1u + r1v ≤
s

d
− 1

−l2u− r2v ≤ −mk

l2u + r2v ≤ mk + k − 1

If r1 > 0 we have the following inequalities for u and v:
⌈

(−mk − k + 1)r1

s

⌉

≤ u ≤

⌊

(s
d
− 1)r2 − mkr1

s

⌋

⌈

max
(

mk − ul2

r2
,
−ul1

r1

)⌉

≤ v ≤

⌊

min

(

mk + k − 1 − ul2

r2
,

s
d
− 1 − ul1

r1

)⌋

The node code for processor m if r1 > 0 is:

DO u =
⌈

(−mk−k+1)r1

s

⌉

,
⌊

(s
d
−1)r2−mkr1

s

⌋

DO v =
⌈

max
(

mk−ul2
r2

, −ul1
r1

)⌉

,
⌊

min
(

mk+k−1−ul2
r2

,
s
d
−1−ul1

r1

)⌋

A2D[l1u + r1v, l2u + r2v] = · · · · · ·
ENDDO

ENDDO

20 J. Ramanujam

If r1 = 0 we have the following inequalities for u and v:

0 ≤ u ≤
r2

s

(s

d
− 1

)

⌈

mk − ul2

r2

⌉

≤ v ≤

⌊

mk + k − 1− ul2

r2

⌋

The node code for processor m if r1 = 0 is:

DO u = 0, r2

s
(s

d
− 1)

DO v =
⌈

mk−ul2
r2

⌉

,
⌊

mk+k−1−ul2
r2

⌋

A2D[l1u, l2u + r2v] = · · · · · ·
ENDDO

ENDDO

Example 5.1. Code generated for the case where ℓ = 0, p = 3, k = 4 and
s = 11 for processor 1.

The set of addresses generated by the algorithm in Figure 4.5 is {88, 77, 66,
55}. Also z = 88, amin = 55, amax = 77, bmin = 132 and bmax = 88.
Since the below section is empty we execute lines 5 and 6 of the algorithm in
Figure 4.6. So our algorithm returns l = (1,−1) and r = (8, 3) as the basis
vectors. The access pattern is shown in Figure 5.1. The node code to obtain
the access pattern for processor 1 is:

DO u =
⌈

−56
11

⌉

,
⌊

−2
11

⌋

DO v =
⌈

max
(

4+u
3 , −u

8

)⌉

,
⌊

min
(

7+u
3 , 10−u

8

)⌋

A2D[u + 8v,−u + 3v] = · · · · · ·
ENDDO

ENDDO

Next we show the iterations of the nested loop and the elements accessed;
the elements indeed are accessed in lexicographic order.

u vlb = vub = accessed
⌈

max
(

4+u
3

, −u
8

)⌉ ⌊

min
(

7+u
3

, 10−u
8

)⌋

elements (2D)
−5 1 0
−4 1 1 (4, 7)
−3 1 1 (5, 6)
−2 1 1 (6, 5)
−1 1 1 (7, 4)

Converting the global two-dimensional address of the accessed elements to
global addresses we get the global access pattern {55, 66, 77, 88} on processor
1 which gives the local access pattern {19, 22, 25, 28} on processor 1.

Integer Lattice Based Methods for Local Address Generation 21

Processor 0 Processor 1 Processor 2

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83

84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107

108 109 110 111 112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127 128 129 130 131

132 133 134 135 136 137 138 139 140 141 142 143

Fig. 5.1. Addresses of the accessed elements of array A along with the 2-
dimensional view for the case p = 3, k = 4 and s = 11.

6. Optimization of Loop Enumeration: GO-LEFT and

GO-RIGHT

A closer look at Figure 5.1 reveals that even if we generated code that enu-
merates the points belonging to a family of parallel lines along the vector
(l1, l2) by moving from one parallel line to the next along the vector (r1, r2),
we would still access the elements in lexicographic order. Clearly, in this ex-
ample, the above enumeration turns out to be more efficient than the earlier
enumeration. We refer to this new method of enumeration as GO-LEFT, as
we enumerate all points on a line along the vector (l1, l2) before we move
to the next line along the other basis vector. For the same reasons, we refer
to the earlier method of enumeration as GO-RIGHT. Next we show that the
GO-LEFT method also enumerates elements in lexicographic order. If B (as
shown in Section 5) is the basis matrix for the GO-RIGHT case then the basis

for the GO-LEFT case is BL =

[

r1 l1
r2 l2

]

. Hence the transformation matrix

in the GO-LEFT case is B−1
L . Next, we show that for the pair of basis vectors

obtained using the algorithm shown in Figure 4.5, the GO-LEFT scheme is
always legal.

Theorem 6.1. Given a point q belonging to the lattice Γm and a pair of
extremal basis vectors l and r obtained using the algorithm in Figure 4.5,
then on applying B−1

L as a transformation we maintain the access order.

Proof. Since l and r are extremal basis vectors,

q = z + v1l + v2r

where z is the starting point of Γm and v1 and v2 are positive integers. So
qnext could either be q + r or q + l or q + l + r.

22 J. Ramanujam

Let us assume that q+r ∈ Γm and q+l ∈ Γm. This implies that q+r+l ∈
Γm. With this assumption we can have the two following cases,

Case 1: q + r is lexicographically closer to q than q + l.
Case 2: q + l is lexicographically closer to q than q + r.

In Case 1, q + l is lexicographically closer to q than q + r. So it should be
clear that q+r should be lexicographically closer to q+ l than to q, which is
impossible (due to the construction of r and l). Hence our assumption that
q + r ∈ Γm and q + l ∈ Γm is not true. A similar argument can be used to
show that out initial assumption is incorrect for Case 2 also.

From the above arguments, we conclude that given the starting point of
Γm, we maintain the lexicographic order of the points accessed by repeatedly
adding l until we run out of Γm and then add a r and continue adding l until
we run out of Γm again and so on. So the access order does not change on
using BL as the basis matrix, i.e., applying BL

−1 as the transformation. ⊓⊔

From the above theorem it is clear that GO-LEFT is always legal for the pair
of basis vectors obtained using the algorithm shown in Figure 4.5. The loop
nest for r1 6= 0 is:

DO u =
⌈

mkl1
s

⌉

,
⌊

(s
d
−1)(−l2)+(mk+k−1)l1

s

⌋

DO v =
⌈

max
(

(mk+k−1)−ur2

l2
, −ur1

l1

)⌉

,
⌊

min
(

mk−ur2

l2
,

s
d
−1−ur1

l1

)⌋

A2D[r1u + l1v, r2u + l2v] = · · · · · ·
ENDDO

ENDDO

The node code for processor m if r1 = 0 is:

DO u =
⌈

mkl1
s

⌉

,
⌊

(s
d
−1)(−l2)+(mk+k−1)l1

s

⌋

DO v =
⌈

max
(

(mk+k−1)−ur2

l2
, 0

)⌉

,
⌊

min
(

mk−ur2

l2
,

s
d
−1

l1

)⌋

A2D[l1v, r2u + l2v] = · · · · · ·
ENDDO

ENDDO

Next, we need to decide when it is beneficial to use GO-LEFT. The amount
of work that needs to be done to evaluate the inner loop bounds is the same
for each outer loop iteration in both the enumeration methods. So an enu-
meration that results in fewer outer loop iterations is the scheme of choice.
The number of elements accessed per line in the two cases is a function of
the block size k and second components of the basis vectors. If r2 ≤ −l2, we
use GO-RIGHT; else, we use GO-LEFT.

Example 6.1. Code generated for the case where ℓ = 0, p = 3, k = 4 and
s = 11 for processor 1 when we choose to GO-LEFT.

Integer Lattice Based Methods for Local Address Generation 23

Input: start, end, r = (r1, r2), l = (l1, l2).
Output: The address sequence.
Method:
if r2 ≤ −l2 then /* GO-RIGHT */

1. ustart ←
r2(start div pk − ℓ div pk)− r1(start mod pk − ℓ mod pk)

s

2. uend ←
r2(end div pk − ℓ div pk)− r1(end mod pk − ℓ mod pk)

s
3. Scan all the elements on the first line (ustart), starting at the start ele-

ment and then adding r until there are no more elements on this proces-
sor.

4. From the previous start add l and then add r as many times as necessary
till you get back onto the processor space. The element thus obtained is
the start for the new line. Starting at this element keep adding r until
you run out of the processor space. Repeat this until the line immediately
before the last line (uend).

5. Obtain the start point on the last line as before. Scan all the elements
along the line from the start by adding r until you reach the end element.

else /* GO-LEFT */

1. ustart ←
−l2(start div pk − ℓ div pk) + l1(start mod pk − ℓ mod pk)

s

2. uend ←
−l2(end div pk − ℓ div pk) + l1(end mod pk − ℓ mod pk)

s
3. Scan all the elements on the first line (ustart), starting at the start ele-

ment and then adding l until there are no more elements on this processor.
4. From the previous start add r and then add l as many times as necessary

till you get back onto the processor space. The element thus obtained is
the start for the new line. Starting at this element keep adding l until
you run out of the processor space. Repeat this until the line immediately
before the last line (uend).

5. Obtain the start point on the last line as before. Scan all the elements
along the line from the start by adding l until you reach the end element.

endif

Fig. 6.1. Algorithm for GO-LEFT and GO-RIGHT

24 J. Ramanujam

The basis vectors obtained by running through the algorithms shown in
Figure 4.5 are l = (1,−1) and r = (8, 3). Hence the resulting node code for
processor 1 is:

DO u =
⌈

4
11

⌉

,
⌊

17
11

⌋

DO v = max (3u− 7,−8u) ,min (3u− 4, 10− 8u)
A2D[8u + v, 3u− v] = · · · · · ·

ENDDO

ENDDO

Here we observe that unlike the previous example, we scan all the elements
along a single line rather than 4 different lines. Clearly in this case going left
is the better choice.

6.1 Implementation

We observe from the example in Sections 5 and 6 that the code generated for
GO-RIGHT enumerates the points that belong to a family of parallel lines, i.e.,
along the vector r, by moving from one parallel line to the next within the
family along the vector l and the code generated for GO-LEFT enumerates the
points that belong to a family of parallel lines along the vector l, by moving
from one parallel line to the next within the family along the vector r . So in
the code derived in Section 5, the outer loop iterates over the set of parallel
lines while the inner loop iterates over all the elements accessed in each line
on a given processor.

From the previous example it can be seen that we may scan a few empty
lines (i.e., lines on which no element is accessed) in the beginning and the
end. This can be avoided by evaluating a tighter lower bound for the outer
loop using the start and end elements evaluated in the algorithm shown in
Figure 4.5. The start line ustart and end line uend can be evaluated as follows
(using GO-RIGHT enumeration scheme):

l1ustart + r1vstart = start div pk − ℓ div pk

l2ustart + r2vstart = start mod pk − ℓ mod pk

l1uend + r1vend = end div pk − ℓ div pk

l2uend + r2vend = end mod pk − ℓ mod pk

Hence,

ustart =
r2(start div pk − ℓ div pk)− r1(start mod pk − ℓ mod pk)

s
;

uend =
r2(end div pk − ℓ div pk)− r1(end mod pk − ℓ mod pk)

s
.

The inner loop of the node code evaluates the start element for each itera-
tion of the outer loop i.e., each line traversed. In our implementation of the

Integer Lattice Based Methods for Local Address Generation 25

loop enumeration we use the start element of the previous line traversed to
obtain the start element of the next line. This eliminates the expensive inte-
ger divisions involved in evaluating the start elements on the different lines.
Figure 6.1 shows our algorithm for loop enumeration.

7. Experimental Results for One-level Mapping

We performed experiments on our pattern generation algorithm on a Sun
Sparcstation 20. We used the cc compiler using the -fast optimization
switch; the function gettimeofday() was used to measure time. When com-
puting the time for 32 processors, we timed the code that computes the access
pattern for each processor, and report the maximum time over all processors.
We experimented with block sizes in powers of 2 ranging from 4 to 1024 for
32 processors. The total times for the two different implementations (“Right”
and “Zigzag”) of the algorithm in [16] and our algorithm include basis and ta-
ble generation times. Tables 7.1(a)–7.1(c) show the total times for the above
three algorithms and the total time for pattern generation for the algorithm
proposed by Chatterjee et al. [5] (referred to as “Sort” in the tables). For
very small block sizes, all the methods have comparable performance. At
block sizes from 16 onward, our solution outperforms the other three. For
higher block sizes, our pattern generation algorithm performs 2 to 9 times
faster than the two Rice [16] algorithms. For larger block sizes, if s < k, our
algorithm is 7 to 9 times faster than the Rice algorithms because of the need
to find only s + 1 lattice points, instead of k lattice points, in order to find
the basis vectors. In addition, for larger block sizes, experiments indicate that
address enumeration time (given the basis vectors) for our algorithm is less
than that of [16]. From our choice of enumeration, we decide to use GO-LEFT

for s = pk − 1 and use GO-RIGHT for s = pk + 1. Since the algorithms in [16]
do not exploit this enumeration choice, our algorithm performs significantly
better. In addition, our algorithm is 13 to 65 times faster than the approach
of Chatterjee et al. [5] for large block sizes.

In addition to the total time, we examined the basis determination time
and the access enumeration times separately. In general, the basis determina-
tion time accounts for 75% of the total address generation time and is about 3
times the actual enumeration time. The basis determination times are shown
in Figure 7.1 and the enumeration times are shown in Figure 7.2. In these
figures, we plot the times taken for our algorithm (“Loop”), and the best
of the times for the two Rice implementations. Figure 7.1(a) shows that for
s = 7, the basis generation time for Loop is practically constant while that
for Rice increases with block size, k; for k = 2048, the basis generation time
for Rice is about 50 times that of our algorithm. In Figure 7.1(b) (s = 99),
it is clear that the basis generation time for our algorithm is nearly constant
while that for Rice increases from k = 128 onward; this is because of the fact
that our basis generation algorithm has a complexity O(min(s, k)) while Rice

26 J. Ramanujam

has a complexity O(k). Figures 7.1(c)–(f) indicate that for large values of k,
the Loop basis generation time is about half that of the Rice basis genera-
tion time. Figures 7.2(a)-(f) show that for small block sizes, the enumeration
time for Loop and Rice are comparable, and that from k = 64 onwards, the
enumeration time for Loop is lower than that of Rice. From these figures, it
is clear that the Loop algorithm outperforms the Rice algorithm in both the
basis determination and address enumeration phases of address generation.

8. Address Sequence Generation for Two-level Mapping

Non-unit alignment strides render address sequence generation even more
difficult since the addresses can not directly be represented as a lattice; in
this case, the addresses can be thought of as the composition of two integer
lattices. This section presents solution to the problem of address generation
for such a case when the data objects are mapped to processor memories using
CYCLIC(k) distribution. We present several methods of generating the address
sequence. Our approach involves construction of pattern tables which does
not incur runtime overheads as compared to other existing solutions for this
problem. We use two applications of the method described in the preceding
sections to generate the pattern of accesses.

8.1 Problem statement

Consider the following HPF code

REAL A(N)

!HPF$ TEMPLATE T(a*N + b)

!HPF$ PROCESSORS PROCS(p)

!HPF$ ALIGN A(j) WITH T(a*j + b)

!HPF$ DISTRIBUTE T(CYCLIC(k)) ONTO PROCS

do i = 0, ⌊h−l
s
⌋

A(l + is) = · · ·
enddo

A compiler that generates the node code for the above HPF program has
to generate the set of local elements of array A accessed on processor m.

To recall, when the alignment stride a > 1, the mapping is called a two-
level mapping. A non-unit-alignment-stride mapping results in many template
cells that do not have any array elements aligned to. These empty template
cells are referred to as holes. We need not allocate memory for holes in the
local address space during mapping. The challenge then is to generate the
sequence of accessed elements in this local address space ensuring that no
storage is wasted on holes.

Figure 8.1(a) shows the distribution of the template cells onto a proces-
sor arrangement. For this example, the alignment stride a and access stride

Integer Lattice Based Methods for Local Address Generation 27

Table 7.1. Total address generation times (in µs) for our technique (Loop), Right
and Zigzag of Rice [16] and the Sort approach [5] on a Sun Sparcstation 10

(a) p = 32; s = 3 and s = 5

Block Size s = 3 s = 5
k Loop Right Zigzag Sort Loop Right Zigzag Sort
2 17 19 19 20 19 21 21 22
4 20 23 23 27 29 31 31 35
8 21 24 25 37 21 24 25 37
16 29 33 33 69 25 33 34 69
32 29 44 45 150 31 46 47 152
64 33 73 76 453 42 82 84 460
128 36 127 132 845 37 126 131 843
256 47 238 247 1638 48 236 246 1638
512 64 458 480 3213 67 457 472 3221
1024 104 902 936 6383 113 905 946 6384

(b) p = 32; s = 7 and s = 9

Block Size s = 7 s = 9
k Loop Right Zigzag Sort Loop Right Zigzag Sort
2 17 19 19 20 17 19 19 20
4 21 23 23 27 21 23 23 27
8 31 34 35 47 23 26 27 39
16 25 31 32 67 26 33 35 69
32 32 46 47 152 42 55 57 160
64 43 81 84 460 44 81 84 460
128 38 125 131 843 39 125 131 843
256 49 236 245 1638 50 236 245 1637
512 76 464 487 3222 69 454 470 3220
1024 105 891 938 6368 107 890 919 6392

(c) p = 32; s = 11 and s = 99

Block Size s = 11 s = 99
k Loop Right Zigzag Sort Loop Right Zigzag Sort
2 27 29 29 30 35 37 37 38
4 37 39 39 43 45 47 47 51
8 31 34 35 47 55 59 59 71
16 35 41 42 77 51 58 58 93
32 32 44 47 151 50 64 64 170
64 37 73 75 452 71 91 98 469
128 50 135 141 854 97 149 152 865
256 67 252 261 1654 151 256 276 1656
512 70 455 469 3221 114 453 470 3224
1024 108 890 918 6389 154 887 916 6392

28 J. Ramanujam

Table 7.2. Total address generation times (in µs) for our technique (Loop), Right
and Zigzag of Rice [16] and the Sort approach [5] on a Sun Sparcstation 10

(a) p = 32; s = k − 1 and s = k + 1

Block Size s = k − 1 s = k + 1
k Loop Right Zigzag Sort Loop Right Zigzag Sort
2 17 19 19 20 19 21 21 22
4 20 23 23 27 29 31 31 35
8 31 34 35 47 23 26 27 39
16 26 33 33 69 26 33 33 69
32 33 45 45 154 33 45 45 155
64 64 84 87 459 64 82 90 459
128 92 141 141 853 93 134 144 853
256 149 255 255 1642 150 240 255 1641
512 263 486 485 3219 263 459 486 3219
1024 491 946 944 6375 493 894 946 6375

(b) p = 32; s = pk − 1 and s = pk + 1

Block Size s = pk − 1 s = pk + 1
k Loop Right Zigzag Sort Loop Right Zigzag Sort
2 17 19 19 20 15 17 17 18
4 18 21 21 25 16 19 19 23
8 19 24 24 37 17 22 23 35
16 23 31 31 67 20 29 30 65
32 29 45 45 155 26 43 44 147
64 43 73 72 449 38 72 74 449
128 70 128 128 843 62 129 132 844
256 124 239 239 1631 109 243 250 1637
512 232 463 463 3209 204 474 486 3220
1024 449 909 909 6365 395 932 958 6388

Integer Lattice Based Methods for Local Address Generation 29

101 102 103
0

200

400

600

800

1000

1200

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−

>

(a) s = 7 p = 32

Loop −−o−−

Rice −−+−−

101 102 103
0

200

400

600

800

1000

1200

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−

>

(b) s = 99 p = 32

Loop −−o−−

Rice −−+−−

101 102 103
0

200

400

600

800

1000

1200

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−>

(c) s = k−1 p = 32

Loop −−o−−

Rice −−+−−

101 102 103
0

200

400

600

800

1000

1200

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−

>

(d) s = k+1 p = 32

Loop −−o−−

Rice −−+−−

101 102 103
0

200

400

600

800

1000

1200

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−>

(e) s = pk−1 p = 32

Loop −−o−−

Rice −−+−−

101 102 103
0

200

400

600

800

1000

1200

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−>

(f) s = pk+1 p = 32

Loop −−o−−

Rice −−+−−

Fig. 7.1. Basis vector generation times for p = 32 processors for various
block sizes and strides

30 J. Ramanujam

101 102 103
0

50

100

150

200

250

300

350

400

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−

>

(a) s = 7 p = 32

Loop −−o−−

Rice −−+−−

101 102 103
0

50

100

150

200

250

300

350

400

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−>

(b) s = 99 p = 32

Loop −−o−−

Rice −−+−−

101 102 103
0

50

100

150

200

250

300

350

400

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−

>

(c) s = k−1 p = 32

Loop −−o−−

Rice −−+−−

101 102 103
0

50

100

150

200

250

300

350

400

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−>

(d) s = k+1 p = 32

Loop −−o−−

Rice −−+−−

101 102 103
0

50

100

150

200

250

300

350

400

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−>

(e) s = pk−1 p = 32

Loop −−o−−

Rice −−+−−

101 102 103
0

50

100

150

200

250

300

350

400

Block Size (k) −−>

T
im

e
(m

ic
ro

se
co

nd
s)

 −
−>

(f) s = pk+1 p = 32

Loop −−o−−

Rice −−+−−

Fig. 7.2. Lattice enumeration times (given the basis vectors) for p = 32
processors for various block sizes and strides

Integer Lattice Based Methods for Local Address Generation 31

Processor 0 Processor 1 Processor 2 Processor 3

16

11

1

7 8 10

2 3 4 5

12 13 14 15

17 18 19 20 21

22 23 2524 26

27 28 29 30 31

32 33 34 35 36 37

38 39 40 41 42

43 44 45 46 47

0

96

(a): Global layout of template cells on p = 4 processors.

Processor 0

Processor 1

Processor 2

Processor 3

0 1161

13122 7

14983

151054

(b): Local memory layout for template cells

Processor 0

Processor 1

Processor 2

Processor 3

0 1 6 11 16 17 22 32 33 38 43

2 7 12 13 18 23

24

28 29 34

3 8 9 14 19 25 30 35 40 41 46

4 5 10 15 20 21 26 31 36 37 42 47

454439

27

(c): Local memory layout for array cells.

Fig. 8.1. Two-level mapping of array A when a = 3, s = 3, p = 4, k = 4 and
l = 0

32 J. Ramanujam

s are both equal to 3. The number of processors p is 4 and we assume a
CYCLIC(4) distribution; this example is from Chatterjee et al. [5]. Now, we
define a few terms used here. The set of global indices of array elements
that are aligned to some template cell on a processor is called the set of
allocated elements. The set of global indices of accessed array elements that
are aligned to some template cell on that processor is called the set of ac-
cessed elements. These accessed elements are however a subset of allocated
elements. For the given example, {0, 1, 6, 11, 16, · · ·} is the set of allocated el-
ements and {0, 6, 27, 33, 48, · · ·} is the set of accessed elements for processor
0. Figure 8.1(b) shows the local address space of template cells on all the
processors. The problem of deriving the accessed elements for this template
space is similar to a one-level mapping problem where the stride s is replaced
with a ∗ s. However using this method we incur huge memory wastage and
suffer from data locality resulting in higher execution times.

If one eliminates holes in this layout, we can have a significant savings in
memory usage. This can be achieved by viewing the local address space as
shown in Figure 8.1(c). This local address space does not have any memory
wastage. However additional work at address generation time has to be done
to switch from the template space to the local space. Due to the absence of
these holes we can expect improved data locality and thus leading to faster
execution times. The address generation problem now is to generate the set
of elements accessed in this local address space, efficiently at runtime.

9. Algorithms for Two-level Mapping

The algorithms proposed in this section solve the problem of generating ad-
dresses for a compressed space for two-level mapping. These algorithms ex-
ploit the repetitive pattern of accesses by constructing pattern tables for the
local address space. These pattern tables are then used to generate the com-
plete set of accesses for the array layout just like in the case of one-level
mapping.

The main idea behind these algorithms is to construct tables that store
the indices needed to switch from the template space to the local space.
Since we do not allocate memory for holes, we have no memory wastage.
We also do not incur high costs for generating access function to switch
from the template space to local address space, this leads to faster execution
times. This coupled with the fact that no memory is wasted proves that
these methods are superior to any other existing methods that access array
elements lexicographically.

The algorithms for two-level mapping discussed in this chapter can be
broadly classified into two groups. These algorithms differ mainly in the man-
ner in which the tables are constructed in order to switch from the template
space to the local address space. The first algorithm constructs a table of
offsets whereas the algorithms in the second method uses different search

Integer Lattice Based Methods for Local Address Generation 33

0

(a)

60 21 27ACCESSED

(b)

ALLOCATED 3 6 9

0 2 97PATTERN

12 15 18 24 30 33

0 3 6 971 2 4 5 8 1110INDEX

(c)

21 27

Fig. 9.1. Local addresses of accessed and allocated elements along with two-
level access pattern when a = 3, s = 3, p = 4, k = 4 and l = 0

techniques to locate accessed elements in the set of allocated elements in the
compressed space.

All these algorithms first view the address space as an integer lattice and
use basis vectors to generate the access sequence of both allocated and ac-
cessed elements. The basis vectors are generated using our one-level address
generation algorithm discussed earlier. Two applications of the one-level al-
gorithm with input strides being a and a ∗ s in each case, generates the set
of accesses for both allocated and accessed elements. Figure 9.1(a) shows the
first set of repetition pattern of local addresses of the set of accesses for allo-
cated elements. The numbers in boxes are the set of elements accessed, and
the pattern of repetition of these elements is shown in Figure 9.1(b). In a
compressed space we need to locate the position of these accessed elements,
in the a set of allocated elements. So we record the positions of these entries
in a separate table as shown in Figure 9.1(c). The main objective of these
algorithms is to generate this switching table that helps in switching from
the template space to the local compressed space. The construction of these
switching tables is discussed in the following sections.

9.1 Itable: an algorithm that constructs a table of offsets

The main idea behind this algorithm is to construct a table of offsets, which is
used to help switch from the non-compressed space to the compressed space.
The algorithm exploits the repetition of accesses of both allocated and ac-
cessed elements. This algorithm first generates a two dimensional view of the
set of accesses of both allocated and accessed elements for the non-compressed
space. This is done by the application of the one-level algorithm with input
strides being a and a ∗ s respectively. Recording the two-dimensional view of
these sets does not incur any extra overhead such as expensive division and

34 J. Ramanujam

0 3 2 1ITABLE 0PATTERN

(a) (b)

(d)(c)

2 7 9

1

2

10 0

0 3 1

Y1

Y2

X1

X2

0

0

1

2

5

1

6

3

Fig. 9.2. Two dimensional coordinates of allocated and accessed elements
along with Itable and two-level access pattern when a = 3, s = 3, p = 4,
k = 4 and l = 0

Input: Layout parameters (p, k), loop limits (ℓ, h), access stride s, alignment stride
a for array A, processor m

Output: Two level
Method:

1 d1 ← gcd(a, pk)
2 d2 ← gcd(a ∗ s, pk)
3 (lengtha, Y1, Y2) ← one level(p, k, a, m, d1)
4 (lengthas, X1, X2) ← one level(p, k, a ∗ s, m, d2)
5 for i = 0, lengtha − 1 do
6 Itable[Y2[i]]← i
7 enddo
8 acou ←

a
d1

9 for i = 0, lengthas − 1 do

10 Two Level[i] ←
⌊

X1[i]
acou

⌋

∗ lengtha + Itable[X2[i]]
11 enddo
12 return Two level

Fig. 9.3. Algorithm that constructs the Itable for determining the two-level
access pattern table

modular operations due to the way we generate the set of accesses using the
one-level algorithm.

Figures 9.2(a) and (b) lists the two-dimensional coordinates of both ac-
cessed and allocated elements for the first set of pattern repetition for the
example discussed previously. The second coordinates of both these sets in-
dicate the offsets of the elements from the beginning of each course. A quick
glance clearly indicates that the accessed elements are a subset of allocated
elements. Using this information the algorithm first builds a table of offsets
called the Itable for the first repetition pattern of allocated elements. The
allocated access pattern repeats itself after every a

gcd(a,pk) courses. This table

Integer Lattice Based Methods for Local Address Generation 35

records the order in which the offsets of allocated elements are accessed in
lexicographic order.

The next stage involves using this table to determine the location of the
accessed element in the compressed space. The problem now is to find two
things. Firstly we need to determine the repetition block in which the accessed
element is located. Secondly we need to find its position among a set of
allocated elements in that particular repetition block. Finding the repetition
block in which the element is located is straight forward, as we know the
number of courses after which the set of allocated elements repeat and the
length of this set. In order to find the position of the element in a list of
allocated elements in a particular repetition block we need to index into the
Itable that gives the position of the accessed element based on its offset from
the beginning of the course. Hence by finding the repetition block in which the
element exists and the position of the element in that block we can determine
the local address of the element.

A detailed listing of the algorithm is as shown in the Figure 9.3. Lines
1–4 generate the pattern tables for the case when stride is a and a ∗ s. These
tables record the two dimensional indices of elements accessed. Y1 and Y2

hold the two dimensional coordinates of the allocated elements while X1 and
X2 hold the two dimensional coordinates for the accessed elements. Lines
5–7 construct the Itable that records the positions of offsets of allocated el-
ements accessed in lexicographic order. The length of this table is always
k. Lines 9–11 generate the two-level pattern table. For each element in the
accessed element set, a corresponding entry in the Itable will help determine
the location of this element in the allocated set.

Let us consider the example in Figure 8.1. We see that elements 0, 1,
6, 11 have offsets 0, 3, 2, 1 respectively from the beginning of the course.
The two-dimensional coordinates for both allocated and accessed elements
are as shown in Figures 9.2(a) and (b). Based on the entries in the Y2 table,
the Itable is constructed and is as shown in Figure 9.2(c). In this case the
second coordinates of the allocated elements are same as that of the Itable,
but in general the entries in the Itable depends on the value of gcd(a, pk).
The Itable is always of size k, as there could be a maximum of k elements for
each pattern of repetition. In order to construct the Two-Level pattern table,
let us consider the third entry (5, 1) from the table of accessed elements as
shown in Figure 9.2(b). This means that the accessed element lies in course
number 5 and hence falls in the second repetition block of allocated elements.
The value 1 in the second coordinate corresponds to the offset of the accessed
element from the beginning of the course. This serves as an index into the
Itable. Hence the value at position 1 of the Itable will yield 3 as shown in
Figure 9.2(c). This value gives the position of the accessed element in that
particular repetition block. Since we know the number of elements present in a
single block (which corresponds to 4 in this example), we can simply evaluate
4 ∗ 1 + 3 = 7, which gives us the position of the third element accessed in the

36 J. Ramanujam

Input: Layout parameters (p, k), loop limits (ℓ, h), access stride s, alignment
stride a for array A, processor m

Output: Two level

Method:

1 d1 ← gcd(a, pk)
2 d2 ← gcd(a ∗ s, pk)
3 (lengtha, Y1, Y2) ← one level(p, k, a,m, d1)
4 (lengthas,X1,X2) ← one level(p, k, a ∗ s,m, d2)
5 acou ←

a
d1

6 first← X1[0]

7 tmp1← lengtha ∗
first
acou

8 tmp2← first mod acou

9 for i = tmp2 to acou − 1 do

10 lookup acc1[first]← tmp1

11 first← first + 1
12 enddo

13 tmp1← tmp1 + lengtha

14 last← X1[lengthas − 1]
15 while (first ≤ last) do

16 i← 0
17 while (i < acou and first ≤ last) do

18 lookup acc1[first]← tmp1

19 i← i + 1
20 first← first + 1
21 enddo

22 tmp1← tmp1 + lengtha

23 enddo

24 for i = 0 to lengtha − 1 do

25 itable[Y2[i]]← i

26 enddo

27 for i = 0 to lengthas − 1 do

28 Two Level[i] ← lookup acc1[X1[i]] + itable[X2[i]]
29 enddo

30 return Two level

Fig. 9.4. Itable*, a faster algorithm to compute the itable for determining
the two-level access pattern by substituting integer divides with table lookups

Integer Lattice Based Methods for Local Address Generation 37

0ALLOCATED 3 6 9

60 21 27ACCESSED

10 2 3 4 5 6 7 8 9 10

12 15 18 21 24 27 309630

INDEX

ALLOCATED

0 2 97PATTERN

(a)

(b)

(c)

(d)

Fig. 9.5. Local addresses of allocated and accessed elements, the replicated
allocated table, along with two-level access pattern when a = 3, s = 3, p = 4,
k = 4 and l = 0

Input: Layout parameters (p, k), loop limits (ℓ, h), access stride s, alignment stride
a for array A, processor m

Output: Two level
Method:

1 d1 ← gcd(a, pk)
2 d2 ← gcd(as, pk)
3 (lengtha, patterna) ← one level(p, k, a, m, d1)
4 (lengthas, patternas) ← one level(p, k, a ∗ s, m, d2)

5 Factor of replication f←
ask
d2
ak
d1

6 Replicate patterna by factor f
7 i← 0; j← 0
8 while (j < lengthas) do
9 if (patternas[j] = patterna[i]) then
10 Two level [j]← i
11 j← j + 1
12 endif
13 i← i + 1
14 enddo
15 return Two level

Fig. 9.6. Algorithm that constructs a two-level access pattern table using
linear search method

38 J. Ramanujam

compressed local space. Figure 9.2(d) shows the positions of accessed elements
among a set of allocated elements for the first set of pattern repetition. Next,
we discuss some improvements to the algorithm that constructs the Itable.

9.2 Optimization of the Itable method

As can be seen from the algorithm in Figure 9.3, line 10 that computes the
Two Level pattern table includes expensive integer operations, an integer
multiply and an integer divide. Here, we explore the possibility of reducing the
number of these expensive operations in the itable algorithm. The key point

to note is that in the expression
⌊

X1[i]
acou

⌋

∗lengtha, both the quantities acou and

lengtha are loop invariant constants. We improve the performance here by
using table lookups. Instead of lengthas divisions we need only one division
and one mod operation; these are needed to compute just the first entry
⌊

X1[0]
acou

⌋

∗ lengtha and the rest can be calculated by exploiting the properties

of numbers. This optimization of the Itable method is shown in Figure 9.4.

9.3 Search-based algorithms

The key problem idea in determining the local addresses of accessed elements,
is to find the location of accessed elements in a list of allocated elements
(expanded to accommodate the largest element in the accessed set), since
accessed elements are a subset of allocated elements. This can be achieved
by using a naive approach of simply searching for the index of the accessed
element in the list of allocated elements. In this section we propose new search
methods that exploit the property that the list of elements are in sorted order.

The first step in performing these methods is to run the one-level algo-
rithm to obtain the local addresses of the set of accesses for the first pattern
of repetition for both allocated and accessed elements. These entries are in
lexicographic order and are assumed to be stored in patterna and patternas

tables respectively. Note that unlike other techniques we not use the memory
gap table here since a significant fraction of the work involved in address
generation for two-level mapping is in the recovery of the actual elements
from the memory gap table [5]. These tables are as shown in Figures 9.5(a)
and (b) for the example in Figure 8.1. The entries in these table correspond
to the local addresses in a non-compressed template space. The table size of
the former depends on k

gcd(a,pk) , whereas that of the latter table depends on
k

gcd(as,pk) .

Here we see that not all elements in the accessed set are present in the
allocated set for the first pattern of repetition. This is due to the fact that the
accessed elements lie in different repetition blocks of the local address space.
Hence we need to expand the set of allocated elements in order to represent
all the elements in the accessed table, before the pattern starts repeating.

Integer Lattice Based Methods for Local Address Generation 39

The total number of elements in the first repetition block of allocated table
in the uncompressed space is ak

gcd(a,pk) whereas the total number of elements

for the accessed table is ask
gcd(as,pk) . Hence the factor needed to expand the

allocated elements table is
ask

gcd(as,pk)
ak

gcd(a,pk)

= s
gcd(a,pk)
gcd(as,pk) . Performing the required

expansion is straight forward. It involves replicating the first set of allocated
elements as many times as the factor of replication. This is accomplished by
copying elements one at a time from the first pattern of allocated elements to
the extended memory space with a suitable increment. Another possibility is
to replicate on demand.

A search now has to be performed to locate the position of an accessed
element in this new replicated table. Figure 9.5(c) shows the replicated table
after expansion for the example discussed previously. The factor for repli-
cation in this case was found to be 3. Since the length of the table that
holds the addresses of the accessed elements is never greater than the length
of the table that holds the allocated elements, the algorithm needs to find
the locations of common elements from two tables of different size. Several
search algorithms can be implemented for finding the locations of accessed
elements. We discuss an algorithm based on linear search. Several search al-
gorithms (with and without the need for replication of the set of elements)
that differ mainly in their complexities and the speed of execution can be
found elsewhere [9, 31, 42].

Linear search The algorithm for linear search builds the two-level pattern
table needed to switch from the template space to the local address space.
Figure 9.6 lists the complete algorithm. Lines 1–4 discusses the build up of the
accessed and allocated table. The next step is to find the factor for replication
and is as shown in Line 5. This factor is used to replicate the allocated table.
Once replication is performed, we now need to perform a simple search in
order to locate the positions of each accessed element in the allocated table.
Lines 8–14 shows the search algorithm. For each entry in the accessed table,
it determines the location of this element in the replicated allocated set. As
and when the location is determined, the position is recorded into a Two-
Level pattern table. The entries in this table reflects the local address of the
accessed element in the compressed space.

Figure 9.5 can be used to explain the functioning of this algorithm. Let us
consider the element 21 from the accessed set as shown in Figure 9.5(b). The
search involves finding the position of this element in the replicated set as
shown in Figure 9.5(c). This element can be found at location 7. This entry
is then stored in the Two-level pattern table. The complete pattern table for
the example is as shown in Figure 9.5(d). Since the search is performed on a
sorted table of length f ∗ lena and no element of this table is accessed more
than once, the complexity of the algorithm is O(f ∗ lena). In addition to the
linear search method discussed above, one could use binary search. Also, it

40 J. Ramanujam

is possible to avoid replicating the elements by generating them on demand
in the course of a search [9, 31, 42].

10. Experimental Results for Two-level Mapping

In order to compare all the above mentioned methods, we ran our experiments
on a varying number of problem parameters. These experiments were done
on a Sun UltraSparc 1 Workstation with Solaris 2. The compiler used was
the Sun C compiler cc with the -xO2 flag. Though the experiments were run
for a large set of input values only a limited number of results and times
are shown here. In each, case we report only the times needed to construct
the two-level table, excluding the times taken construct the two one-level
pattern tables as done in all the techniques discussed in this paper. We fixed
the number of processors to p = 32 in all our experiments. For each value of
alignment stride a, we varied both the block-size k and the access stride s. The
optimized version of the algorithm that constructs the Itable, i.e., the version
that replaces extensive divisions by table lookups (Figure 9.4) described in
Section 9.2 is referred to as Itable*. The best of the search algorithms that
performs replication was chosen for the results and is referred to as search in
the tables. The search algorithm that does not perform replication is termed
as norep in the results. The method due to Chatterjee et al. [5] is termed as
riacs. Tables 10.1–10.4 show the time it takes to build the two-level pattern
tables.

The results indicate that the times taken by all the above mentioned
methods depend on the value of k, s and a. If the access and alignment
strides are small, the Itable* and the search techniques are competitive; this
is because the time taken for replication and the overhead in performing a
search is very minimal. But as s and k increases we notice that the search

starts performing worse. This is because as s and k start increasing the time
for replication in the search dominates over search and renders this method
inefficient. The construction of the itable forms the major part of time taken
for two-level pattern build up. This construction is purely a function of a and
k and not of s. Hence as s increases the times for Itable* does not vary widely.
The method Itable* performs the best over a wide range of parameters.

The method by riacs suffers with large block sizes due to the expen-
sive runtime overheads. The norep method performs better than the search

method as s starts increasing. This is due to the fact that we do not pay the
overhead due to replication. But for large k we see that the times for search
increases rendering norep inefficient.

Integer Lattice Based Methods for Local Address Generation 41

Table 10.1. Table generation times (µs) for two-level mapping p = 32, a = 2

k s=3 s=5
Itable* search norep riacs Itable* search norep riacs

4 2 1 3 18 2 1 3 18
8 2 2 6 26 2 2 6 26
16 2 2 12 43 2 4 12 43
32 4 4 24 81 4 6 25 79
64 6 7 51 153 6 12 51 150
128 10 14 107 297 10 23 107 299
256 21 28 222 589 21 46 219 586

k s=7 s=11
Itable* search norep riacs Itable* search norep riacs

4 2 2 3 18 2 2 3 18
8 2 3 6 26 2 3 6 26
16 2 4 12 43 2 6 12 44
32 4 8 25 79 4 12 25 79
64 6 16 51 150 6 23 52 153
128 10 32 107 299 11 49 107 299
256 21 64 223 588 21 99 223 589

k s=23 s=99
Itable* search norep riacs Itable* search norep riacs

4 2 2 3 18 2 6 3 18
8 2 5 6 26 2 12 6 26
16 2 9 12 44 2 23 12 45
32 4 19 25 81 4 47 25 80
64 6 40 51 154 6 97 52 154
128 10 85 108 299 10 210 108 300
256 21 183 224 590 22 446 226 594

11. Other Problems in Code Generation

In this section, we provide an overview of other work from our group on
several problems in code generation and runtime support for data-parallel
languages. These include our work on communication generation, code gener-
ation for complex subscripts, runtime data structures, support for operations
on regular sections and array redistribution.

11.1 Communication generation

In addition to problems in address generation, we have explored techniques
for communication generation and optimization [40, 42, 43, 44]. A compiler
for languages such as HPF that generates node code (for each processor)
has also to compute the sequence of sends and receives for a given processor
to access non-local data. While the address generation problem has received

42 J. Ramanujam

Table 10.2. Table generation times (µs) for two-level mapping p = 32, a = 3

k s=3 s=5
Itable* search norep riacs Itable* search norep riacs

4 2 2 6 28 2 2 6 28
8 3 3 12 44 3 4 12 43
16 4 4 24 81 4 6 24 80
32 7 8 50 152 7 12 51 150
64 11 14 107 297 10 23 104 298
128 21 28 223 588 21 46 222 591
256 42 54 463 1167 43 90 458 1171

k s=7 s=11
Itable* search norep riacs Itable* search norep riacs

4 2 3 6 28 2 3 6 26
8 3 5 12 44 3 6 12 44
16 4 8 25 79 4 12 25 80
32 7 16 51 151 7 23 51 154
64 11 32 108 298 11 50 108 300
128 21 64 221 588 22 99 223 589
256 42 128 463 1173 42 203 464 1171

k s=23 s=99
Itable* search norep riacs Itable* search norep riacs

4 2 5 6 26 2 12 6 26
8 3 9 12 44 3 23 12 44
16 4 19 25 81 4 47 25 82
32 7 40 51 152 7 98 52 151
64 11 84 109 299 11 208 108 302
128 21 179 225 591 22 447 226 595
256 44 411 463 1173 44 932 469 1181

Integer Lattice Based Methods for Local Address Generation 43

Table 10.3. Table generation times (µs) for two-level mapping p = 32, a = 5

k s=3 s=5
Itable* search norep riacs Itable* search norep riacs

4 2 1 6 26 2 2 6 27
8 3 2 12 44 3 4 12 44
16 4 4 24 80 4 7 25 81
32 7 8 51 153 7 12 51 151
64 11 15 107 298 11 23 107 299
128 21 28 220 589 21 46 220 589
256 42 54 462 1169 42 90 462 1171

k s=7 s=11
Itable* search norep riacs Itable* search norep riacs

4 2 3 6 26 2 3 6 26
8 3 4 12 44 3 6 12 44
16 4 8 25 79 4 12 25 81
32 7 17 52 154 7 23 51 152
64 11 32 107 298 11 49 107 300
128 21 64 222 589 21 99 223 592
256 42 129 463 1174 42 203 460 1173

k s=23 s=99
Itable* search norep riacs Itable* search norep riacs

4 2 5 6 26 2 12 6 26
8 3 9 12 44 3 23 12 44
16 4 19 25 79 4 47 25 81
32 7 39 52 154 7 97 52 152
64 12 84 108 300 12 210 109 302
128 21 179 225 593 21 448 227 596
256 43 409 462 1176 44 932 470 1178

44 J. Ramanujam

Table 10.4. Table generation times (µs) for two-level mapping p = 32, a = 9

k s=3 s=5
Itable* search norep riacs Itable* search norep riacs

4 2 1 6 26 2 2 6 26
8 3 2 12 45 3 4 12 45
16 4 4 24 81 4 6 24 80
32 7 8 51 150 7 12 51 153
64 11 15 107 299 11 23 106 299
128 21 28 222 587 21 46 220 591
256 42 54 461 1167 42 90 464 1167

k s=7 s=11
Itable* search norep riacs Itable* search norep riacs

4 2 2 6 26 2 3 6 26
8 3 5 12 44 3 6 12 44
16 4 9 25 79 4 12 25 81
32 7 17 52 153 7 23 51 151
64 11 32 105 299 11 50 108 299
128 21 64 224 592 21 98 223 594
256 42 128 462 1172 42 203 461 1173

k s=23 s=99
Itable* search norep riacs Itable* search norep riacs

4 2 5 6 26 2 12 6 26
8 3 9 12 45 3 24 12 44
16 4 19 25 80 4 47 25 82
32 7 40 52 154 7 99 52 152
64 11 87 108 300 11 209 108 303
128 21 183 224 592 22 449 222 598
256 42 408 463 1181 43 928 468 1185

Integer Lattice Based Methods for Local Address Generation 45

much attention, issues in communication generation have received limited at-
tention; see [15] and [18] for examples. A novel approach for the management
of communication sets and strategies for local storage of remote references is
presented in [43, 42]. In addition to algorithms for deriving communication
patterns [40, 42, 44], two schemes that extend the notion of a local array
by providing storage for non-local elements (called overlap regions) inter-
spersed throughout the storage for the local portion are presented [43, 42].
The two schemes, namely course padding and column padding enhance local-
ity of reference significantly at the cost of a small overhead due to unpacking
of messages. The performance of these schemes are compared to the tradi-
tional buffer-based approach and improvements of up to 30% in total time are
demonstrated. Several message optimizations such as offset communication,
message aggregation and coalescing are also discussed.

11.2 Union and difference of regular sections

Operations on regular sections are very common in code generation. The
intersection operation on regular sections is easy (since regular sections are
closed under intersection). Union and difference of regular sections are needed
for efficient generation of communications sets; unfortunately, regular sections
are not closed under union and difference operations. We [9, 27] present an
efficient runtime technique for supporting support for union and other opera-
tions on regular sections. These deal with both the generation of the pattern
under these operations as well as with the efficient code that enumerates the
resulting sets using the patterns.

11.3 Code generation for complex subscripts

The techniques presented in this chapter assumed simple subscript functions.
Array references with arbitrary affine subscripts can make the task of compil-
ers for such languages highly involved. Work from our group [9, 26, 29, 30, 42]
deals with the efficient address generation in programs with array references
having two types of commonly encountered affine references, namely coupled
subscripts and subscripts containing multiple induction variables (MIVs).
These methods utilize the repetitive pattern of the memory accesses. In the
case of MIV, we address this issue by presenting runtime techniques which
enumerate the set of addresses in lexicographic order. Our approach to the
problem incorporates a general approach of computing in O(k) time, the
start element on a processor for a given global start element. Several meth-
ods are proposed and evaluated here for generating the access sequences for
MIV based on problem parameters. With coupled subscripts, we present two
construction techniques, namely searching and hashing which minimize the
time needed to construct the tables. Extensive experiments were conducted
and the results were then compared with other approaches to demonstrate
the efficiency of our approach.

46 J. Ramanujam

11.4 Data structures for runtime efficiency

In addition to algorithms for address sequence generation, we addressed the
problem of how best to use the address sequences in [8, 9]. Efficient techniques
for generating node code on distributed-memory machines is important. For
array sections, node code generation must exploit the repetitive access pat-
tern exhibited by the accesses to distributed arrays. Several techniques for
the efficient enumeration of the access pattern already exist. But only one
paper [17] so far addresses the effect of the data structures used in represent-
ing the access sequence on the execution time. In [8, 9], we present several
new data structures along with node code that is suitable for both DO loops
and FORALL constructs. The methods, namely strip-mining and table com-
pression facilitate the generation of time-efficient code for execution on each
processor. While strip-mining views the problem as a double nested loop, ta-
ble compression proves to be a worthwhile data structure for faster execution.
The underlying theory behind the data structures introduced is explained and
their effects on all possible set of problem parameters is observed. Extensive
experimental results show the efficacy of our approach. The results compare
very favorably with the results of the earlier methods proposed by Kennedy
et al. [16] and Chatterjee et al. [5].

11.5 Array redistribution

Array redistribution is used in languages such as High Performance Fortran to
dynamically change the distribution of arrays across processors. Performing
array redistribution incurs two overheads: (1) an indexing overhead for deter-
mining the set of processors to communicate with and the array elements to
be communicated, and (2) a communication overhead for performing the nec-
essary irregular all-to-many personalized communication. We have presented
efficient runtime methods for performing array redistribution [14, 35]. In or-
der to reduce the indexing overhead, precise closed forms for enumerating the
processors to communicate with and the array elements to be communicated
are developed for two special cases of array redistribution involving block-
cyclically distributed arrays. The general array redistribution problem for
block-cyclically distributed arrays can be expressed in terms of these special
cases. Using the developed closed forms, a distributed algorithm for schedul-
ing the irregular communication for redistribution is developed. The gener-
ated schedule eliminates node contention and incurs the least communication
overhead. The scheduling algorithm has an asymptotically lower scheduling
overhead than techniques presented in the literature. Following this, we have
developed efficient table-based runtime techniques (based on integer lattices)
that incur negligible cost [9, 28].

Integer Lattice Based Methods for Local Address Generation 47

12. Summary and Conclusions

The success of data parallel languages such as High Performance Fortran
and Fortran D critically depends on efficient compiler and runtime support.
In this chapter we presented efficient compiler algorithms for generating lo-
cal memory access patterns for the various processors (node code) given the
alignment of arrays to a template and a CYCLIC(k) distribution of the tem-
plate onto the processors. Our solution to the one-level mapping problem is
based on viewing the access sequence as an integer lattice, and involves the
derivation of a suitable set of basis vectors for the lattice. The basis vector
determination algorithm is O(log min(s, pk)+min(s, k)) and requires finding
min(s + 1, k) points in the lattice. Kennedy et al.’s algorithm for basis de-
termination is O(log min(s, pk) + k) and requires finding 2k− 1 points in the
lattice. Our loop nest based technique used for address enumeration chooses
the best strategy as a function of the basis vectors, unlike [16]. Experimental
results comparing the times for our basis determination technique and that
of Kennedy et al. shows that our solution is 2 to 9 times faster for large block
sizes. For the two-level mapping problem, we presented three new algorithms.
Experimental comparisons with other techniques show that our solutions to
the two-level mapping problem are significantly faster. In addition to these
algorithms, we provided an overview of other work from our group on several
problems such as

– efficient basis vector generation using an O(log min(s, pk)) algorithm [25];
– communication generation [40, 42, 43, 44];
– code generation for complex subscripts [9, 26, 29, 30, 42];
– effect of data structures for table lookup at runtime [8, 9];
– runtime array redistribution [9, 14, 28, 35]; (and)
– efficient support for union and other operations on regular sections [9, 27].

Work is in progress on the problem of code generation and optimization for
general affine access functions in whole programs.

Acknowledgments

This work was supported in part by an NSF Young Investigator Award CCR–
9457768 with matching funds from the Portland Group Inc. and the Hallibur-
ton Foundation, by an NSF grant CCR–9210422, and by the Louisiana Board
of Regents through contracts LEQSF(RF/1995-96) ENH-TR-60 and LEQSF
(1991-94)-RD-A-09. I thank Ashwath Thirumalai, Arun Venkatachar, and
Swaroop Dutta for their valuable collaboration. I thank Nenad Nedeljkovic,
James Stichnoth and Ajay Sethi for their comments on an earlier draft of this
chapter. Nenad Nedeljkovic and Ajay Sethi provided the code for the two Rice
algorithms and the Sort implementation, and S. Chatterjee provided the code
for the RIACS implementation used in experiments on two-level mapping.

48 J. Ramanujam

References

1. A. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear algebra framework
for static HPF code distribution. Scientific Programming, 6(1):3–28, Spring
1997.

2. P. Banerjee, J. Chandy, M. Gupta, E. Hodges, J. Holm, A. Lain, D. Palermo,
S. Ramaswamy, and E. Su. The PARADIGM compiler for distributed-
memory multicomputers. IEEE Computer, 28(10):37–47, October 1995.

3. S. Benkner. Handling block-cyclic distributed arrays in Vienna Fortran 90.
In Proc. International Conference on Parallel Architectures and Compilation
Techniques, Limassol, Cyprus, June 1995.

4. B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran.
Scientific Programming, 1(1):31–50, Fall 1992.

5. S. Chatterjee, J. Gilbert, F. Long, R. Schreiber, and S. Teng. Generating
local addresses and communication sets for data parallel programs. Journal
of Parallel and Distributed Computing, 26(1):72–84, 1995.

6. F. Coelho, C. Germain, J. Pazat. State of the art in compiling HPF. The
Data Parallel Programming Model, G. Perrin and A. Darte (Eds.), Lecture
Notes in Computer Science, Volume 1132, pages 104–133, 1996.

7. G. Dantzig and B. Eaves. Fourier-Motzkin elimination and its dual. Journal
of Combinatorial Theory (A), 14:288–297, 1973.

8. S. Dutta and J. Ramanujam. Data structures for efficient execution of pro-
grams with block-cyclic distributions. Technical Report TR-96-11-01, Dept.
of Elec. & Comp. Engineering, Louisiana State University, Jan. 1997. Pre-
liminary version presented at the 6th Workshop on Compilers for Parallel
Computers, Aachen, Germany, December 1996.

9. S. Dutta. Compilation and run-time techniques for data-parallel programs.
M.S. Thesis, Department of Electrical and Computer Engineering, Louisiana
State University, in preparation.

10. G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and
M. Wu. Fortran D language specification. Technical Report CRPC-TR90079,
Center for Research on Parallel Computation, Rice University, December
1990.

11. P. Gruber and C. Lekkerkerker. Geometry of numbers. North-Holland Math-
ematical Library Volume 37, North-Holland, Amsterdam, 1987.

12. S. Gupta, S. Kaushik, C. Huang, and P. Sadayappan. On compiling array
expressions for efficient execution on distributed-memory machines. Journal
of Parallel and Distributed Computing, 32(2):155–172, February 1996.

13. High Performance Fortran Forum. High Performance Fortran language spec-
ification. Scientific Programming, 2(1-2):1–170, 1993.

14. S. Kaushik, C. Huang, J. Ramanujam, and P. Sadayappan. Multiphase ar-
ray redistribution: Modeling and Evaluation. Technical Report OSU-CISRC-
9/94-TR52, Department of Computer and Information Science, The Ohio
State University, September 1994. A short version appears in Proc. 9th Inter-
national Parallel Processing Symposium, Santa Barbara, CA, pages 441–445,
April 1995.

15. S. Kaushik. Compile-time and run-time strategies for array statement exe-
cution on distributed-memory machines. Ph.D. Thesis, Department of Com-
puter and Information Science, The Ohio State University, 1995.

16. K. Kennedy, N. Nedeljkovic, and A. Sethi. A linear-time algorithm for com-
puting the memory access sequence in data-parallel programs. In Proc. of

Integer Lattice Based Methods for Local Address Generation 49

Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, Santa Barbara, CA, pages 102–111, July 1995.

17. K. Kennedy, N. Nedeljkovic, and A. Sethi. Efficient address generation for
block-cyclic distributions. In Proc. ACM International Conference on Super-
computing, Madrid, Spain, pages 180–184, July 1995.

18. K. Kennedy, N. Nedeljkovic, and A. Sethi. Communication generation for
CYCLIC(k) distributions. In Languages, Compilers, and Run-Time Systems for
Scalable Computers, B. Szymanski and B. Sinharoy (Eds.), Kluwer Academic
Publishers, 1996.

19. C. Koelbel. Compile-time generation of communication for scientific pro-
grams. In Proc. Supercomputing ’91, Albuquerque, NM, pages 101–110,
November 1991.

20. C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel. High Perfor-
mance Fortran handbook. The MIT Press, 1994.

21. T. MacDonald, D. Pase, and A. Meltzer. Addressing in Cray Research’s
MPP Fortran. In Proceedings of the 3rd Workshop on Compilers for Parallel
Computers, Vienna, Austria, pages 161–172, July 1992.

22. S. Midkiff. Local iteration set computation for block-cyclic distributions. In
Proc. International Conference on Parallel Processing. Vol. II, pages 77–84,
August 1995.

23. J. Ramanujam. Non-unimodular transformations of nested loops. In Proc. Su-
percomputing 92, Minneapolis, MN, pages 214–223, November 1992.

24. J. Ramanujam. Beyond unimodular transformations. The Journal of Super-
computing, 9(4):365-389, December 1995.

25. J. Ramanujam. Efficient computation of basis vectors of the address sequence
lattice. Submitted for publication, 1997.

26. J. Ramanujam and S. Dutta. Code generation for coupled subscripts with
block-cyclic distributions. Technical Report TR-96-07-01, Dept. of Elec. &
Comp. Engineering, Louisiana State University, July 1996.

27. J. Ramanujam and S. Dutta. Runtime solutions to operations on regular
sections. Technical Report TR-96-12-03, Dept. of Elec. & Comp. Engineering,
Louisiana State University, December 1996.

28. J. Ramanujam and S. Dutta. Efficient runtime array redistribution. Technical
Report TR-97-01-01, Dept. of Elec. & Comp. Engineering, Louisiana State
University, January 1997.

29. J. Ramanujam, S. Dutta, and A. Venkatachar. Code generation for complex
subscripts in data-parallel programs. To appear in Proc. 10th Workshop on
Languages and Compilers for Parallel Computing, Z. Li et al., (Eds.), Min-
neapolis, MN, Springer-Verlag, 1997.

30. J. Ramanujam and A. Venkatachar. Code generation for complex subscripts
with multiple induction variables in the presence of block-cyclic distribu-
tions. Technical Report TR-96-03-01, Dept. of Elec. & Comp. Engineering,
Louisiana State University, March 1996.

31. J. Ramanujam, A. Venkatachar, and S. Dutta. Efficient address sequence
generation for two-level mappings in High Performance Fortran. Submitted
for publication, 1997.

32. C. van Reeuwijk, H. Sips, W. Denissen, and E. Paalvast. An implementation
framework for HPF distributed arrays on message-passing parallel computer
systems. IEEE Transactions on Parallel and Distributed Systems, 7(9):897–
914, September 1996.

33. J. Stichnoth. Efficient compilation of array statements for private memory
multicomputers. Technical Report CMU-CS-93-109, School of Computer Sci-
ence, Carnegie Mellon University, February 1993.

50 J. Ramanujam

34. J. Stichnoth, D. O’Hallaron, and T. Gross. Generating communication for
array statements: Design, implementation, and evaluation. Journal of Parallel
and Distributed Computing, 21(1):150–159, April 1994.

35. R. Thakur, A. Choudhary and J. Ramanujam. Efficient algorithms for ar-
ray redistribution. IEEE Transactions on Parallel and Distributed Systems,
7(6):587–594, June 1996.

36. A. Thirumalai. Code generation and optimization for High Performance
Fortran. M.S. Thesis, Department of Electrical and Computer Engineering,
Louisiana State University, August 1995.

37. A. Thirumalai and J. Ramanujam. Code generation and optimization for
array statements in HPF. Technical Report TR-94-11-02, Dept. of Electri-
cal and Computer Engineering, Louisiana State University, November 1994;
revised August 1995

38. A. Thirumalai and J. Ramanujam. An efficient compile-time approach to
compute address sequences in data parallel programs. In Proc. 5th Interna-
tional Workshop on Compilers for Parallel Computers, Malaga, Spain, pages
581–605, June 1995.

39. A. Thirumalai and J. Ramanujam. Fast address sequence generation for
data-parallel programs using integer lattices. In Languages and Compilers for
Parallel Computing, C.-H. Huang et al. (Editors), Lecture Notes in Computer
Science, Vol. 1033, pages 191–208, Springer-Verlag, 1996.

40. A. Thirumalai, J. Ramanujam, and A. Venkatachar. Communication genera-
tion and optimization for HPF. In Languages, Compilers, and Run-Time Sys-
tems for Scalable Computers, B. Szymanski and B. Sinharoy (Eds.), Kluwer
Academic Publishers, 1996.

41. A. Thirumalai and J. Ramanujam. Efficient computation of address sequences
in data-parallel programs using closed forms for basis vectors. Journal of
Parallel and Distributed Computing, 38(2):188–203, November 1996.

42. A. Venkatachar. Efficient address and communication generation for data-
parallel programs. M.S. Thesis, Department of Electrical and Computer En-
gineering, Louisiana State University, December 1996.

43. A. Venkatachar, J. Ramanujam and A. Thirumalai. Generalized overlap re-
gions for communication optimization in data parallel programs. In Languages
and Compilers for Parallel Computing, D. Sehr et al. (Editors), Lecture Notes
in Computer Science, Vol. 1239, pages 404–419, Springer-Verlag, 1997.

44. A. Venkatachar, J. Ramanujam, and A. Thirumalai. Communication gener-
ation for block-cyclic distributions. Parallel Processing Letters, (to appear)
1997.

45. L. Wang, J. Stichnoth, and S. Chatterjee. Runtime performance of parallel ar-
ray assignment: An empirical study. In Proc. Supercomputing 96, Pittsburgh,
PA, November 1996.

46. H. Wijshoff. Data organization in parallel computers. Kluwer Academic Pub-
lishers, 1989.

