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Abstract—Face images that are captured by surveillance the face recognition rate, [2]-[4] provide super-resolution
cameras usually have a very low resolution, which significantly algorithms that use face-specific constraints for regularization.
limits the per_formance_ of face recognition systems. In the past, Al these systems propose super-resolution as a separate pre-
super-resolution techniques have been proposed to increase they,,-assing block in front of a face recognition system. In other

resolution by combining information from multiple images. These ds. thei . lis t truct a hiah luti . I
techniques use super-resolution as a preprocessing step to obtainOrds, th€irmain goal Is 1o construct a nigh-resolution, visually

a high-resolution image that is later passed to a face recognition improved face image that can later be passed to a face recogni-
system. Considering that most state-of-the-art face recognition tion system for improved performance. This is perfectly valid as
systems use an initial dimensionality reduction method, we |ong as computational complexity is not an issue. However, in a
propose to transfer the super-resolution reconstruction from pixel ~reg|-time surveillance scenario where the super-resolution algo-
domain to a lower dimensional face space. Such an approach i, js expected to work on continuous video streams, compu-
has the advantage of a significant decrease in the computational __ . o e -
complexity of the super-resolution reconstruction. The recon- tational complexﬂy is usually a very crmcal issue. In this paper,
struction algorithm no longer tries to obtain a visually improved W€ propose an efficient super-resolution method for face recog-
high-quality image, but instead constructs the information re- nition that transfers the super-resolution problem from the pixel
quired by the recognition system directly in the low dimensional domain to alow dimensional face space. This is based on the ob-
domain without any unnecessary overhead. In addition, we show servation that nearly all state-of-the-art face recognition systems
that face;jSpa‘?e Sllf]per'r?sol'zt'on IS more rObuls‘.tO fg'suat'onf use some kind of front-end dimensionality reduction, and that
;er:(reoeré;{;onn(;lsrsotd;?bglsﬁ-cgrrg?rlgi:tt;Per-reso ution because o a lot of redun.dant info'rmati'on generated by the preproceg;ing
super-resolution algorithm is not used by the face recognition
Index Terms—Dynamic range extension, face recognition, mul- pjock. Hence, we perform the super-resolution reconstruction

tiframe reconstruction, super-resolution. in the low-dimensional framework so that only the necessary in-
formation is reconstructed. In addition, we show that face-space
l. INTRODUCTION super-resolution is more robust to registration errors and noise

- . than the pixel-domain super-resolution because of the addition
T HE performance of existing face recognition syste model-based constraints
. decreases 5|gn|f|cantly i the.re'solunon. of th_g fa(,:e There are two important sources of noise in this problem. One
image falls b_elow a certain level. This is especially ‘.:r't'c"?‘l i the observation noise that results from the imaging system.
surveillance imagery .wher(.e often only a Iow—resolutllon .V'de he other is the representation error, which is a result of the
sequence gf the fa}ce IS avaﬂab_lg. Ifthese Iow;]resolu]:uon 'ma%ﬁensionality reduction. We derive the statistics of these noise
are passed to a face recognition system, the per ormanc%r’&esseﬁ)rtheIow-dimensional face spabg using examples
usually unacceptable. Therefore, sgper-resolutlon techniq om the human face image class. Substitution of this model-
hav_e been pro_posed for_ face recognition t_hat attempt to Optﬁ@sed information into the algorithm provides a higher robust-
a h|gh-res_olut|on face image by combining the informatiofesq 14 nojse. We test our system on both real and synthetic
from multiple low-resolution images [1]-[4]. In general,video sequences
super-resolution algorlthms ry to regularize the III'F’()se‘meSSCurrentIy, by far the most popular dimensionality reduction
of the problem using prior knowledge about the solutiong pnique in face recognition is to use subspace projections
such as smoothness or positivity [5]-[8]. Recently, research%rg ed on the Karhunen-Loeve Transform (KLT). This type of
have propos',ed algtlnrlt'hm.s tha\tNﬁFltemft tjo use model—aa l‘iensionality reduction has been central to the development
constramtsl Itr'] regu.t?]nza;tlon. del ble [ d] emonstrates o ;¢ recognition algorithms for the last ten years. We propose
super-resolution (without model-based priors) can Improyg se 4 similar KLT-based dimensionality reduction technique

to decrease the computational cost of the super-resolution
Manuscript received March 21, 2002; revised November 6, 2202. This wositgorithm by transforming it from a problem in the pixel

was supported in part by the Office of Naval Research (ONR) under Awagihmain to a problem in the lower-dimensional subspace, which

NO00014-01-1-0619 and by the National Science Foundation under Award Cjﬁ'called the face space

0113681. The associate editor coordinating the review of this manuscript and . p 7 . . .

approving it for publication was Dr. Philippe Salembier. In Section I, we briefly review the KLT-based dimension-
The authors are with the School of Electrical and Computer Engineerirglity reduction method for face recognition. Then, in Section lIl,

Georgia Institute of Technology, Atlanta, GA 30332-0250 USA (e-mail\:N formulate the super-resolution problem in the low-dimen-
bahadir@ece.gatech.edu;  batur@ece.gatech.edu; yucel@ece.gatech.egu; . . .
mhh3@ece.gatech.edu; rmm@ece.gatech.edu). sional framework. Section IV details the reconstruction algo-

Digital Object Identifier 10.1109/TIP.2003.811513 rithm, and Section V provides experimental results addressing

1057-7149/03%$17.00 © 2003 IEEE



598 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 5, MAY 2003

several issues, such as sensitivity to noise and motion estimatidrerex is the unknown high-resolution imagg(” is theith
errors. Conclusions are given in Section VI. low-resolution image observatioH () is a linear operator that
incorporates the motion, blurring, and downsampling processes,
[I. DIMENSIONALITY REDUCTION FORFACE RECOGNITION n(?) is the noise vector, andl/ is the number of observations.

KLT-based dimensionality reduction for face images was fi r%zstutmlangi;T-Ifelssotlngodn()\i,vmn;g{engIr(;? (];?rcrzltgr?sif‘)hsxj\; _) ,ya(ir;d

proposed by Sirovich and Kirby [9]. They showed that face im; < ancn® have dimensions N2x 1. s2N2x N2 N2x 1

ages CQUId bg reprgsented efficiently by. projecting ther_n Or:%nds2N2 x 1, respectively. The matriL() can be written as
a low-dimensional linear subspace that is computed using the

KLT. Later, Turk and Pentland demonstrated that this subspace H® =DOBOWO® 7

representation could be used to implement a very efficient an

" . : (@) B® ©) i i
successful face recognition system [10]. Since then, mgenfa)fvjlereD B, andW*™ are the downsampling, blurring, and

based dimensionality reduction has been used widely in fa@é’t'on warping matrices, respectively. Details of such modeling

recognition. can be found in [5], [6], and [11], and we will not elaborate

Mathematically, the eigenface method tries to representafé)& itin th's paper. .[N0<t§ that 't. is also poss[ble to '(?)CIUde an
image as a linear combination of orthonormal vectors, Ca”éjgsampllng matrix i that will make the sizes ¢f** and
eigenfaces. These eigenfaces are obtained by finding the eig’é _qua_l.] (i) .
vectors of the covariance matrix of the training face image set. hhe |ma|ge5xhanfdy have comlporrl]ents that lie in arr:d ?re_
LetIy, Io, ..., Ix be aset oK face images, each ordered Iex-;)hrt fogona to the face space._On yt e (_:omponer_1|tls t atd 1en
icographically. The eigenvectors of the matrix e face space are necessary in recognition. We will now derive

the observation model for the reconstruction of the components
K that lie in the face space. The formulation and reconstruction
C=> LI/ (1)  algorithm will not neglect the spatial-domain observation noise
i=1 and the subspace representation error, which is initially orthog-
that correspond to the largebteigenvalues span a linear subonal to the face space but which has an effect during the imaging
space that can reconstruct the face images with minimum recpnecess. We start by writing the face-space representation
struction error in the least squares sense. Thdimensional
subspace is called the face space. Assumiiga lexicograph- @) (i) @) _
ically ordered face image ar# is the matrix that contains the y =val ey, fore=1,..., M ©)
eigenfaces as its columns, we can write where® and¥ are N2 x L ands? N2 x I, matrices that contain
x = Ba + e, (2) the eigenfaces in their columns!”) is the L x 1 dimensional
feature vector that is associated with ttle observation, and
wherea is the feature vector that represents the face.eand e, andegf) are theN? x 1 ands>N? x 1 representation error
the subspace representation error for the face image. As a lafgsitors. Note that we have two different eigenvector bages,
training data set is used and the dimensionality of the face spag®l ¥, corresponding to high and low resolution face images,
is increased, the representation ekgrgets smaller. Letting  respectively. [If we had included an upsampling matriifi),

x =Pa + ey 8

A T then we could use the same basis matrix.]
a=[a az - ar] @) We substitute (8) and (9) into (6) to obtain
be the feature vector, and a4 e§,’i) —HY®a+ HDe, +n®. (10)
@2 [p1 b2 - do] (4)  Now, we will project (10) into the lower-dimensional face space
be the matrix where , ..., ¢, are the eigenface vectorsg,is USINY the fact that the representations ereé,f)sare orthogonal
computed as follows: to the face spac®. Using
Teli) — i
a = 6T, fori=1,... L. ) ¥ley) =0, fori=1,...,. M (11)
and
T =1 (12)

Ill. SUPERRESOLUTION IN THE FACE SUBSPACE

_ . T .
In this section, we formulate the super-resolution problem ﬁ'Pd multiplying both sides of (10) by ™ on the left, we obtain

the low-dimensional face subspace. In such a formulation, the a = 9THO ®a+ ¥THDe, + 0. (13)
observations are inaccurate feature vectors of a subject, and_the . . . . .
reconstruction algorithm estimates the true feature vector. IS1S the observation equation thaE IS a?alogous to (6). It gives
start with the observation model for pixel-domain super-res e relation b?_tween the”unknown truAe' feature ve@_a‘._omd
lution, and then derive the observation model for face-spai observed_ Inaccurate feaFure vectars. Inthe_tradmonal_
super-resolution using the eigenface representation. In pixel-a\@y of applying super-resolution, the unknown high-resolution

main super-resolution, the observations are low-resolution ifragex in (6) is reconstructed from the low-resolution obser-

. o . i ©) i i -
ages that are related to a high-resolution image by a linear my gonSy - Then, th.e reconstru.ctedls fed into a face recog .
ping. By ordering images lexicographically, such a relation ¢ tion system (see Fig. .1)' For eigenface-based face recognition
be written in matrix-vector notation as fO||O,WS' systems, a better way is to directly reconstruct the low-dimen-

, ‘ ‘ sional feature vector. Using the relation provided in (13), accu-
vy =HOx+n®,  fori=1,...,M (6) rate feature vectors of a face image can be obtained from the in-
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Fig. 1. Super-resolution applied as a preprocessing block to face recognition.
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Fig. 2. Super-resolution embedded into eigenface-based face recognition.

accurate feature vector observations. This is illustrated in Fig.[@oduct of the conditional probabiligga, ..., a(*)|a) and

The face observations® are first projected into the face spacethe prior probabilityp(a)

and the computationally intensive super-resolution reconstruc-

tion is performed in the low-dimensional face subspace instead a = arg max {P(é(1)7 c, 4t |a)P(a)} S )

of in the spatial domain. A quantitative comparison of the com- *

putational complexity of these two approaches is provided in thiée now need to model the statistigga™”), ..., a*)|a) and

next section. p(a). The prior probabilityp(a) can simply be assumed to be
While we are reconstructing the feature vectors in the low-dpintly Gaussian

mensional subspace, we can (and will) substitute face specific 1

information in the form of statistics of the prior distributions p(a) = 7 ©xXp (—(a—pa)" A7 (a — pa)) (15)

of the feature vectors and distributions of the noise processes. ) , .

Using model-based information in regularizing the super-resf€reA is the L x L covariance matrix, is theL x 1 mean

lution algorithm has been shown to be successful in previofka andZ is a norAmlahzatlop constant. _

work [2]-[4]. This helps to obtain more robust results when !N orderto findp(a', ..., a0ja), we firstmodel the noise

compared to traditional super-resolution algorithms. Our expd¥:0cess in the spatial domain, and then derive its statistics in

iments in this paper also confirm the advantages of using sU@f€ SPace. We define a total noise terffl that consists of the

model-based information. Our main difference, however, wiffP!S€S resulting from the subspace representation egrand

respect to previous model-based algorithms is that we spedifi€ oPservation noisa(®) in the spatial domain

cally transform all of the prior information to the low dimen- v A e, 1+ n®, (16)

sional face space so that the computational complexity is kept

low with little or no sacrifice in performance. This is in con-Using this definition, we rewrite (13) for convenience

trast to previous approaches that use complicated pixel-domain AG) Trr(i) T G0)

model-based statistical information. a’ =T HY®a+ ¥ v 17)

The reason we defineH(Ve, + n(® as the total noise term

instead of its projection onto the face subspace is because of

the modeling convenience in the spatial domain. It has been
In this section, we present a reconstruction algorithm to soldemonstrated that modeling the noise [resulting from the

(13) based on Bayesian estimation. The algorithm handles theaging system and the estimation¥*] in the spatial do-

observation noise and subspace representation error in the lovain as an independent identically distributed (1ID) Gaussian

dimensional face subspace. The maximaiposterioriproba- processes is a good assumption [5], [6]. We further assume that

bility (MAP) estimatora is the argument that maximizes thethe covariance matrix of this Gaussian process is diagonal so

IV. RECONSTRUCTIONALGORITHM
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that the statistical parameters can be estimated easily even wigbnsional face-space reconstruction. In the next section, we
the limited training data. Using these assumptions, it is easgtimate the parameters for these assumed models and provide
to find the distribution of®”v(®) in the face space, as will be experiments analyzing the recognition performance, effects of
shown shortly. feature vector length, sensitivity to noise and motion estimation
Defining K as thes?N? x s>N?2 positive definite diagonal errors, etc.
covariance matrix anyis,i) as thes2N2 x 1 mean ofv(®, we Before getting to the experimental results, we provide an al-
can write the probability distribution of() as gorithm to solve (23). One approach to obtain the MAP estimate
1 T a is an iterative steepest descent method. Defiiilg) as the
p(v?) = = exp (— (v(i) - ,U,S,i)) K! (v(“ - Mg)) cost function to be minimized, the feature vectocan be up-
z 18) dated in the direction of the negative gradientttifa). That is,

. L at thenth iteration, the feature vector can be updated as follows:
whereZ is a normalization constant.

Now, we need to derive the distribution of the projected a, =a,_1 —aVE(a,_1) (24)
noise, p(¥Tv(®), in order to get the conditional PDF _ _
p(a®, ..., a@®)a). From the analysis of functions of multi- Wherea is the step size. . o
variate random variables [12], it follows that®?v()) is also ~ From (23), a slightly generalized cost function is chosen as
jointly Gaussian sincd&”' ¥ is nonsingular (by construction). M .
As a result, we have E(a) = % (é(i) _OTHO $a — ,7)

=1

, 1 , T
To@) = L on [ (ST _ §T 0 ‘ .
p(FTV) ZeXp< (@70 - wTu)) Q7! (a9 - ¥THOa - 1)

Q! (wTv® — wT D 19 A
Q ( v v )) ( ) + 5 (a - /La)T A_l (a - ,ua) (25)
where\IfTuS’") is the new mean an@) is the new covariance

i where X is a number(0 < A < 1), that controls the rela-
matrix computed by

tive contribution of the prior information in the reconstruction.
Q=97KW". (20) WhenA\ s set to zero, the estimator becomes a maximum likeli-
hood (ML) estimator. When is one, only the prior information

The covariance matri) has dimensior, x L while K is of s ysed, and the noise statistics are discardeg. 1/2 corre-

ditional PDFp(a(*)|a) Taking the derivative of?(a) with respect ta, the gradient
, 1 . , AT of £(a) can be calculated as
p(a@la) = 7 oxXp <— (é(l) —-9THO $a — ug’)) (=) o

Q7 (a0 - eTHOBa - 1)) VE@)Z—UfwwzgiTH@TTQ*

(1) . (é(i) —¢THO $a — 77) + A (a— pa).  (26)

Since we assumed that”) is 11D, it follows that the probability o _
density functiop(a®, ..., é(A[A)|a) is the product op(a|a) Althqugt]h th%steptazg |nt(hz43_|can _bel%hosezln ?r? fixed, a better
fori = 1,..., M. Definingn = ®7 (" as the mean of the Waé’ 'ts 5’ ”tp aﬁ '.t “S'pg € es{f"a? (a)l' nis caseer 1S
processtTv(, we write updated at each iteration using the formula

p(a®, . alD)a) . (VE(a, 1)) (VE(an 1)) 27)

Mo . (VE(an_1))" H(VE(a,_1))
=7 P~ 2; (a — ¥ HY ®a - ’7) whereH is the Hessian matrix found by

M
Q! (a@ —OTHO@a — 77) ) L@ H=(01-)) #"HY $Q'$THO® 1 AA". (28)
=1

Substituting the conditional and prior PDFs given in (15) ang the reconstruction, everything baita(, andH® is known

(22) into (14), we obtain the MAP estimataras follows: and can be computed in advance. (The details are left to the next
M - section.) For a specific observation sequente, the feature
& = arg min {Z (é(v?) _OTH &g — ,7) vectorsa”) and the blur mappingE(") are computed, and the
a et true feature vectai is estimated. The pseude-code of the com-

plete algorithm is as follows.

1) Choose a reference frame from the video sequence, bilin-
early interpolate it, and project it onto the face space to
+(a—pa)" AT (2~ pa) (23) in an initial est
A~ [a a—[la) ¢ - obtain an initial estimate, for the true feature vector.
2) Obtain the feature vectar() by projecting each low-
So far, we have shown how to incorporate the statistics of  resolution frame onto the face space. [Thata¥) =
spatial-domain noise and prior information into the low-di- Ty ]

Q! (é(i) _pTHO$a — n)
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3) Estimate the motion between the reference and othl&r Obtaining Low-Resolution Observations for Synthetic Video
frames, and computE(®)

4) Set the maximum number of iterationd,ax I ter.

5) Forn = 1to MazIter,

The testimages were jittered by a random amount to simulate
motion, blurred, and downsampled by a factor of four to pro-
duce multiple low-resolution images for each subject. The mo-

a) ComputeV E(a) using (26). tion vectors were saved for use in synthetic video experiments.
b) ComputeH using (28). For blurring, the images were convolved with a point spread
c) Computex using (27). function (PSF), which was set tosax 5 normalized Gaussian
d) Computea,, using (24). kernel with zero mean and a standard deviation of one pixel.

6) Set the MAP estimat@ to ansq.reer- . ) o .
We now take a look at the computational complexity of the pr&' Estimating the Statistics of Noise and Feature Vectors
posed algorithm compared to a pixel-domain reconstruction. LetFrom the training image sdt, ..., I, (K = 134), we
P be the total number of pixels in a (high-resolution) face imagestimate the statistics afandv("). The unbiased estimates for
Q be the length of the feature vectors, ande the downsam- the mean and covariance matrixafire simply obtained from
pling factor(0 < s < 1). Excluding the motion estimation stagethe sample mean and variances

of the reconstruction, most of the computational cost results K
from the computation ot TH(®) ®a. According to our image 1 (871, (29)
.. (L) . _ Ha = K ]

acquisition modeH'* can be represented as the successive ap =

plication of motion warping, PSF blurring, and downsamplingnd

[see (7)]. Since the blurring and downsampling operations are K

time-invariant, only the motion warping operation needs to be A~ 1 Z (@71 — pa) (®7L; - ME)T. (30)
computed for each observation separately. DenctWg), B, K =

andD as the motion warping, blurring, and downsampling ma-

trices, respectively, we need three matrix-vector multiplicatiof@ecause of the limited number of training images, for more re-
to ComputeI,TH(i)cI,a whereH® = DBW® . The first one liable estimation, we assume a diagonal covariance matrix, so

is ®a, which requires approximateB”Q multiplications and the off-diagonal elements of the matriare set to zero.
additions. This is then multiplied BW @, which require2P? The mean and covariance matrices 6t are found similarly.

multiplications and additions. This is followed by a multiplicaLetting y§" be theith observation of theth training image,

tion with theQ x P matrix ¥~ BD, which can be precomputed(i = 1, ..., M andj = 1, ..., K), we estimate the mean and
and stored. The total number of multiplications and additio®variance matrices as follows:
is approximateh2P? + 4PQ. On the other hand, doing these K M 4

i i i i i i i 1 (@ OF ¥ u4
operations in the pixel domain [using the maffi”] requires fe ~ St SN (yj ~-HY3® Ij) (31)
2P? + 4sP? operations. Referring to the gradient and Hessian j=1 i=1

matrix computations [(26) and (27)], the eigenface-space r@ad

construction requires roughBM (4sP? — 4PQ) fewer oper- ] KoM , ,

ations per iteration than the spatial-domain reconstruction does. K ~ Vv Z Z (yy’) - H(Z)'I@le — uv)
(In our experimentsl’ is 1600,s is 0.25,Q is 40, andM is 16.) j=1 i=1

. i T
: (yﬁf‘) ~-HY93"T; - uv) : (32)
V. EXPERIMENTAL RESULTS

f d ¢ . d h Again, the off-diagonals oK are set to zero. The megnand
We performed a set of experiments to demonstrate the effl, 2 iance matrixQ for 7v(® are found using) = ¥ 1,

cacy of the proposed method. We investigated the effect of ﬁdQ — OTKW.

face-space dimension, and sensitivity to noise and motion esti-

mation errors. We have also performed a recognition experimeit Reconstruction for Synthetic Video
with real video sequences. We will explain each step of the ex-

periments in detail One of the frames for each video sequence is chosen as the

reference frame, bilinearly interpolated by four, and projected
onto the face spac® to obtain the initial estimate for the true
feature vector. It is then updated using the algorithm proposed
In these experiments, we used face images from the Yale fac¢he previous section. The mappiEH? is computed from the
databases A and B [13], Harvard Robotics Laboratory databd&s®wn motion vectors and PSF, and 16 low-resolution images
[14], AR database [15], and CMU database [16]. The images am used in the reconstruction. The model parametgra,, »,
downsampled to have a size4tfx 40, and aligned according to andQ computed in Step C are used in the reconstruction with
the manually located eye and mouth locations. We selected 184et to 0.5. The number of iteratiodgax I'ter is set to seven
images as training data and 50 images as test data. We appitgcach sequence.
the KLT to those 134 images and chose the first 60 eigenvectordVe also wanted to compare the results of this eigenface-do-
having the largest eigenvalues to form the face subspace. (Thesgn super-resolution algorithm with a traditional pixel-domain
60 eigenvectors form the columns of the mat#x) We also super-resolution. We applied the pixel-domain super-resolution
downsampled the training images by four to obtainx 10 algorithm given in [11] to the low-resolution video sequences
images, applied the KLT to those images, and chose the figgtain using the same 16 low-resolution images and setting the
60 of them to construct the eigenface spdce number iterations to seven. After the high-resolution images are

A. Obtaining the Face Subspace
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Fig. 3. Error in feature vector computation.

reconstructed, they are projected onto the face sfpatoeobtain
the feature vectors.

The feature vectors obtained from these algorithms are com-
pared with the true feature vectors (which are computed using
the40 x 40 original high-resolution images). For each subject
(image sequence), we computed the normalized distance be-
tween the true feature vectarand the estimated feature vector
a. The normalized distancP (a, a) is defined as

. |la— al| 1
D (a, =
(a, a) [lal| % Length (a)

x 100 (33)

whereLength(a) is the length of vectoa.

Fig. 3 shows the results for three cases: i) Feature vectors
computed from a single obsenvtion (no super-resolutdly % (8 016 1010 et 1 1 [l e e
applied). ii) _Feature .vectc_?.rs computed after pixel-doma seevation is ir?terpolated ugsing biline[;r interbolation. (d) Pixel-domain
super-resolution applied. iii) Feature vectors reconstructegber-resolution applied. (e) The result of pixel-domain super-resolution
using the proposed eigenface-domain super-resolution. As seaspnstruction is projected into the face subspace. (f) Representation of the
in the figure, eigenface-domain super-resolution achievesfﬁﬁt;”e vectt)or reconstructed using the eigenface-domain super-resolution in
similar performance to the pixel-domain super-resolution E’:lte ace stbspace.
less computation.

We also provide an example from the face database. Figadd (f) are almost identical, but (f) is obtained at a lower com-
shows the results f@ubject Iin the test data. In that figure, (a) putational burden.
isthe original 40x 40 image, (b) is one of the observations inter- This experiment was done for a face-space dimension of 60,
polated using nearest neighbor interpolation, (c) is the bilineasyhich brings up the question of how the feature vector length
interpolated observation, which is the initial estimate in recoli-e., dimension of the face space) affects the performance.
struction, (d) is the result of the pixel-domain super-resolutioihis question is addressed in the next experiment. We will
(e) is the projection of the result in (d) into the face space, aatso demonstrate that eigenface-domain super-resolution is
(f) is the representation of the reconstructed feature-vector franore robust to noise and motion estimation errors than the
the eigenface-domain super-resolution algorithm. As seen, fiel-domain super-resolution.
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E. Effect of Feature Vector Size on Reconstruction noise power increases, eigenface-domain super-resolution

We repeated the experiments for various feature vector SiZOéJStperforms pixel-domain super-resolution. The reason is that

to examine the effect of the face-space dimension on reconstrﬁ@enface'domam super-resolution constrains the solution to
. . I ' . lie'in the face space, and therefore, it is more robust to noise.
tion. The results are given in Fig. 5. In that figure, thaxis is

the dimension of the face space, andgkexis is the normalized G Effect of Motion Estimation Error on Reconstruction
distance averaged over 50 subjects. Due to the face-space rep- . ) : )
resentation error, pixel-domain super-resolution performs bettef" @ddition to the robustness to observation noise, eigen-
than the eigenface-domain super-resolution at very low fad@c€-domain super-resolution is also more robust to motion
space dimensions. As expected, as the feature vector siz§3dmation errors than pixel-domain super-resolution. This
increased, the performance of the eigenface-domain super-fS8€: We perturbed each true motion vector with a zero-mean
olution approaches that of the pixel-domain super-resolutidgaussian 11D random vector to simulate the motion estimation
Note that this is the result for the case where there is no gi7or- The face dimension for the experiment is again 40. As
servation noise or motion estimation error. As will be show€€n in Fig. 7, as the motion estimation error increases, the
shortly, when there is noise or motion estimation error, eigefix€l-domain super-resolution becomes worse than eigen-
face-domain super-resolution becomes better than the pixel-{f£e-domain super-resolution immediately. It is also observed
main super-resolution even at the low face-space dimensiof@t the pixel-domain super-resolution becomes even worse

This is because the solution obtained in eigenface domaintri?é’m using only_one image to get _the feature _v_ector. Aga_in
constrained by face-specific priors. eigenface-domain super-resolution is less sensitive to motion

estimation errors because of the face-space regularization.

F. Effect of Noise on Reconstruction H. Recognition Experiment With Real Video Sequences

In order to examine the effects of observation noise, we Finally, we tested the proposed algorithm with real video se-
added zero-mean Gaussian IID noise to each low-resolutigmences from the CMU database. We performed a recognition
video frame. The experiment is done for a feature vectexperiment with a database of 68 people. For each person, we
size of 40, and repeated for each of the 50 video sequencected the neutral face image from the facial expression part
Fig. 6 shows the results for different noise powers. (Traxis of the database as the training image. We manually located the
is the variance of the noise, and theaxis is the average positions of the eyes and the mouth in those images, cropped
normalized distance.) As seen in that figure, when the noigeem according to those locations, downsampled them to a size
power is zero, the pixel-domain super-resolution is bettef 40 x 40, and projected them into the eigenspace to get the
than the eigenface-domain super-resolution. However, as thaining feature vector for each person.
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Fig. 6. Effect of observation noise on performance.

To perform recognition, we used the talking video sequencegth quarter-pixel accuracy. We set the block size and the search
provided in the CMU database. Each sequence contains a sinmglege to 8 and:8, respectively, and we found motion vectors for
person talking for 2 s. We had a total of 68 such sequences, @aeh pixel by performing a full search with mean absolute dif-
for each person in our database. The goal of our recognitifarence being the matching criteria. Then, we projected all low
experiment is to identify the person who appears in the videmsolution face images into the eigenface space, and performed
We used 16 consecutive images from each video sequence. &igenface space super-resolution to construct an accurate fea-
original sequences are very high resolution, so we downsamptacke vector for each person. The recognition experiment in this
them so that the face is around 40 pixels wide. The resulticgse provided a recognition rate of 74%. In the third experiment,
sequences form our high-resolution face image sequences, wedised the first frame of each high-resolution video sequence
we use them as the ground truth to evaluate the success of toperform recognition. The recognition rate with these high-res-
experiments. We then blurred these face image sequences (usingon images was 79%.
the PSF given in Step B) and downsampled them (by four) toThe results we reported above show that the decrease in the
form low-resolution observations. These low-resolution imagesolution of the face image decreases the recognition rate sig-
sequences are the input images for the recognition experimarificantly. (In our experiments, the decrease was from 79% to
We manually located the positions of the eyes and the mouthdn%.) With the super-resolution reconstruction, the recognition
the first frame of these image sequences. rate improved significantly, and got close to the high-resolution

Then, we ran three different recognition experiments. In thiecognition rate.
first experiment, we used the first image from each low-reso-
lution image sequence for recognition. We cropped the faces
from the frames according to the locations of the eyes and the
mouth, projected them into the eigenspace, and performed minThe performance of face recognition systems decreases sig-
imum distance classification with thB2 norm. The recogni- nificantly if the resolution of the face image falls below a certain
tion rate in this case was 44%. In the second experiment, ¥eeel. For video sequences, super-resolution techniques can be
again cropped the faces from the first frames of the low resolused to obtain a high-resolution face image by combining the
tion image sequences according to the locations of the eyes afdrmation from multiple low-resolution images. Although
the mouth. Then, we used block based motion estimation to gefper-resolution can be applied as a separate preprocessing
the motion vectors from one image frame to the other. In mblock, in this paper, we propose to apply super-resolution
tion estimation, we computed the motion vectors for each pixafter dimensionality reduction in a face recognition system.

VI. CONCLUSIONS



GUNTURK et al. EIGENFACE-DOMAIN SUPER-RESOLUTION FOR FACE RECOGNITION

0.7 — e
—
\
4

|

—e— Obsemation
‘ —o— Eigenface-domain super-resoluton applied

605

e

o Pixel-domain super-resolution applied

0.6F

0.5+

Average distance to the true vector

| I

0.5 1 1.5

2 2.5

Motion estimation error ( o® / pixel size)
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In this way, only the necessary information for recognition [6]
is reconstructed. We have also shown how to incorporate the
model-based information into the face-space reconstructiorm
algorithm. This helps to obtain more robust results when
compared to the traditional super-resolution algorithms. In the
experiments, we demonstrated robustness to noise and motio
estimation error. We have investigated the effect of face-spac
dimension on the reconstruction, and provided recognition
results for real video sequences.

This paper only examines the case for face images; however[,gl
the idea can be extended to other pattern recognition problems
easily. One such application is the recognition of car licensél0]
plates from video.

[11]
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